JPS62226621A - Forming method for single crystal silicon thin film - Google Patents

Forming method for single crystal silicon thin film

Info

Publication number
JPS62226621A
JPS62226621A JP6855486A JP6855486A JPS62226621A JP S62226621 A JPS62226621 A JP S62226621A JP 6855486 A JP6855486 A JP 6855486A JP 6855486 A JP6855486 A JP 6855486A JP S62226621 A JPS62226621 A JP S62226621A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
thin film
substrate
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6855486A
Other languages
Japanese (ja)
Inventor
Shinji Maekawa
真司 前川
Masayoshi Koba
木場 正義
Katsuteru Awane
粟根 克昶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6855486A priority Critical patent/JPS62226621A/en
Priority to DE8686117799T priority patent/DE3685732T2/en
Priority to US06/943,428 priority patent/US4801351A/en
Priority to EP86117799A priority patent/EP0227076B1/en
Publication of JPS62226621A publication Critical patent/JPS62226621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an uniform silicon insulator SOI layer, by a method wherein an amorphous Si is laminated on an SiO2 film on an Si substrate of {100} face so as to form an aperture, and melted and recrystallized in the direction of <100> by applying an energy beam. CONSTITUTION:An amorphous Si film 4 serving as an active layer is lamminated on an SiO2 on a substrate of (001) single crystal, 1, so as to from an aperture 3. Heat scanning 8 is performed, wherein the exposed part 1a of the Si substrate 1 is employed as a species, and an energy beam 5 is applied. Firstly, a single crystal 7 is obtaind, which is used as a species to form a single crystal Si film 6 after melting and recrystallization. Then the scanning direction 8 is determined, and the crystal growth in the direction of [-100] 23, is progressed. The most stable crystal growth is progressed according to this procedure, and the single-crystallized Si film 6 is obtained whose crystal orientation coincides with the single crystal Si substrate over a relatively long distance.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置を製造する分野で利用される単結晶
シリコン薄膜の形成方法に関し、更に詳細には非晶質下
地上に形成した多結晶あるいは非晶質等の非単結晶シリ
コン薄膜を単結晶化する方法の改良に関するものである
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming a single crystal silicon thin film used in the field of manufacturing semiconductor devices, and more specifically relates to a method for forming a single crystal silicon thin film formed on an amorphous substrate. Alternatively, the present invention relates to an improvement in a method for making a non-single crystalline silicon thin film, such as an amorphous one, into a single crystal.

〈従来の技術〉 従来より、高速集積回路や三次元集積回路の実現のため
に、シリコン基板上に絶縁膜を介して多結晶あるいは非
晶質等の非単結晶シリコンを堆積し、この非単結晶シリ
コン薄膜にエネルギービームを照射して溶融再結晶化さ
せることにより単結晶シリコン薄膜を形成する、いわゆ
る5ol(5ilicon On In5ulator
 )技術の研究、開発が活発に行なわれている。
<Conventional technology> Conventionally, in order to realize high-speed integrated circuits and three-dimensional integrated circuits, non-monocrystalline silicon such as polycrystalline or amorphous silicon is deposited on a silicon substrate with an insulating film interposed therebetween. The so-called 5ol (5ilicon on in5ulator) forms a single crystal silicon thin film by irradiating the crystalline silicon thin film with an energy beam to melt and recrystallize it.
) Technology research and development is being actively conducted.

このようなSOI技術において、801層に作製する素
子が均一な特性を示すためには、その結晶方位が制御さ
れていることが重要である。このため、絶縁膜の一部に
開口部(シード部)を設けてシリコン基板の一部を露出
させ、この露出部分において、シリコン基板と単結晶化
すべき非単結晶シリコン薄膜とを接触させ、基板を種結
晶として用い、開口部(シード部)において、基板と同
じ方位を有する結晶を引き上げ、それを絶縁膜上で横方
向に連続して成長させるようにした方法が提案されてい
る。
In such SOI technology, it is important that the crystal orientation be controlled in order for the element manufactured in the 801 layer to exhibit uniform characteristics. For this purpose, an opening (seed part) is provided in a part of the insulating film to expose a part of the silicon substrate, and in this exposed part, the silicon substrate and the non-single crystal silicon thin film to be made into a single crystal are brought into contact with each other. A method has been proposed in which a crystal having the same orientation as the substrate is pulled up in an opening (seed part) using a crystal as a seed crystal, and the crystal is grown continuously in the lateral direction on an insulating film.

