JPS62207871A - Photochemical vapor growth device - Google Patents

Photochemical vapor growth device

Info

Publication number
JPS62207871A
JPS62207871A JP4862686A JP4862686A JPS62207871A JP S62207871 A JPS62207871 A JP S62207871A JP 4862686 A JP4862686 A JP 4862686A JP 4862686 A JP4862686 A JP 4862686A JP S62207871 A JPS62207871 A JP S62207871A
Authority
JP
Japan
Prior art keywords
light source
reaction
light
chamber
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4862686A
Other languages
Japanese (ja)
Inventor
Koichi Tamagawa
孝一 玉川
Toshio Hayashi
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4862686A priority Critical patent/JPS62207871A/en
Publication of JPS62207871A publication Critical patent/JPS62207871A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light

Abstract

PURPOSE:To permit efficient film deposition of a substrate for a long period of time by making the flow of an inert gas to be introduced into a light source chamber laminator to prevent the deposition of the resulted product of reaction and decomposition to a light tansmission window and to suppress the decrease of light intensity. CONSTITUTION:A reactive gas is introduced from a reactive gas introducing port 4 into a reaction chamber 1. On the other hand, the inert gas is introduced by a purge gas introducing port 12 in a laminar state into the light source chamber 7 along a partition wall 6. The pressure in the chamber 7 is maintained slightly higher than the pressure of the reaction chamber 1 in this stage. The light from the light source 8 is introduced through an aperture of a mesh 11 provided to the wall 6 into the reaction chamber 1 and the resulted product of reaction deposits on the substrate 3. The reverse diffusion of the reactive gas into the light source chamber 7 in prevented and the deposition to the light transmission window 9 is suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、処理すべき基板の入れられた反応室に導入さ
れる反応ガスを光源からの光で光分解反応させ、反応生
成物を基板上に堆積させるようにした光化学気相成長(
光CVD )装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention involves photolyzing a reaction gas introduced into a reaction chamber containing a substrate to be processed using light from a light source, and converting the reaction product into a substrate. Photochemical vapor deposition (
This relates to optical CVD (optical CVD) equipment.

[従来の技術〕 低温、無損傷で反応選択性をもつ成膜技術として光化学
気相成長法が注目されている。この方法を実施している
従来の装置は、通常光源からの光を光透過窓を通して反
応室内に導入するように構成されている。そのため、反
応室内における反応ガスの光による反応分解生成物が光
透過窓の内面に堆積し、光源から光透過窓を通して反応
室内に尋人される光の強度が時開と共に減少することに
なり、その結果、反応速度が低下することになる。
[Prior Art] Photochemical vapor deposition is attracting attention as a low-temperature, non-damaging, and reaction-selective film formation technique. Conventional apparatus implementing this method are typically configured to introduce light from a light source into the reaction chamber through a light-transmitting window. Therefore, the reaction decomposition products of the reaction gas in the reaction chamber caused by light are deposited on the inner surface of the light-transmitting window, and the intensity of light emitted from the light source into the reaction chamber through the light-transmitting window decreases with time. As a result, the reaction rate will decrease.

このような欠点を解決するため、従来法のような方法が
提案されている。
In order to solve these drawbacks, conventional methods have been proposed.

1)光透過窓付近に不活性ガス導入用ノズルを設け、こ
の不活性ガス導入用ノズルからN2 、He、へr等の
不活性ガスを導入して光透過窓への反応分解生成物の堆
積を防止する。
1) An inert gas introducing nozzle is provided near the light transmitting window, and an inert gas such as N2, He, Herr, etc. is introduced from this inert gas introducing nozzle to deposit reaction decomposition products on the light transmitting window. prevent.

2)反応性が弱く蒸気圧の低いオイルを光透過窓の内面
に塗布して反応分解生成物の堆積を防止する。この方法
は特開昭57−154839号公報に開示されている。
2) Oil with low reactivity and low vapor pressure is applied to the inner surface of the light-transmitting window to prevent reaction and decomposition products from accumulating. This method is disclosed in Japanese Patent Application Laid-open No. 154839/1983.

