JPS5939791A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS5939791A
JPS5939791A JP57147700A JP14770082A JPS5939791A JP S5939791 A JPS5939791 A JP S5939791A JP 57147700 A JP57147700 A JP 57147700A JP 14770082 A JP14770082 A JP 14770082A JP S5939791 A JPS5939791 A JP S5939791A
Authority
JP
Japan
Prior art keywords
film
silicon
substrate
single crystal
stepped portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147700A
Other languages
Japanese (ja)
Inventor
Masayoshi Sasaki
佐々木 正義
Shiro Hagiwara
萩原 梓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57147700A priority Critical patent/JPS5939791A/en
Publication of JPS5939791A publication Critical patent/JPS5939791A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Abstract

PURPOSE:To form a silicon single crystal film having high quality in the desired position on a substrate, by providing an oxidized film of silicon and a polycrystalline silicon film provided with a level difference on the substrate then subjecting the films to a recrystallization treatment by melting. CONSTITUTION:A polycrystalline silicon film 23 is formed on an oxidized film 22 of silicon formed on a silicon substrate 21 and a level difference 24 is formed on the film 23 by using a photoetching method or the like. Laser light is irradiated to the region A including the part 24 and the peripheral part thereof to melt the film 23, thereby forming molten silicon 25. The molten silicon is allowed to cool and the molten silicon is cooled and solidified with the central point O of the part 24 having the lower temp. owing to the higher rate of cooling as a base point, whereby the material for semiconductors having the film 23, the polycrystalline silicon 25' formed in the stage of recrystallization and the single crystal silicon film 26 formed by the recrystallization on the substrate 21 through the film 22 is obtd.

Description

【発明の詳細な説明】 (技術分野) この発明は単結晶の製造方法に係シ、特に絶縁基板もし
くは表面が絶縁膜でおおわれた基板上に半導体単結晶を
成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a single crystal, and more particularly to a method for growing a semiconductor single crystal on an insulating substrate or a substrate whose surface is covered with an insulating film.

(従来技術とその問題点) 絶縁膜上に単結晶を成長させる方法として5OS(シリ
コンオンサファイア)が実用化されている。SO8は絶
縁体であるサファイア結晶表面にシリコンの単結晶をエ
ピタキシアル成長させるものであるが、基板としてサフ
ァイア結晶を使用しているためシリコン単結晶層は基板
の表面にだけしか形成出来ない。
(Prior art and its problems) 5OS (silicon on sapphire) has been put into practical use as a method for growing a single crystal on an insulating film. SO8 epitaxially grows a single crystal of silicon on the surface of a sapphire crystal, which is an insulator, but since a sapphire crystal is used as a substrate, a silicon single crystal layer can only be formed on the surface of the substrate.

これに対してグラフオエピタキシィという方法が提案さ
れている。この方法は非晶質絶縁膜にレリーフを施し、
その上に堆積した多結晶をレリーリーフで、得ようとす
る単結晶の面方位に応じて種々の形状に蝕刻されて形成
される。第1図(、)では’、< l OO>面方位の
単結晶が、第1図(b)では(110)面方向の単結晶
がそれぞれ成長することが期待される。しかし、このグ
ラフオエピタキシィは技術的に困難な課題が多いため実
用化には到っていない。
For this purpose, a method called graph-o-epitaxy has been proposed. This method applies relief to an amorphous insulating film,
It is formed by etching the polycrystal deposited thereon into various shapes in relief relief depending on the plane orientation of the single crystal to be obtained. In FIG. 1(,), it is expected that a single crystal with the ',<lOO> plane orientation will grow, and in FIG. 1(b), a single crystal with the (110) plane direction will grow. However, graphoepitaxy has not been put into practical use due to many technical difficulties.

この他に単結晶の製造方法として、基板結晶を種結晶と
して、絶縁膜上まで結晶成長を横方向に進めようとする
シーディングエピタキシィや、絶縁膜上に島状に多結晶
層を形成しておきその多結晶層を熔融、再固化させると
きに1つのグレイン(単結晶)として成長するようコン
トロールするアイランドエピタキシィ等が提案されてい
るが、それぞれ技術的に難かしさかあシ良質な単結晶は
得られていない。
Other methods for manufacturing single crystals include seeding epitaxy, which uses a substrate crystal as a seed crystal to grow the crystal laterally onto the insulating film, and forms an island-shaped polycrystalline layer on the insulating film. Island epitaxy, which controls the growth of a single grain (single crystal) when the polycrystalline layer is melted and resolidified, has been proposed, but each technique is technically difficult and difficult to obtain. No single crystal was obtained.

