JPS5886716A - Forming of single crystal semiconductor film - Google Patents

Forming of single crystal semiconductor film

Info

Publication number
JPS5886716A
JPS5886716A JP56184794A JP18479481A JPS5886716A JP S5886716 A JPS5886716 A JP S5886716A JP 56184794 A JP56184794 A JP 56184794A JP 18479481 A JP18479481 A JP 18479481A JP S5886716 A JPS5886716 A JP S5886716A
Authority
JP
Japan
Prior art keywords
substrate
amorphous
single crystal
film
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184794A
Other languages
Japanese (ja)
Inventor
Masakazu Kimura
正和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56184794A priority Critical patent/JPS5886716A/en
Publication of JPS5886716A publication Critical patent/JPS5886716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To enable the formation of a single crystal semiconductor film of good quality even when the entire surface of a substrate is amorphous, by forming belt-shaped polycrystalline semiconductor films separately on an amorphous insulator substrate, and by providing seed crystals on the end parts of the substrate. CONSTITUTION:A plurality of belt-shaped polycrystalline Si films 5 being parallel to each other are formed on a quartz glass plate 6 which is an amorphous insulator substrate. Next, the surface thus formed is covered with a dioxide Si film 6. Meanwhile, amorphous Si films 4 are deposited on a monocrystalline Si substrate, and rectangular single crystal Si pieces 7 are cut off from this Si substrate. Two seed crystals thus formed are provided in both ends of the glass plate 6 with mutual end surfaces stuck fast together. With heating applied in this state, Si 5 is made monocrystalline by liquid-phase epitaxial growing. By this method, belt-shaped single crystal Si films 9 being free from the distortion due to the thermal distribution and the fluctuation of heat can be obtained on the glass plate 6.

Description

【発明の詳細な説明】 本発明は単結晶半導体膜の形成方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a single crystal semiconductor film.

非晶質絶縁体上にシリコン等の半導体膜を形成する方法
は、デバイスの高速化やL8Iの三次元化などから注目
されている。このような形成法の一つとして例えばグラ
フオエピタキシーと呼ばれる成長法がある。これは非晶
質絶縁体基板表面に複数個の溝を形成しておき、この溝
の幾何学的影状を利用して結晶方位を制御しようとする
ものである。又、これとは別に1種子結晶を利用して非
晶質絶縁体上に成長させる方法がある。この−例を第1
図を用いて説明する。第1図は単結晶化する前の構造を
示したもので、単結晶シリコン3の上に島状の二酸化シ
リコン膜2を形成し、さらにその上に多結晶シリコン膜
1を堆積させる。そして例えばアルゴン(Ar )レー
ザ光を用いて多結晶シリコン膜1を溶融する。単結晶シ
リコン上の多結晶シリコンはエピタキシャル成長し、こ
れを種子にしてこのエピタキシャル成長が二酸化シリコ
ン膜の上でも進行する。このようにして二酸化シリコン
膜上に単結晶シリコン膜が成長する。このような成長法
では基板として単結晶基板を必要とし又、表面の一部は
常に単結晶面がでている必要がある。このため、例えば
積層デバイスを作成する場合に、常に単結晶面を露出さ
せておかねばならないという工程及び構造上のわずられ
しさが生ずる。
A method of forming a semiconductor film such as silicon on an amorphous insulator is attracting attention from the viewpoint of increasing the speed of devices and making L8I three-dimensional. One such formation method is, for example, a growth method called graphoepitaxy. In this method, a plurality of grooves are formed on the surface of an amorphous insulating substrate, and the crystal orientation is controlled by utilizing the geometric shadows of the grooves. Also, apart from this, there is a method of growing on an amorphous insulator using one seed crystal. This - example 1
This will be explained using figures. FIG. 1 shows the structure before single crystallization, in which an island-shaped silicon dioxide film 2 is formed on a single crystal silicon 3, and a polycrystalline silicon film 1 is further deposited thereon. Then, polycrystalline silicon film 1 is melted using, for example, argon (Ar) laser light. Polycrystalline silicon on single-crystal silicon grows epitaxially, and using this as a seed, this epitaxial growth also progresses on the silicon dioxide film. In this way, a single crystal silicon film is grown on the silicon dioxide film. Such a growth method requires a single-crystal substrate as a substrate, and a portion of the surface must always have a single-crystal plane. For this reason, for example, when producing a laminated device, the process and structure are complicated because the single crystal plane must always be exposed.