3)光の透過率が高く、反応分解生成物の付着性の低い
重合体膜を光透過窓の内側に設けて反応分解生成物の堆
積を防止する。この方法の一例としては特公昭60− 
[3540j3公報に記載のものを挙げることができる
3) A polymer film with high light transmittance and low adhesion of reaction decomposition products is provided inside the light transmission window to prevent the reaction and decomposition products from accumulating. An example of this method is
[Those described in Publication No. 3540j3 can be mentioned.

4)小孔を多数設けた合成石英板によって反応室と光源
室とを分離し、光源室に反応室よりも高い圧力で不活性
ガスかあるいは数種の反応ガスのうち光で直接分解され
ない反応ガスを導入することにより光透過窓への反応分
解生成物の堆積を防止する。この方法の一例としては特
開昭60−130126号公報に記載のものを挙げるこ
とができる。
4) The reaction chamber and the light source chamber are separated by a synthetic quartz plate with many small holes, and the light source chamber is heated with an inert gas or one of several reactive gases that cannot be directly decomposed by light at a higher pressure than the reaction chamber. By introducing the gas, the deposition of reaction decomposition products on the light-transmitting window is prevented. An example of this method is the method described in JP-A-60-130126.

[発明が解決しようとする問題点] ところで、光化学気相成長装置における上述の光透過窓
への反応分解生成物の堆積防止方法はそれぞれ以下のよ
うな欠点がある。すなわら、上述の1)の方法では、反
応ガスと不活性ガスとが混合するので、光透過窓への反
応分解生成物のH1積防止効果は十分でない。
[Problems to be Solved by the Invention] By the way, each of the above-mentioned methods for preventing the deposition of reaction decomposition products on the light transmission window in a photochemical vapor deposition apparatus has the following drawbacks. That is, in the method 1) described above, since the reaction gas and the inert gas are mixed, the effect of preventing the H1 product of reaction decomposition products from entering the light transmission window is not sufficient.

また、上述の2)の方法においては、光透過窓の内面に
塗布された反応分解生成物堆積防止用オイルが反応室内
において基板上に形成されるイ【積膜に混入して膜質を
低下させたり、またオイルに反応生成物が混入してオイ
ルが劣化するため、一定の時間経過毎に光透過窓にオイ
ルを再塗布する必要がある。
In addition, in the above method 2), the oil for preventing the deposition of reaction decomposition products applied to the inner surface of the light transmitting window is formed on the substrate in the reaction chamber. Also, since the oil deteriorates due to reaction products mixed into the oil, it is necessary to reapply the oil to the light transmission window at regular intervals.

さらに、上述の3)の方法に関しては、180r+m以
下の波長の光の透過率の高い重合体膜は実際問題として
見つかってなく、またこの場合も光透過窓の内側に設け
られる重合体膜は劣化するので定期的に交換しなければ
ならない。
Furthermore, regarding method 3) above, a polymer film with high transmittance for light with a wavelength of 180r+m or less has not been found to be a practical problem, and in this case as well, the polymer film provided inside the light transmission window deteriorates. Therefore, it must be replaced periodically.

さらにまた、上述の4)の方法では、合成石英は160
rv以上の波長の光だけしか透過しないので、160n
ll以下の波長の光を光源として用いることかできない
Furthermore, in the method 4) above, synthetic quartz has 160
Only light with a wavelength longer than rv is transmitted, so 160n
It is only possible to use light with a wavelength of 11 or less as a light source.

・そこで、本発明の目的は、上記の問題点を解決するた
め上述のような従来の方法を用いずに光透過窓へ9反応
分解生成物の堆積を防止でき、しかも波長に依らずどん
な波長の光源でも用いることのできる光化学気相成長装
置を提供することにある。
・Therefore, in order to solve the above problems, it is an object of the present invention to be able to prevent the deposition of 9-reaction decomposition products on the light transmission window without using the conventional methods as described above, and to be able to handle any wavelength regardless of the wavelength. An object of the present invention is to provide a photochemical vapor deposition apparatus that can be used with any light source.