これらの各製造方法に共通する技術的難かしさである。This is a technical difficulty common to each of these manufacturing methods.

単結晶の製造方法を提供するにある。The present invention provides a method for producing a single crystal.

(発明の概要) この発明では、熔融部分に温度差をつけることによシ、
再固化時の核形成が熔融部分の中心付近から起こるよう
にしたことを特徴とし、絶縁基板もしくは表面が絶縁膜
でおおわれた基板上に単結晶化されるべき材料を薄膜状
にかつ所望の位置に所望の形状の段差部を有するように
形成し、この段差部とこの周辺部の前記材料を溶融させ
た後に再固化することによシ前記段差部に単結晶を成長
させることによシ上記目的を達成した。
(Summary of the invention) In this invention, by creating a temperature difference in the melting part,
It is characterized in that nucleation during resolidification occurs near the center of the molten part, and the material to be single-crystalized is formed into a thin film on an insulating substrate or a substrate whose surface is covered with an insulating film and placed at a desired position. The method described above is performed by forming a stepped portion with a desired shape, and by melting the material in the stepped portion and the surrounding area, and then resolidifying the material, and growing a single crystal in the stepped portion. Achieved the purpose.

以下この発明を実施例に基づいて詳細に説明する。The present invention will be described in detail below based on examples.

(発明の実施例) 第2図、第3図、第5図は、この発明の一実施−た場合
について説明する。シリコン基板21の表1・− 1回にシリコン酸化膜22を酸化又は蒸着などの適当゛
な方法で形成する。
(Embodiment of the Invention) FIG. 2, FIG. 3, and FIG. 5 explain one embodiment of the present invention. Table 1 of silicon substrate 21 - At one time, a silicon oxide film 22 is formed by an appropriate method such as oxidation or vapor deposition.

:11 つぎに酸化膜22上に多結晶シリコン膜23をス・フッ
タリングやその、他の方法で薄膜状に被着し、写真蝕刻
法などを利用して段差部24を形成する。
:11 Next, a polycrystalline silicon film 23 is deposited in a thin film form on the oxide film 22 by cross-footing or other methods, and a stepped portion 24 is formed using photolithography or the like.

(第2図)ついで、段差部24とその周辺部を含む領域
(第2図にAで示した領域)をレーザを用いて加熱し、
多結晶シリコン膜23を溶融させる。
(FIG. 2) Next, a region including the stepped portion 24 and its surroundings (region indicated by A in FIG. 2) is heated using a laser,
Polycrystalline silicon film 23 is melted.

第3図に示した25は熔融した多結晶シリコンである。25 shown in FIG. 3 is molten polycrystalline silicon.

この熔融した多結晶シリコン25が冷却する過程につい
て考えてみると、熱放散は主に周辺の多結晶シリコン膜
23と下地の酸化膜22とへの熱伝導によってなされる
。両者の割合は通常酸化膜22への熱伝導の方が大きい
。しかも段差部24を形成して熔融多結晶シリコン25
内に熱容量の差を設けるようにしている。このため熔融
多結晶シリコン膜25の熱容量は第3図に示した段差部
24の底辺部分であるB領域よシも周辺部であるC領域
の方が大きく、従って冷却速度はB髪丞。図に示すよう
に段差部24の中央部0点で温”H 再固化するときには温度の低い0点および周辺部のP点
から結晶イビが始まシ、温度の量も高い段差部24のエ
ツジであるH点でそれが完了する。
Considering the cooling process of the molten polycrystalline silicon 25, heat dissipation is mainly performed by heat conduction to the surrounding polycrystalline silicon film 23 and the underlying oxide film 22. The ratio between the two is normally higher in heat conduction to the oxide film 22. In addition, the stepped portion 24 is formed to melt the molten polycrystalline silicon 25.
A difference in heat capacity is created between the two. Therefore, the heat capacity of the molten polycrystalline silicon film 25 is larger in region C, which is the peripheral part, than in region B, which is the bottom part of the stepped portion 24 shown in FIG. 3, and therefore the cooling rate is much higher. As shown in the figure, when resolidifying the temperature at the 0 point in the center of the stepped portion 24, crystal cracking begins from the 0 point where the temperature is low and the P point in the peripheral area, and at the edge of the stepped portion 24 where the amount of temperature is high. It is completed at a certain H point.