本発明の目的は、このような欠点を解決することができ
る従来の方法とは全く異り5例えばガラスのように全体
が非晶質絶縁体であるような基板であっても、その上に
良質の単結晶半導体膜が形成できる新しい単結晶半導体
膜形成法を提供することにある。
The purpose of the present invention is to solve these drawbacks, which is completely different from conventional methods5. An object of the present invention is to provide a new method for forming a single crystal semiconductor film that can form a high quality single crystal semiconductor film.

本発明は、非晶質絶縁体膜で被覆された帯状の非晶質又
は多結晶半導体膜を非晶質絶縁体基板上に形成し、その
ような絶縁体基板の一端又は両端に、非晶質絶縁体基板
上に形成した半導体と同一組成の非晶質又は多結晶半導
体膜を表面に有する単結晶半導体を設け、該単結晶半導
体を種子結晶として非晶質又は多結晶半導体膜を加熱処
理することにより非晶質絶縁体基板上に単結晶半導体膜
を形成することを特徴としている。このような方法を用
いると次のような利点がある。非晶質絶縁体基板として
従来のように単結晶を用いる必要がなく、例えばガラス
のような安価な材料を用いることができる。又、積層デ
バイスを作るうえでも表面の一部に単結晶面を露出させ
る必要がなく、すべて非晶質絶縁体膜で被覆してしまっ
てもその上に単結晶半導体層を形成することができる。
The present invention forms a band-shaped amorphous or polycrystalline semiconductor film coated with an amorphous insulating film on an amorphous insulating substrate, and forms an amorphous or polycrystalline semiconductor film on one or both ends of such an insulating substrate. A single-crystalline semiconductor having an amorphous or polycrystalline semiconductor film having the same composition as the semiconductor formed on a high-quality insulating substrate is provided on the surface, and the amorphous or polycrystalline semiconductor film is heat-treated using the single-crystalline semiconductor as a seed crystal. The method is characterized in that a single crystal semiconductor film is formed on an amorphous insulating substrate by doing this. Using such a method has the following advantages. It is not necessary to use a single crystal as the amorphous insulator substrate as in the past, and an inexpensive material such as glass can be used. Furthermore, when making a stacked device, there is no need to expose a single crystal plane on a part of the surface, and even if the entire surface is covered with an amorphous insulator film, a single crystal semiconductor layer can be formed on top of it. .

さら、に、非晶質絶縁体基板上の半導体膜を複数個の帯
状に分割することにより半導体膜を大面積の連続膜のま
ま結晶化する場合に比べて種子付け(シーディンゲ)の
際に熱分布や熱変動等にょる熱歪から生ずる欠陥の発生
を低減でき、結晶性の良い膜を得ることができる。又、
半導体膜の上を非晶質絶縁体膜で被覆しているため、半
導体膜が溶融して再び固化する際に、融体の移動や表面
張力から生ずる表面の凹凸を低減できる。
Furthermore, by dividing the semiconductor film on the amorphous insulator substrate into multiple strips, the heat required during seeding is reduced compared to the case where the semiconductor film is crystallized as a continuous film over a large area. It is possible to reduce the occurrence of defects caused by thermal distortion due to distribution, thermal fluctuation, etc., and it is possible to obtain a film with good crystallinity. or,
Since the semiconductor film is covered with the amorphous insulating film, when the semiconductor film melts and solidifies again, surface irregularities caused by movement of the melt and surface tension can be reduced.

以下実施例により本発明の詳細な説明する。本実施例で
は半導体膜としてシリコン、非晶質絶縁体基板として石
英ガラスを用いた場合について説明する。
The present invention will be explained in detail below with reference to Examples. In this embodiment, a case will be described in which silicon is used as the semiconductor film and quartz glass is used as the amorphous insulator substrate.