[問題点を解決するための手段] 上記の目的を達成するために、本発明による光化学気相
成長装置は、処理すべき基板を挿置しかつ反応ガスを導
入するようにした反応室と、光源を収容し、上記反応室
に導入した反応ガスを光分解反応させるため光源からの
一部を上記反応室に導入する光源室とを有し、上記反応
室と上記光源室とを隔壁で分離し、上記隔壁に上記光源
からの光を上記反応室へ通す光透過開口部を設け、上記
隔壁の光透過開口部を開口率の大きなメツシュで仕切り
、上記光源室に不活性ガスを導入して上記光源室内の圧
力を上記反応室内の圧力より僅かに高く維持するように
したことを特徴としており、上記光源室内への不活性ガ
スの導入は好ましくは上記反応室と上記光源室との間の
隔壁に沿って行なうようにされ49る。
[Means for Solving the Problems] In order to achieve the above object, the photochemical vapor deposition apparatus according to the present invention includes a reaction chamber in which a substrate to be processed is inserted and a reaction gas is introduced; a light source chamber that houses a light source and introduces a portion of the light from the light source into the reaction chamber in order to photodecompose the reaction gas introduced into the reaction chamber; the reaction chamber and the light source chamber are separated by a partition wall; A light transmitting opening is provided in the partition wall to allow light from the light source to pass through the reaction chamber, the light transmitting opening in the partition wall is partitioned with a mesh having a large aperture ratio, and an inert gas is introduced into the light source chamber. It is characterized in that the pressure inside the light source chamber is maintained slightly higher than the pressure inside the reaction chamber, and the introduction of an inert gas into the light source chamber is preferably carried out between the reaction chamber and the light source chamber. The process is performed along the partition wall 49.

[作     用] このように構成した本発明による光化学気相成長装置に
おいては、光源室内にお()る不活性ガスの流れは層流
となり、反応ガスに対する一種の隔壁として一作用し、
また光源室内に供給された不活性ガスの一部は光源室と
反応室との間の隔壁における光透過開口部に設けたメツ
シュを通って反応、室へ拡散するので、反応ガスの反応
室から光源室への逆拡散は防止される。これにより、反
応ガスの光による反応分解生成物が光透過窓に堆積する
のが防、止され、堆積中における光源室内の光源からの
光強度の減少は小さくでき、その結果長時間にわたって
基板への効率的な膜Jft giを持続させることがで
きる。
[Function] In the photochemical vapor deposition apparatus according to the present invention configured as described above, the flow of the inert gas in the light source chamber becomes a laminar flow, and acts as a kind of partition wall for the reaction gas,
In addition, a part of the inert gas supplied into the light source chamber reacts and diffuses into the chamber through the mesh provided in the light transmission opening in the partition wall between the light source chamber and the reaction chamber. Back-diffusion into the light source chamber is prevented. This prevents the reaction decomposition products of the reactant gas from being deposited on the light-transmitting window, and reduces the decrease in light intensity from the light source in the light source chamber during deposition, resulting in a long-term exposure to the substrate. efficient membrane Jft gi can be sustained.

[実  施  例] 以下、添附図面を参照して本発明の実施例にっいて説明
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には本発明による光化学気相成長装置の一実施例
を概略的に示し、図示装置において、1は反応室であり
、その内部に回転可能な基板ホルダ2が配置され、この
基板ホルダ2に処理すべき基板3が装着されている。反
応室の壁には図示したように反応ガス導入ボート4と排
気ボーi〜5とが設けられ、反応ガス導入ボート4は図
示してない反応ガス供給源に連結され、また排気ボート
5は図示してない適当な真空ポンプに連結される。
FIG. 1 schematically shows an embodiment of a photochemical vapor deposition apparatus according to the present invention. A substrate 3 to be processed is mounted on the substrate 2. A reaction gas introduction boat 4 and exhaust boats i to 5 are provided on the wall of the reaction chamber as shown, the reaction gas introduction boat 4 is connected to a reaction gas supply source (not shown), and the exhaust boat 5 is connected to a reaction gas supply source (not shown). Connected to a suitable vacuum pump, not shown.