〈発明が解決しようとする問題点〉 本発明は、上記の点に鑑みて創案されたものであり、方
位の制御された均一な単結晶シリコン層を得ることが出
来る単結晶シリコン薄膜形成方法を提供することを目的
としている。
<Problems to be Solved by the Invention> The present invention has been devised in view of the above points, and provides a method for forming a single crystal silicon thin film that can obtain a uniform single crystal silicon layer with a controlled orientation. is intended to provide.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明は、(loo)結晶
面シリコン基板上にシリコン酸化膜を形成し、このシリ
コン酸化膜の一部に開口シード部を設けて多結晶あるい
は非晶質等の非単結晶シリコン薄膜を積層し、この非単
結晶シリコン薄膜にエネルギービームを照射して溶融再
結晶させることにより、単結晶シリコン薄膜を形成する
方法において、結晶を<100>方向に成長させるよう
に構成している。
Means for Solving the Problems> In order to achieve the above object, the present invention forms a silicon oxide film on a (loo) crystal plane silicon substrate, and forms an opening seed portion in a part of the silicon oxide film. A method of forming a single crystalline silicon thin film by laminating polycrystalline or amorphous non-monocrystalline silicon thin films, and melting and recrystallizing the non-single crystalline silicon thin films by irradiating the non-single crystalline silicon thin films with an energy beam. is configured to grow in the <100> direction.

即ち、上記した従来の501層の結晶方位のずれについ
て種々検討した結果、結晶を成長させる方向によって結
晶方位のずれが生じる度合いが異なることが判明し、最
も成長しやすい面内方位に結晶成長させることによって
、結晶方位のずれを無くシ、安定な結晶成長を行なうよ
うにしたもの”で、(100)面のシリコン基板を用い
、(100>方向に結晶を成長させることにより、最も
安定な結晶成長が行なわれ、均一なSOI層が得られる
ことを見出した。
That is, as a result of various studies on the deviation of the crystal orientation of the conventional 501 layer described above, it was found that the degree of deviation of the crystal orientation differs depending on the direction in which the crystal is grown, and the crystal is grown in the in-plane direction that is easiest to grow. By using a silicon substrate with a (100) plane, by growing the crystal in the (100> direction, the most stable crystal can be obtained.) It was found that the growth was successful and a uniform SOI layer was obtained.

〈実施例〉 以下、図面を参照して、本発明の一実施例を詳細に説明
する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(a)乃至(e)は本発明の一実施例を説明する
ための工程図である。
FIGS. 1(a) to 1(e) are process diagrams for explaining one embodiment of the present invention.

本発明を実施するに際しては、基板として(001)面
の単結晶シリコン基板Iを用い、まず第1図(a)に示
す(001)単結晶シリコン基板!上に第2図(b)に
示すようにシリコン酸化膜2を形成し、次に第1図Cc
)に示すようにシリコン酸化膜2の一部に開口部(シー
ド部)3を設けて単結晶シリコン基板Iを一部露出(露
出部分1a)させる。次に第1図(d)に示すように単
結晶シリコン基板lの露出部分1a及びシリコン酸化膜
2の上部に活性層となる非単結晶シリコン薄膜4を形成
し、エネルギービーム照射による加熱5を第1図(e)
に示すように非単結晶シリコン膜3が単結晶シリコン基
板lの露出部分1aに直接液した領域から走査方向8に
行ない、基板lの露出部分1aを種として非単結晶シリ
コン薄膜3を溶融再結晶化して単結晶シリコン領域7を
得ると共に、この単結晶シリコン領域7を種として活性
層となる非単結晶シリコン薄膜4を溶融再結晶化して単
結晶化シリコン薄膜6を得る。
When carrying out the present invention, a (001) single-crystal silicon substrate I is used as a substrate, and first the (001) single-crystal silicon substrate shown in FIG. 1(a)! A silicon oxide film 2 is formed thereon as shown in FIG. 2(b), and then a silicon oxide film 2 is formed as shown in FIG.
), an opening (seed portion) 3 is provided in a portion of the silicon oxide film 2 to expose a portion of the single crystal silicon substrate I (exposed portion 1a). Next, as shown in FIG. 1(d), a non-single-crystal silicon thin film 4 that will become an active layer is formed on the exposed portion 1a of the single-crystal silicon substrate l and on the silicon oxide film 2, and heated 5 by energy beam irradiation. Figure 1(e)
As shown in FIG. 3, the non-monocrystalline silicon thin film 3 is melted and re-melted using the exposed portion 1a of the substrate 1 as a seed in the scanning direction 8 from the area where the non-monocrystalline silicon film 3 is directly applied to the exposed portion 1a of the single-crystalline silicon substrate 1. A single crystal silicon region 7 is obtained by crystallization, and a non-single crystal silicon thin film 4 which becomes an active layer is melted and recrystallized using this single crystal silicon region 7 as a seed to obtain a single crystal silicon thin film 6.