実施例(1) 非晶質絶縁体基板の両端に種子結晶を設けた場合の一実
施例を第2図〜第5図に示す。第2図〜第4図は加熱処
理前の試料構成を示す図で、第2図は平面図、第3図は
帯状シリコンの長さ方向に対して直角方向からみた試料
断面図、第4図は帯の長さ方向からみた非晶質絶縁体基
板の断面図である。非晶質絶縁体基板である石英ガラス
6として表面が鏡面研磨され、かつ種子結晶が設けられ
る両端面も平坦に鏡面加工されたものを用いた。
Example (1) An example in which seed crystals are provided at both ends of an amorphous insulator substrate is shown in FIGS. 2 to 5. Figures 2 to 4 are diagrams showing the structure of the sample before heat treatment, with Figure 2 being a plan view, Figure 3 being a cross-sectional view of the sample viewed from a direction perpendicular to the length direction of the silicon band, and Figure 4. is a cross-sectional view of the amorphous insulator substrate viewed from the longitudinal direction of the strip. The quartz glass 6, which is an amorphous insulating substrate, was used, the surface of which was mirror-polished, and both end faces on which the seed crystals were provided were also mirror-finished to be flat.

次にこの石英ガラス6上に化学気相堆積(OVD)法で
、例えば650℃で多結晶シリコン膜を0.5μm程度
堆積した。そして通常のパターニング技術を用いて第2
図に示すような複数個の互に平行な帯状の多結晶シリコ
ン膜5を形成した。帯の幅として2μm、10μm、1
00μmの3種類をシリコン膜の分離領域の幅として5
μmを選んだ。
Next, a polycrystalline silicon film having a thickness of about 0.5 μm was deposited on the quartz glass 6 at, for example, 650° C. by chemical vapor deposition (OVD). and a second pattern using normal patterning techniques.
A plurality of parallel belt-shaped polycrystalline silicon films 5 as shown in the figure were formed. The width of the band is 2μm, 10μm, 1
00μm as the width of the isolation region of the silicon film.
μm was chosen.

このような表面に、OVD法によりzoooi程度の二
酸化シリコン膜8を被覆した。その際、種子結晶近傍の
両端100μm程度は二酸化シリコン膜のない状態にし
ておいた。これは種子付けの際に多結晶シリコンが種子
結晶と十分になじむようにするためである。一方、(1
00)面を有する単結晶シリコン基板上にOVD法によ
り例えば590℃で非晶質シリコン膜4を0.5μm程
度堆積した。そのようなシリコン基板から矩形状の単結
晶シリコン7を切り出し、かつ非晶質絶縁体基板の端面
と接する種子結晶の一端面を鏡面研磨及び化学エツチン
グにより歪のない平坦な鏡面状態に形成した。このよう
にして形成された2つの種子結晶を、前述した石英ガラ
ス6の両端に設けて互の端面を密着させた。2つの種子
結晶4と石英ガラス基板6はそれぞれ独立に高さ及び面
内位置の調整が可能でかつ基板面の角度が可変であるよ
うな試料台に載せられ、表面の高さが同じになるように
調整され、かつ端面同志が密着された。このような状態
で加熱処理を施した。加熱処理の手段として連続発振ア
ルゴンレーザ光を用いた。直径500μm程度のスポッ
ト状にし、毎秒5ミリメートルの速さで種子結晶領域か
ら多結晶シリコンの帯に沿って他端にあるもう一つの種
子結晶領域にわたり往復走査を繰り返すことにより、帯
状の多結晶シリコン5を液相エピタキシャル成長により
単結晶化した。表面に被覆した二酸化シリコン膜を希弗
酸処理により剥離した後の状態を第5図に示す。化学エ
ツチング、X線回折、電子線回折等の評価により、得ら
れた帯状のシリコン膜はいずれの帯幅に対しても(10
0)面を有する単結晶シリコンであることがs詔された
。又、エツチング表面の光学観察から、欠陥社はとんど
みられなかった。又、表面も平坦であった。これに対し
て、多結晶シリコン膜を帯状に分離せずに、例えば幅5
05m1i!度の大きさで全面に多結晶シリコンが存在
する場合には欠陥が多くみられ、又、レーザのスポット
サイズ及びステップサイズに対応した表面の凹凸がみら
れた。
Such a surface was coated with a silicon dioxide film 8 of approximately zoooi thickness by an OVD method. At that time, approximately 100 μm of both ends near the seed crystal were left free of silicon dioxide film. This is to ensure that the polycrystalline silicon is sufficiently compatible with the seed crystal during seeding. On the other hand, (1
An amorphous silicon film 4 having a thickness of about 0.5 μm was deposited at, for example, 590° C. by the OVD method on a single crystal silicon substrate having a 00) plane. A rectangular single crystal silicon 7 was cut out from such a silicon substrate, and one end surface of the seed crystal that was in contact with the end surface of the amorphous insulator substrate was mirror polished and chemically etched to form a flat mirror surface without distortion. The two seed crystals thus formed were provided at both ends of the quartz glass 6 described above, and their end faces were brought into close contact with each other. The two seed crystals 4 and the quartz glass substrate 6 are placed on a sample stage whose height and in-plane position can be adjusted independently, and the angle of the substrate surface is variable, so that the surface heights are the same. It was adjusted so that the end faces were brought into close contact with each other. Heat treatment was performed in this state. Continuous wave argon laser light was used as a means of heat treatment. A strip of polycrystalline silicon is formed by forming a spot with a diameter of approximately 500 μm and repeating back-and-forth scanning from the seed crystal region along the polycrystalline silicon strip to another seed crystal region at the other end at a speed of 5 millimeters per second. 5 was single crystallized by liquid phase epitaxial growth. FIG. 5 shows the state after the silicon dioxide film coated on the surface has been peeled off by dilute hydrofluoric acid treatment. Evaluations using chemical etching, X-ray diffraction, electron beam diffraction, etc. revealed that the obtained band-shaped silicon film had a width of (10
It was decreed that silicon should be single-crystal silicon with a 0) plane. Furthermore, optical observation of the etched surface revealed that almost no defects were observed. Moreover, the surface was also flat. On the other hand, instead of dividing the polycrystalline silicon film into strips, for example,
05m1i! When polycrystalline silicon was present over the entire surface, many defects were observed, and surface irregularities corresponding to the laser spot size and step size were observed.