隔壁6によって反応室1と仕切られて光源室7が設けら
れ、この光源室7内には光源8が設けられ、この光源8
の一端には光透過窓9が装着されている。また隔壁6の
光源8と基板ホルダ2とを結ぶ光軸が通る位置において
隔壁6には光透過開口部10が形成され、この光透過開
口部10に開口率の高いメツシュ11が取付けられてい
る。また光源室7には隔壁6に沿ってパージガス導入ボ
ート12と+tg %ボート13とが設けられ、パージ
ガス導入ボート12は不活性ガス供給源(図示してない
)に連結され、またその先端部はメツシュ11すなわち
光透過開口部10の近くまでのびており、そしてメツシ
ュ11の全域に沿って不活性ガスを流すようにされる。
A light source chamber 7 is provided which is separated from the reaction chamber 1 by a partition wall 6, and a light source 8 is provided within this light source chamber 7.
A light transmitting window 9 is attached to one end of the frame. Further, a light transmission opening 10 is formed in the partition 6 at a position where the optical axis connecting the light source 8 and the substrate holder 2 passes through the partition 6, and a mesh 11 with a high aperture ratio is attached to this light transmission opening 10. . Further, a purge gas introduction boat 12 and a +tg% boat 13 are provided along the partition wall 6 in the light source chamber 7, and the purge gas introduction boat 12 is connected to an inert gas supply source (not shown), and its tip end is connected to an inert gas supply source (not shown). The mesh 11 extends close to the light-transmitting opening 10, and is adapted to flow an inert gas along the entire area of the mesh 11.

また排気ボー1〜13は反応室1の排気ボート5と同様
に図示してない適当な真空ポンプに連結される。
Similarly to the exhaust boat 5 of the reaction chamber 1, the exhaust boats 1 to 13 are connected to a suitable vacuum pump (not shown).

このように構成した図示装置において、反応ガス導入ボ
ート4より反応室1内に所望の反応ガスを導入し、一方
、光源室側ではパージガス導入ボート12より隔壁6に
沿ってN、H(!、Δr等の不活性ガスを導入する。こ
のとき、光源室内の圧力が反応室内の圧力より僅かに高
くなるように設定する。光源室7内の光源8から光透過
窓9を通って放射された光は隔壁6に設けたメツシュ1
1の開口部を通って反応室1内に導入され、これにより
反応室1内での反応ガスの光分解反応によって生成され
た生成物が基板ホルダ2上の処理すべき基板3上に堆積
する。この場合、光源室7内にJ3ける不活性ガスの流
れは隔壁6に設けたメツシュ11に沿って層流となり、
反応室1内の反応ガスに対する一種の隔壁として作用し
、また不活性ガスの一部はメツシュ11を通って反応室
1内へ拡散する。その結果、反応ガスが光源室7内へ逆
拡散するのは防止され、反応分解生成物の光源8の光透
過窓9への堆積が防止され、堆積中の光強度の減少を抑
制できる。
In the illustrated apparatus configured in this manner, a desired reaction gas is introduced into the reaction chamber 1 from the reaction gas introduction boat 4, and on the other hand, on the light source chamber side, N, H (!, An inert gas such as Δr is introduced.At this time, the pressure inside the light source chamber is set to be slightly higher than the pressure inside the reaction chamber.Emitted from the light source 8 in the light source chamber 7 through the light transmission window 9 The light comes from the mesh 1 installed on the partition wall 6.
1 into the reaction chamber 1 , whereby the products generated by the photolysis reaction of the reaction gas in the reaction chamber 1 are deposited on the substrate 3 to be treated on the substrate holder 2 . In this case, the flow of the inert gas J3 in the light source chamber 7 becomes a laminar flow along the mesh 11 provided on the partition wall 6,
It acts as a kind of barrier for the reaction gas in the reaction chamber 1, and a part of the inert gas diffuses into the reaction chamber 1 through the mesh 11. As a result, the reaction gas is prevented from back-diffusing into the light source chamber 7, the reaction decomposition products are prevented from being deposited on the light transmission window 9 of the light source 8, and the decrease in light intensity during deposition can be suppressed.