このとき、非単結晶シリコン薄膜4を溶融再結晶化させ
る際、第2図(a)及び(b)に示すように(+00)
の方向に結晶成長させるように走査方向8を方向付ける
At this time, when melting and recrystallizing the non-single crystal silicon thin film 4, as shown in FIGS. 2(a) and (b), (+00)
The scanning direction 8 is oriented so that the crystal grows in the direction of .

)なお、第2図(a)及び(b)において、20は線状
の”を示している。
) In FIGS. 2(a) and 2(b), 20 indicates a linear "".

このように非単結晶シリコン薄膜4の単結晶化を〔〒0
0〕方向に結晶成長させることにより、最も安定な結晶
成長が行なわれ、比較的長い距離にわたって、単結晶シ
リコン基板lと結晶方位の一致した単結晶化シリコン薄
膜6を得る。
In this way, the non-single crystal silicon thin film 4 is made into a single crystal by [〒0
By growing the crystal in the 0] direction, the most stable crystal growth is achieved, and a single crystal silicon thin film 6 whose crystal orientation matches that of the single crystal silicon substrate 1 over a relatively long distance is obtained.

なお、比較のため(+ io)方向に結晶成長させた場
合、シード部8から離れるにしたがって結晶方位のずれ
が大きくなり、例えばシード部3から約500μmで乱
れが生じ、安定な結晶成長が行なわれなくなった。
For comparison, when the crystal is grown in the (+io) direction, the deviation in crystal orientation increases as the distance from the seed part 8 increases, and for example, disturbance occurs at about 500 μm from the seed part 3, and stable crystal growth is not performed. No longer.

また、上記した実施例において、〔100〕方向と等価
な[100]、[0〒O〕、(010)の方向に結晶成
長させた場合にも、同様に安定した結晶成長が得られた
Furthermore, in the above examples, stable crystal growth was similarly obtained when crystal growth was performed in the [100], [0〒O], and (010) directions, which are equivalent to the [100] direction.

更に、シリコン基板lとして(001)面と等価な面(
100)、(010)等を有するものを用い結晶成長の
方向をその面内において、結晶成長の方向〔了001と
対称性から等価な〔0〒0〕。
Furthermore, as a silicon substrate l, a plane equivalent to the (001) plane (
100), (010), etc., and the crystal growth direction is [0〒0] which is equivalent to the crystal growth direction [001] in the plane thereof.

〔00〒〕等の方向に結晶成長させた場合にも、同様に
安定な結晶成長が得られた。
Similarly, stable crystal growth was also obtained when the crystal was grown in a direction such as [00〒].

本発明は、上記の実施例に限定されるものではなく、単
結晶化方法としては複層溶融構造等、どのようなものを
用いても良く、またエネルギービームはレーザ、電子線
、ハロゲンランプ等、いずれのものを用いても良い。
The present invention is not limited to the above-described embodiments, and any single crystallization method may be used, such as a multilayer melt structure, and the energy beam may be a laser, an electron beam, a halogen lamp, etc. , any one may be used.

〈発明の効果〉 以上のように、本発明によれば、結晶方向の制御された
均一な501層を形成することが出来、その結果高性能
の半導体集積回路を提供することが出来る。
<Effects of the Invention> As described above, according to the present invention, a uniform 501 layer with a controlled crystal direction can be formed, and as a result, a high-performance semiconductor integrated circuit can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(e)はそれぞれ本発明の一実施例を
説明するための試料断面を示す工程図、第2図(a)及
び(b)はそれぞれ11本発明の一実施例の結晶成長方
向を説明するための図である。 !・・・(001)間車結晶シリコン基板、Ia・・・
露出部分、2・・・シリコン酸化膜、3・・・開口部(
シード部)、4・・・活性層となる非単結晶7リコン薄
膜、5・・・エネルギービーム照射、6・・・単結晶化
されたシリコン薄膜、8・・・走査方向、20・・・線
状のシード部、2I・・・点状のシード部、23・・・
〔〒00〕結晶成長方向。 特許出願人 工業技術院長 等々力  達(a) (d) 第1図 (a) 囚 第2図
FIGS. 1(a) to (e) are process diagrams each showing a cross section of a sample for explaining an embodiment of the present invention, and FIGS. FIG. 3 is a diagram for explaining crystal growth directions. ! ...(001) Interval wheel crystal silicon substrate, Ia...
Exposed portion, 2... silicon oxide film, 3... opening (
seed part), 4... Non-single-crystal silicon thin film serving as an active layer, 5... Energy beam irradiation, 6... Single-crystal silicon thin film, 8... Scanning direction, 20... Linear seed portion, 2I... Dotted seed portion, 23...
[〒00] Crystal growth direction. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki (a) (d) Figure 1 (a) Figure 2