実施例(2) 非晶質絶縁体基板の一端に種子結晶を設けた場合の一例
を第6図に示す。第6図は加熱処理前の試料構成を示す
平面図である。本実施例では、種子結晶を片側にのみ設
けて一方向にのみ成長させる方法を示したもので、この
場合には前述した実施例(1)とは異り、レーザ光の往
復走査のような方法は用いず、例えばスポット状のレー
ザ光ならば同一方向にのみ走査するような方式がとられ
る。
Example (2) FIG. 6 shows an example in which a seed crystal is provided at one end of an amorphous insulator substrate. FIG. 6 is a plan view showing the structure of the sample before heat treatment. In this example, a method is shown in which a seed crystal is provided only on one side and grown in only one direction. For example, if a spot-shaped laser beam is used, a method is used in which the laser beam is scanned only in the same direction.

ここではスポット状のレーザ光ではなく、非常に細長い
スリット状のレーザ光を用いて成長させた場合について
説明する。実施例(1)で述べたのと同様な手法により
石英ガラス基板6上に帯状の多結晶シリコン5を形成し
た。本実施例では種子結JLが一端にのみ設けであるた
め、帯状の多結晶シリコン5は図6に示すように他端ま
で完全につながっている必要はなく、端付近で閉じてい
てもかまわない。多結晶シリコン5を形成したのち、二
酸化シリコン膜8を被覆した。種子結晶の作成および種
子結晶と石英ガラス基板との密着法は実施例(1)に述
べたのと同じ方法を用いた。レーザとして400W程度
の連続発振ネオジム・ヤグ(Nd:YAG)レーザを用
い、レンズ系により長さ50鰭。
Here, a case will be described in which growth is performed using a very elongated slit-shaped laser beam instead of a spot-shaped laser beam. A band-shaped polycrystalline silicon 5 was formed on a quartz glass substrate 6 by a method similar to that described in Example (1). In this embodiment, since the seed knot JL is provided only at one end, the band-shaped polycrystalline silicon 5 does not need to be completely connected to the other end as shown in FIG. 6, and may be closed near the end. . After forming polycrystalline silicon 5, a silicon dioxide film 8 was coated. The same method as described in Example (1) was used to prepare the seed crystal and to adhere the seed crystal to the quartz glass substrate. A continuous wave neodymium YAG (Nd:YAG) laser of about 400W is used as a laser, and the length is 50 fins depending on the lens system.

幅100μm程度のスリット状にした。図6で、破線は
スリット状のレーザ光を示したもので、このようなレー
ザ光を稚子結晶側から照射して、帯の長さ方向に沿って
レーザ光を嚢査した。走査速度として例えば毎秒5ミリ
メートルが用いられた。
It was made into a slit shape with a width of about 100 μm. In FIG. 6, the broken line indicates a slit-shaped laser beam, and such laser beam was irradiated from the child crystal side, and the laser beam was scanned along the length direction of the band. For example, a scanning speed of 5 millimeters per second was used.