次に第1図に示す装置を用いて実施した実験例について
第2図を参照して説明する。この実験例においては、光
源としてマイクロ波放電励起による重水素ランプ(12
1,5nn+)を用い、反応ガスとしてSi  ト1 
およびN1−1 を用いてSiN  :H模を26  
  3      x 基板上に堆積した。第2図には5iNsH膜の堆× 積速度と堆積時間との関係を示し、曲線Aは本発明によ
る第1図の装@(不活性ガスとしてN2を使用、メツシ
ュとして開口率60zのN口00を使用)を用いた場合
であり、また曲線Bは光透過窓付近にノズルを配して不
活性ガスを導入する従来法による場合である。第2図か
ら明らかなように従来法による場合には堆積速度は堆積
時間と共に急激に減少し、二時間後には堆積当初の14
%にまで減少しだが、本発明による装置を用いた曲線へ
では堆積速度の減速は二時間後においても当初の45%
であった。なお、二時間の堆積で得られた膜厚は従来法
で56rvであったのに対して、本発明の装置を用いた
場合には82nlllの膜厚が得られた。
Next, an experimental example conducted using the apparatus shown in FIG. 1 will be described with reference to FIG. 2. In this experimental example, the light source was a deuterium lamp (12
1,5nn+) and Si to1 as the reaction gas.
and N1-1 to form a SiN:H model of 26
Deposited on 3x substrates. FIG. 2 shows the relationship between the deposition rate and the deposition time of a 5iNsH film, and curve A is the relationship between the deposition rate and the deposition time of the 5iNsH film. 00) is used, and curve B is the case using a conventional method in which an inert gas is introduced by arranging a nozzle near the light transmission window. As is clear from Fig. 2, in the case of the conventional method, the deposition rate rapidly decreases with the deposition time, and after two hours, the deposition rate reaches 14
However, for the curve using the device according to the invention, the deceleration of the deposition rate was still 45% of the original value even after two hours.
Met. The film thickness obtained after two hours of deposition was 56 rv using the conventional method, whereas a film thickness of 82 nlll was obtained using the apparatus of the present invention.

[発明の効果] 以上説明してきたように、本発明によれば、反応室と光
源室とを隔壁で分離し、隔壁に光源からの光を反応室へ
通す光透過開口部を設け、隔壁の光透過開口部を開口率
の大きなメツシュで仕切り、光源室に不活性ガスを導入
して光源室内の圧力を反応室内の圧力より僅かに高く維
持するように構成しているので、光透過窓への反応生成
物の堆積を防止でき、その結果、堆積中の光強度の減少
を抑制することができ、長時間にわたって基板への膜堆
積を持続させることができる。また上述のような小孔を
多数あけた合成石英板で反応室と光源室とを分離した従
来の方法では光源として1G0nn+以上の波長のもの
しか用いることができないが、本発明による装置ではメ
ツシュの開口部を通して光が導入されるので、波長選択
性がなくどんな波長の光源でも用いることができる。従
って、本発明はm産性の良い光化学気相成長装置を提供
することができる。
[Effects of the Invention] As explained above, according to the present invention, a reaction chamber and a light source chamber are separated by a partition wall, a light transmission opening is provided in the partition wall for passing light from the light source into the reaction chamber, and the partition wall is The light transmitting opening is partitioned by a mesh with a large aperture ratio, and an inert gas is introduced into the light source chamber to maintain the pressure inside the light source chamber slightly higher than the pressure inside the reaction chamber. The deposition of reaction products can be prevented, and as a result, the decrease in light intensity during deposition can be suppressed, and film deposition on the substrate can be sustained for a long time. Furthermore, in the conventional method of separating the reaction chamber and light source chamber using a synthetic quartz plate with many small holes as described above, only a light source with a wavelength of 1G0nn+ or more can be used, but with the device of the present invention, the mesh Since light is introduced through the aperture, there is no wavelength selectivity and a light source of any wavelength can be used. Therefore, the present invention can provide a photochemical vapor deposition apparatus with good m productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略断面図、第2図は
第1図の装置と従来の装置とを用いて行なった実験例に
よる堆積時間と堆積速度との関係を示すグラフである。 図中、 1:反応室、       9:光透過窓、2:基板ホ
ルダ、     10:光透過開口部3:基板、   
     11:メツシュ、4:反応ガス導入ボー1−
112:パージガス導入5:排気ポート、      
 ボート、6:隔壁、         13:排気ボ
ー1−07:宵、源室、 8:光源、
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention, and FIG. 2 is a graph showing the relationship between deposition time and deposition rate in experimental examples conducted using the device shown in FIG. 1 and a conventional device. be. In the figure, 1: reaction chamber, 9: light transmission window, 2: substrate holder, 10: light transmission opening 3: substrate,
11: mesh, 4: reaction gas introduction board 1-
112: Purge gas introduction 5: Exhaust port,
Boat, 6: Bulkhead, 13: Exhaust boat 1-07: Evening, source room, 8: Light source,