結晶化の進行方向を第3図に矢印で示した。っまシ再°
結晶の核は0点およびP点で発生し、ここから結晶成長
が始まるのである。
The direction of progress of crystallization is shown by arrows in FIG. I'm sorry again
Crystal nuclei are generated at point 0 and point P, and crystal growth begins from here.

P点から成長した結晶はその部分で熔融していない多結
晶シリコンに接しているだめほとんどが多結晶となる。
Most of the crystals grown from point P are polycrystalline because they are in contact with unmolten polycrystalline silicon at that point.

一方O点から成長した結晶は外部から何の妨害もなけれ
ば1つの核から成長してゆくことが可能であシ、H点ま
で単結晶成長が進行する。
On the other hand, a crystal grown from the O point can grow from a single nucleus without any external interference, and single crystal growth progresses to the H point.

第5図はこのようにして再固化が完了した状態を示した
図である。25は再結晶化した多結晶シリコン、26は
再結晶化して出来だ単結晶シリコンである。
FIG. 5 is a diagram showing a state in which resolidification is completed in this manner. 25 is recrystallized polycrystalline silicon, and 26 is recrystallized single crystal silicon.

、縁膜、30.31.32はそれぞれソース電極、□1
1 □、l−7;レイン電極、ゲート電極である。このよう
にし、て、形成された素子は単結晶基板に直接形成した
場合:と同等もしくはそれに近い特性を示す。
, membrane, 30.31.32 are respectively source electrodes, □1
1 □, l-7: Rain electrode, gate electrode. The device formed in this manner exhibits characteristics equivalent to or close to those when formed directly on a single crystal substrate.

上述した説明でも明らかなようにこの発明では単結晶材
料に段差部を設けることをその特徴の1つとしているが
、段差部の段差寸法は基板の材質や被覆絶縁膜の厚さや
種類などによって異なってくるため、その都度その組合
せに最適な値を選択する必要がある。いずれにしても単
結晶材料が、被着された部分では溶融後の再固化の段階
での温度分布が、第4図に示すように中心部分とその周
辺部で低くなるように段差部を形成しなくてはならない
As is clear from the above explanation, one of the features of this invention is to provide a step portion in a single crystal material, but the size of the step portion varies depending on the material of the substrate, the thickness and type of the covering insulating film, etc. Therefore, it is necessary to select the optimal value for the combination each time. In any case, in the area where the single crystal material is deposited, a stepped portion is formed so that the temperature distribution during the re-solidification stage after melting is lower in the center and surrounding areas, as shown in Figure 4. I have to.

単結晶材料を溶融させる手段としてレーザを用いるのが
一般的であるが、他の手段たとえば電子線照射なども用
いる事が出来る。
Although a laser is generally used as a means for melting the single crystal material, other means such as electron beam irradiation can also be used.

また、基板としては半導体基板、導電基板、絶縁基板が
必要に応じて使用出来、基板を被覆する絶縁膜としても
本実施例に示しだシリコン酸化膜0.5〜2.0μmと
し段差部の厚さを0.2〜1.0μm融させる。
In addition, as the substrate, a semiconductor substrate, a conductive substrate, or an insulating substrate can be used as required, and as an insulating film to cover the substrate, as shown in this example, a silicon oxide film with a thickness of 0.5 to 2.0 μm is used, and the thickness of the stepped portion is Melt the thickness by 0.2 to 1.0 μm.

レーザ又は電子線を照射すべき範囲は、段差部とその周
辺部2μm以上を加えた領域とするのが最適である。
The range to be irradiated with the laser or electron beam is optimally the area including the stepped portion and its surrounding area of 2 μm or more.