この方式では一回のレーザ光走査で石英ガラス基板上の
帯状多結晶シリコン膜を単結晶化することができる。帯
の幅は実施例(1)と同様数μm〜100μm程度でも
よく、又、スリット状のレーザ光を用いているため、ミ
リメートルのオーダーの値でも可能であった。しかし2
gm以上にな・ると帯状に分割した効果がうすれ欠陥が
入りやすくなる傾向がみられた。
In this method, a band-shaped polycrystalline silicon film on a quartz glass substrate can be made into a single crystal by one laser beam scan. The width of the band may be approximately several μm to 100 μm as in Example (1), and since a slit-shaped laser beam is used, a value on the order of millimeters is also possible. But 2
When the thickness exceeds gm, the effect of dividing into strips tends to fade and defects tend to occur.

以上、2つの実施例で示したように、石英ガラス基板上
に、種子結晶を利用して単結晶シリコン膜を形成する方
法は、基板表面全体が非晶質であっても、単結晶膜の形
成が可能である。又、多結晶シリコン膜が基板全面に堆
積された状態で単結晶化を行わずに、多結晶シリコン膜
を帯状に分割してから種子結晶により液相エピタキシャ
ル成長することにより、熱分布や熱の変動による歪から
生ずる欠陥を低域できる。
As shown in the two examples above, the method of forming a single crystal silicon film on a quartz glass substrate using a seed crystal is effective in forming a single crystal film even if the entire substrate surface is amorphous. Formation is possible. In addition, without performing single crystallization when the polycrystalline silicon film is deposited on the entire surface of the substrate, the polycrystalline silicon film is divided into strips and then liquid-phase epitaxial growth is performed using seed crystals, thereby reducing heat distribution and heat fluctuations. Defects caused by distortion can be reduced to low frequencies.

以上は半導体膜としてシリコンを例にとって説明したが
、他の半導体、例えばゲルマニウム(Ge )や砒化ガ
リウム(GaAs )のような材料についても本発明は
適用される。又、非晶質絶縁体基板としてガラスのみで
なく、単結晶基板例えばシリコン単結晶ウェーハ上に二
酸化シリコンや窒化シリコン膜等の非晶質絶縁体膜を被
覆したものあるいはガラス上に非晶質絶縁体膜を被覆し
たものも包含されることはもちろんである。さらに、加
熱処理法として、レーザ光以外に電子ビームや棒状の抵
抗加熱体等を用いた方法も本発明の請求範囲から逸脱す
るものではない。
Although the above description has been made using silicon as an example of the semiconductor film, the present invention is also applicable to other semiconductor materials such as germanium (Ge) and gallium arsenide (GaAs). In addition to glass as an amorphous insulating substrate, single crystal substrates such as silicon single crystal wafers coated with an amorphous insulating film such as silicon dioxide or silicon nitride, or amorphous insulating films on glass can also be used. Of course, those that cover body membranes are also included. Further, as a heat treatment method, a method using an electron beam, a rod-shaped resistance heating body, etc. in addition to laser light does not depart from the scope of the present invention.

本発明は、基板表面全体が非晶質絶縁体であっても良質
の単結晶半導体膜を得る方法を提供するもので、LSI
の高速化や三次元化に多大の効果をもたらすものである
The present invention provides a method for obtaining a high quality single crystal semiconductor film even if the entire surface of the substrate is an amorphous insulator.
This has a great effect on speeding up the process and making it three-dimensional.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の成長法の一例を示す基板断面図である
。第2図〜第4図は、本発明の一実施例を示す試料構成
図で、第2図は平面図、!3図〜第4図は断面図である
。第5図は、本発明の方法で得られた単結晶シリコン膜
を有する石英ガラス基板断面図である。第6図は、本発
明の一実施例を示す試料平面図である。 破線はスリット状のレーザ光を示す。 1・・・・・・多結晶シリコン膜 2・・・・・・二酸化シリコン膜 3・・・・・・単結晶シリコン基板 4°・・・・・非晶質シリコン層を有する種子結晶5・
・・・・・多結晶シリコン膜 6・・・・・・石英ガラス基板 7・・・・・・種子用単結晶シリコン 8・・・・・・二酸化シリコン膜 9・・・・・・単結晶シリコン展
FIG. 1 is a cross-sectional view of a substrate showing an example of a conventional growth method. 2 to 4 are sample configuration diagrams showing one embodiment of the present invention, and FIG. 2 is a plan view. 3 to 4 are cross-sectional views. FIG. 5 is a cross-sectional view of a quartz glass substrate having a single crystal silicon film obtained by the method of the present invention. FIG. 6 is a plan view of a sample showing an embodiment of the present invention. The broken line indicates a slit-shaped laser beam. 1...Polycrystalline silicon film 2...Silicon dioxide film 3...Single crystal silicon substrate 4°...Seed crystal 5 having an amorphous silicon layer
...Polycrystalline silicon film 6...Quartz glass substrate 7...Single crystal silicon for seeds 8...Silicon dioxide film 9...Single crystal silicon exhibition