Claims (2)

【特許請求の範囲】[Claims] (1)処理すべき基板を挿置しかつ反応ガスを導入する
ようにした反応室と、光源を収容し、上記反応室に導入
した反応ガスを光分解反応させるため光源からの光を上
記反応室に導入する光源室とを有し、上記反応室と上記
光源室とを隔壁で分離し、上記隔壁に上記光源からの光
を上記反応室へ通す光透過開口部を設け、上記隔壁の光
透過開口部を開口率の大きなメッシュで仕切り、上記光
源室に不活性ガスを導入して上記光源室内の圧力を上記
反応室内の圧力より僅かに高く維持するようにしたこと
を特徴とする光化学気相成長装置。
(1) A reaction chamber into which a substrate to be processed is inserted and a reaction gas introduced, and a light source are housed therein, and the light from the light source is used to cause the reaction gas introduced into the reaction chamber to undergo a photodecomposition reaction. The reaction chamber and the light source chamber are separated by a partition wall, and the partition wall is provided with a light transmission opening that allows light from the light source to pass through to the reaction chamber. The photochemical gas is characterized in that the transmission opening is partitioned with a mesh having a large aperture ratio, and an inert gas is introduced into the light source chamber to maintain the pressure inside the light source chamber slightly higher than the pressure inside the reaction chamber. Phase growth device.
(2)上記光源室内への不活性ガスの導入を上記反応室
と上記光源室との間の隔壁に沿って行なうようにした特
許請求の範囲第1項に記載の光化学気相成長装置。
(2) The photochemical vapor deposition apparatus according to claim 1, wherein the inert gas is introduced into the light source chamber along a partition wall between the reaction chamber and the light source chamber.
JP4862686A 1986-03-07 1986-03-07 Photochemical vapor growth device Pending JPS62207871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4862686A JPS62207871A (en) 1986-03-07 1986-03-07 Photochemical vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4862686A JPS62207871A (en) 1986-03-07 1986-03-07 Photochemical vapor growth device

Publications (1)

Publication Number Publication Date
JPS62207871A true JPS62207871A (en) 1987-09-12

Family

ID=12808604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4862686A Pending JPS62207871A (en) 1986-03-07 1986-03-07 Photochemical vapor growth device

Country Status (1)

Country Link
JP (1) JPS62207871A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594434A (en) * 1982-06-30 1984-01-11 Matsushita Electric Ind Co Ltd Vapor phase reactor
JPS59129772A (en) * 1983-01-18 1984-07-26 Ushio Inc Photochemical vapor deposition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594434A (en) * 1982-06-30 1984-01-11 Matsushita Electric Ind Co Ltd Vapor phase reactor
JPS59129772A (en) * 1983-01-18 1984-07-26 Ushio Inc Photochemical vapor deposition device

Similar Documents

Publication Publication Date Title
US5018479A (en) Remote plasma enhanced CVD method and apparatus for growing an epitaxial semconductor layer
EP0254654A1 (en) Method of chemical vapor deposition
TWI256422B (en) Device and method for depositing crystalline layers on crystalline substances
US4753818A (en) Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
JP2680202B2 (en) Vapor phase growth method and apparatus
JPS62207871A (en) Photochemical vapor growth device
US3279946A (en) Hydrogen chloride treatment of semiconductor coating chamber
JPS60130126A (en) Optical vapor growth method
JPS59129774A (en) Selective formation of nitrided film
JPS63317675A (en) Plasma vapor growth device
JPH033232A (en) Chemical vapor growth device
JP3174787B2 (en) Optical CVD equipment
JPS6050168A (en) Production of thin solid film by photo cvd method
JPH0388324A (en) Method for forming compound semiconductor thin film
JPS61196542A (en) Photochemical vapor deposition equipment
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPS61212016A (en) Film forming method
JPH0573049B2 (en)
JPS6377111A (en) Light-irradiated vapor growth apparatus
JPH01223723A (en) Semiconductor manufacturing equipment
JPS6118125A (en) Thin film forming apparatus
JPH10226599A (en) Vapor phase epitaxial growth system
JPS61198733A (en) Method of forming thin-film
JPH0558565B2 (en)
JPH03271372A (en) Method for forming oxide thin film using excimer laser