Claims (1)

【特許請求の範囲】 1、{100}結晶面シリコン基板上にシリコン酸化膜
を形成する工程と、 該形成したシリコン酸化膜の一部に開口部を設けて上記
シリコン基板の一部を露出させる工程と、 上記開口部の設けられたシリコン酸化膜上に活性層とな
る非単結晶シリコン薄膜を積層する工程と、 上記非単結晶シリコン薄膜にエネルギービームを照射し
て上記シリコン基板露出部を種として上記非単結晶シリ
コン薄膜を<100>方向に溶融再結晶化成長させる工
程と を含んでなることを特徴とする単結晶シリコン薄膜形成
方法。
[Claims] 1. A step of forming a silicon oxide film on a {100} crystal plane silicon substrate, and forming an opening in a part of the formed silicon oxide film to expose a part of the silicon substrate. a step of laminating a non-monocrystalline silicon thin film to serve as an active layer on the silicon oxide film provided with the opening; and a step of irradiating the non-monocrystalline silicon thin film with an energy beam to seed the exposed portion of the silicon substrate. A method for forming a single-crystal silicon thin film, comprising the step of melting and recrystallizing the non-single-crystal silicon thin film in the <100> direction.
JP6855486A 1985-12-20 1986-03-28 Forming method for single crystal silicon thin film Pending JPS62226621A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6855486A JPS62226621A (en) 1986-03-28 1986-03-28 Forming method for single crystal silicon thin film
DE8686117799T DE3685732T2 (en) 1985-12-20 1986-12-19 METHOD FOR PRODUCING A MONOCRISTALLINE THIN LAYER.
US06/943,428 US4801351A (en) 1985-12-20 1986-12-19 Method of manufacturing monocrystalline thin-film
EP86117799A EP0227076B1 (en) 1985-12-20 1986-12-19 Method of manufacturing monocrystal thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6855486A JPS62226621A (en) 1986-03-28 1986-03-28 Forming method for single crystal silicon thin film

Publications (1)

Publication Number Publication Date
JPS62226621A true JPS62226621A (en) 1987-10-05

Family

ID=13377094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6855486A Pending JPS62226621A (en) 1985-12-20 1986-03-28 Forming method for single crystal silicon thin film

Country Status (1)

Country Link
JP (1) JPS62226621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231712A (en) * 2008-03-25 2009-10-08 Sumitomo Heavy Ind Ltd Laser beam machining method and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167011A (en) * 1983-02-01 1984-09-20 Mitsubishi Electric Corp Semiconductor wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167011A (en) * 1983-02-01 1984-09-20 Mitsubishi Electric Corp Semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231712A (en) * 2008-03-25 2009-10-08 Sumitomo Heavy Ind Ltd Laser beam machining method and semiconductor device

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JPS59161014A (en) Crystallization of semiconductor thin film
JPS5939790A (en) Production of single crystal
JPS62226621A (en) Forming method for single crystal silicon thin film
JPS5939791A (en) Production of single crystal
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS6147627A (en) Manufacture of semiconductor device
JPH0236052B2 (en)
JPH0442358B2 (en)
JPH0354819A (en) Manufacture of soi substrate
JPH0136972B2 (en)
JPS60164316A (en) Formation of semiconductor thin film
JPS62130510A (en) Manufacture of semiconductor substrate
JPS6362088B2 (en)
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS6338235A (en) Manufacture of semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPS5886716A (en) Forming of single crystal semiconductor film
JPS62297289A (en) Formation of single crystal thin film
JPH0449250B2 (en)
JPS6265410A (en) Formation of single crystal thin film
JPH03293720A (en) Manufacture of crystalline semiconductor thin film
JPS5874034A (en) Preparation of semiconductor device
JPS63236311A (en) Manufacture of semiconductor device
JPH01239093A (en) Method for crystal growth