Claims (1)

【特許請求の範囲】[Claims] 非晶質絶縁体膜で被榎された、複数個の互に平行な帯状
の非晶質又は多結晶半導体膜を有する非晶質絶縁体基板
の一端又は両端に、該非晶質絶縁体基板上の半導体と同
じ組成の非晶質又は多結晶半導体膜を表面に有する単結
晶半導体を設け、該単結晶半導体を種子結晶として非晶
質又は多結晶半導体膜を加熱処理することにより非晶質
絶縁体基板上に単結晶半導体膜を形成することを特徴と
する単結晶半導体膜形成法。
At one end or both ends of an amorphous insulating substrate, the amorphous insulating substrate has a plurality of parallel band-shaped amorphous or polycrystalline semiconductor films covered with an amorphous insulating film. Amorphous insulation is obtained by providing a single crystal semiconductor having an amorphous or polycrystalline semiconductor film having the same composition as the semiconductor on the surface, and heat-treating the amorphous or polycrystalline semiconductor film using the single crystal semiconductor as a seed crystal. 1. A single crystal semiconductor film forming method characterized by forming a single crystal semiconductor film on a body substrate.
JP56184794A 1981-11-18 1981-11-18 Forming of single crystal semiconductor film Pending JPS5886716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184794A JPS5886716A (en) 1981-11-18 1981-11-18 Forming of single crystal semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184794A JPS5886716A (en) 1981-11-18 1981-11-18 Forming of single crystal semiconductor film

Publications (1)

Publication Number Publication Date
JPS5886716A true JPS5886716A (en) 1983-05-24

Family

ID=16159401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184794A Pending JPS5886716A (en) 1981-11-18 1981-11-18 Forming of single crystal semiconductor film

Country Status (1)

Country Link
JP (1) JPS5886716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055613A (en) * 1983-09-07 1985-03-30 Agency Of Ind Science & Technol Substrate for semiconductor device
JP2011171677A (en) * 2010-02-22 2011-09-01 Semiconductor Technology Academic Research Center Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055613A (en) * 1983-09-07 1985-03-30 Agency Of Ind Science & Technol Substrate for semiconductor device
JP2011171677A (en) * 2010-02-22 2011-09-01 Semiconductor Technology Academic Research Center Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS60115217A (en) Manufacture of single crystal silicon
JPS5893221A (en) Semiconductor thin film structure and preparation thereof
JPS6046074B2 (en) Semiconductor crystal growth method
JPS5886716A (en) Forming of single crystal semiconductor film
JPH0351289B2 (en)
JPS59128292A (en) Method for crystallizing thin film
JPS5886717A (en) Forming of single crystal silicon film
JPS6147627A (en) Manufacture of semiconductor device
JPS59184517A (en) Manufacture of lamination-type semiconductor device
JPS60234312A (en) Formation of soi film
JPS6362088B2 (en)
JPS5946021A (en) Semiconductor device and its manufacture
JPS59154016A (en) Formation of thin film crystal
JPH0524113B2 (en)
JPS58180019A (en) Semiconductor base body and its manufacture
JPS61251114A (en) Manufacture of single crystal silicon film
JPS61203630A (en) Structure of material
JPH02154416A (en) Manufacture of single crystal film of semiconductor
JPS62226621A (en) Forming method for single crystal silicon thin film
JPS5893218A (en) Manufacture of semiconductor thin film structure
JPS6151820A (en) Manufacture of semiconductor device
JPS62130510A (en) Manufacture of semiconductor substrate
JPS61212012A (en) Method for forming soi structure
JPS6379953A (en) Production of thin single crystal film
JPH0523492B2 (en)