(発明の効果) 以上、実施例に基づいて詳細に説明したように、この発
明では単結晶材料に段差部をもうけて熔融材料の熱容量
の差を利用してその中心部から再固化が進行するように
したので、基板表面だけでなくあらゆる部分に単結晶の
成長が自由に行なえるため素子を3次元的に集積した3
次元LSIや接合容量を小さくした高速半導体素子など
に利用することが出来る。
(Effects of the Invention) As described above in detail based on the examples, in this invention, a stepped portion is provided in the single crystal material, and resolidification proceeds from the center by utilizing the difference in heat capacity of the molten material. As a result, single crystals can be grown freely not only on the substrate surface but also on all parts, making it possible to integrate elements three-dimensionally.
It can be used in dimensional LSIs and high-speed semiconductor devices with reduced junction capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)はグラフオエピタキシィの原
理を説明するための模式図、第2図、第3図、第5図2
1・・・基板、22・・・絶縁膜、23・・・単結晶化
さ特許出願人 工業技術院長 石板誠− 第1図 (Q) (b) 第2図 第3図 5 第4図 第5図 5 第6図 28  26’   27
Figures 1 (a) and (b) are schematic diagrams for explaining the principle of graphoepitaxy, Figures 2, 3, and 5.
1...Substrate, 22...Insulating film, 23...Single crystallization Patent applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology - Figure 1 (Q) (b) Figure 2 Figure 3 Figure 5 Figure 4 5 Figure 5 Figure 6 28 26' 27

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板もしくは表面が絶縁膜でおおわれた基板
上に単結晶化されるべき材料を薄膜状にかつ所望の位置
に所望の形状の段差部を有するように形成し、この段差
部とこの周辺部の前記材料を溶融させた後に再固化する
ことにより前記段差部、iPj←造方法。
(1) On an insulating substrate or a substrate whose surface is covered with an insulating film, the material to be single-crystalized is formed into a thin film with a stepped portion of a desired shape at a desired position, and between this stepped portion and a A method for making the stepped portion, iPj←, by melting the material in the peripheral portion and then solidifying it again.
JP57147700A 1982-08-27 1982-08-27 Production of single crystal Pending JPS5939791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147700A JPS5939791A (en) 1982-08-27 1982-08-27 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147700A JPS5939791A (en) 1982-08-27 1982-08-27 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS5939791A true JPS5939791A (en) 1984-03-05

Family

ID=15436272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147700A Pending JPS5939791A (en) 1982-08-27 1982-08-27 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS5939791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244018A (en) * 1985-04-22 1986-10-30 Sony Corp Manufacture of semiconductor device
JPS627116A (en) * 1985-07-03 1987-01-14 Agency Of Ind Science & Technol Manufacture of soi single crystal
JPS6355925A (en) * 1986-08-26 1988-03-10 Seiko Instr & Electronics Ltd Recrystallization of semiconductor thin film
JPS6356912A (en) * 1986-08-27 1988-03-11 Seiko Instr & Electronics Ltd Manufacture of recrystallized semiconductor thin-film
JPH0649931U (en) * 1992-12-14 1994-07-08 株式会社光陽 Roughness measurement gauge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244018A (en) * 1985-04-22 1986-10-30 Sony Corp Manufacture of semiconductor device
JPS627116A (en) * 1985-07-03 1987-01-14 Agency Of Ind Science & Technol Manufacture of soi single crystal
JPS6355925A (en) * 1986-08-26 1988-03-10 Seiko Instr & Electronics Ltd Recrystallization of semiconductor thin film
JPS6356912A (en) * 1986-08-27 1988-03-11 Seiko Instr & Electronics Ltd Manufacture of recrystallized semiconductor thin-film
JPH0649931U (en) * 1992-12-14 1994-07-08 株式会社光陽 Roughness measurement gauge

Similar Documents

Publication Publication Date Title
JPS5939790A (en) Production of single crystal
JPS5939791A (en) Production of single crystal
JPS58500609A (en) Lateral epitaxy growth by seeding and solidification
JPH02275641A (en) Manufacture of semiconductor device
JPS58184720A (en) Manufacture of semiconductor film
JPS6147627A (en) Manufacture of semiconductor device
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS61135110A (en) Manufacture of semiconductor device
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPS59121823A (en) Fabrication of single crystal silicon film
JPH01264215A (en) Manufacture of semiconductor device
JPH0236050B2 (en)
JPH0354819A (en) Manufacture of soi substrate
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS59163817A (en) Substrate for semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPH0368532B2 (en)
JPH0449250B2 (en)
JP3223040B2 (en) Crystallization method of semiconductor thin film
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS62226621A (en) Forming method for single crystal silicon thin film
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer
JPS6130024A (en) Formation of soi
JPS5961117A (en) Manufacture of semiconductor device
JPS63236311A (en) Manufacture of semiconductor device