JPH0573049B2 - - Google Patents

Info

Publication number
JPH0573049B2
JPH0573049B2 JP61048627A JP4862786A JPH0573049B2 JP H0573049 B2 JPH0573049 B2 JP H0573049B2 JP 61048627 A JP61048627 A JP 61048627A JP 4862786 A JP4862786 A JP 4862786A JP H0573049 B2 JPH0573049 B2 JP H0573049B2
Authority
JP
Japan
Prior art keywords
light
discharge tube
light source
tube unit
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61048627A
Other languages
Japanese (ja)
Other versions
JPS62206823A (en
Inventor
Koichi Tamagawa
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4862786A priority Critical patent/JPS62206823A/en
Publication of JPS62206823A publication Critical patent/JPS62206823A/en
Publication of JPH0573049B2 publication Critical patent/JPH0573049B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば超LSI技術等に用いられ得る
光励起プロセス装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical excitation process device that can be used, for example, in VLSI technology.

[従来の技術] 従来の光励起プロセス装置では、光源として低
圧水銀ランプ(4.9eV、6.7eV)やArF(6.4eV)、
KrF(5.0eV)、XeCl(4.0eV)等のエキシマレーザ
ー等が主に用いられてきた。
[Conventional technology] Conventional optical excitation process equipment uses low-pressure mercury lamps (4.9eV, 6.7eV), ArF (6.4eV),
Excimer lasers such as KrF (5.0eV) and XeCl (4.0eV) have been mainly used.

ところで、太陽電池の材料等に用いられるa−
Si:H膜の堆積においては原料ガスとして例えば
SiH4が用いられるが、SiH4の光吸収が、7.7eV以
上で生じるので、これらの光源ではエネルギが小
さくSiH4を直接光分解できない。また例えば
Si2H6は、光吸収端が6.2eV付近なので、低圧水
銀ランプやArFエキシマレーザーで光分解できる
が、堆積速度が小さい。
By the way, a-
In the deposition of Si:H film, the raw material gas is e.g.
SiH 4 is used, but since optical absorption of SiH 4 occurs above 7.7 eV, these light sources have too little energy to directly photodecompose SiH 4 . Also, for example
Since the optical absorption edge of Si 2 H 6 is around 6.2 eV, it can be photodecomposed using a low-pressure mercury lamp or ArF excimer laser, but the deposition rate is slow.

特開昭60−74426号の出願には、高エネルギの
真空紫外光源を用いた光励起プロセス装置が提案
されており、この装置では、放電用ガスとして例
えばD2(10.20eV)、Ar(11.62eV、11.83eV)、Kr
(10.03eV、10.64eV)、Xe(8.43eV、9.57eV)等
を用いることができる。これらの放電用ガスを用
いることにより、10eV前後の真空紫外光を発生
させることができ、SiH4を原料ガスに用いたa
−Si:H膜の高速堆積を容易に行なうことができ
る。またこの光源においては光透過窓材として
MgF2やCaF2、LiF等が用いられており、比較的
小さな照射面積では高輝度の光が放射される。
In the application of JP- A -60-74426, a photoexcitation process device using a high-energy vacuum ultraviolet light source is proposed. , 11.83eV), Kr
(10.03eV, 10.64eV), Xe (8.43eV, 9.57eV), etc. can be used. By using these discharge gases, vacuum ultraviolet light of around 10 eV can be generated, and a
-Si:H film can be easily deposited at high speed. In addition, in this light source, it can be used as a light-transmitting window material.
MgF 2 , CaF 2 , LiF, etc. are used, and high-intensity light is emitted from a relatively small irradiation area.

[発明が解決しようとする問題点] 上述のような従来装置では、放電管を大きくし
て発光空間を拡げると発光効率が落ちていまうこ
とや、光透過窓に差圧が加わるので大きな窓材を
用いる場合には窓の厚さを増さなければならず、
それにつれて光透過率が悪くなるために、高輝度
でしかも照射面積の大きな真空紫外光源を作るこ
とができないという欠点があつた。
[Problems to be solved by the invention] In the conventional device as described above, the luminous efficiency decreases when the discharge tube is enlarged to expand the luminous space, and a pressure difference is applied to the light transmitting window, so a large window material is required. When using a window, the thickness of the window must be increased,
As a result, the light transmittance deteriorates, resulting in the disadvantage that it is not possible to create a vacuum ultraviolet light source with high brightness and a large irradiation area.

そこで、本発明の目的は、10eV前後の高エネ
ルギでしかも大きな照射面積、高輝度の光源を備
えた光励起プロセス装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a photoexcitation process apparatus that is equipped with a light source that has a high energy of around 10 eV, a large irradiation area, and high brightness.

[問題点を解決するための手段] 上記の目的を達成するために、本発明の光励起
プロセス装置は、処理すべき基板を挿置しかつ反
応ガスを導入するようにした反応室と、MgF2
CaF2、LiF等の窓材から成る光透過窓をそれぞれ
備えかつ互いに仕切られた比較的小さな多数の放
電管ユニツト、放電用ガスを供給する放電用ガス
導入ポート、及び各放電管ユニツト間の仕切りに
設けられ、放電用ガス導入ポートからの放電用ガ
スを各放電管ユニツトへ等しい圧力で導入させる
連通孔を備えた光源と、光源における各放電管ユ
ニツトを収容し、反応室に導入した反応ガスを光
分解反応させるため各放電管ユニツトからの光を
反応室に導入する光源室とを有することを特徴と
している。
[Means for Solving the Problems] In order to achieve the above object, the photoexcitation process apparatus of the present invention includes a reaction chamber in which a substrate to be processed is inserted and a reaction gas is introduced, and an MgF 2 ,
A large number of relatively small discharge tube units each equipped with a light-transmitting window made of a window material such as CaF 2 or LiF and partitioned from each other, a discharge gas introduction port that supplies discharge gas, and partitions between each discharge tube unit. A light source equipped with a communication hole that introduces the discharge gas from the discharge gas introduction port into each discharge tube unit at equal pressure, and a reactor gas that accommodates each discharge tube unit in the light source and is introduced into the reaction chamber. It is characterized by having a light source chamber that introduces light from each discharge tube unit into the reaction chamber in order to cause a photodecomposition reaction.

また、本発明の別の特徴によれば、処理すべき
基板を挿置しかつ反応ガスを導入するようにした
反応室と、MgF2、CaF2、LiF等の窓材から成る
光透過窓をそれぞれ備えかつ互いに仕切られた比
較的小さな多数の放電管ユニツト、放電用ガスを
供給する放電用ガス導入ポート、及び各放電管ユ
ニツト間の仕切りに設けられ、放電用ガス導入ポ
ートからの放電用ガスを各放電管ユニツトへ等し
い圧力で導入させる連通孔を備えた光源と、光源
における各放電管ユニツトを収容し、反応室に導
入した反応ガスを光分解反応させるため各放電管
ユニツトからの光を反応室に導入する光源室と、
光源室と反応室とを仕切り、開口率の大きな光透
過開口部を形成するメツシユを備えた隔壁とから
成り、光源室側において隔壁に沿つて不活性ガス
を導入し、光源室内の圧力を反応室内の圧力より
僅かに高くするようにされる。
According to another feature of the present invention, a reaction chamber in which a substrate to be processed is inserted and a reaction gas is introduced, and a light-transmitting window made of a window material such as MgF 2 , CaF 2 , LiF, etc. A large number of relatively small discharge tube units are provided and separated from each other, a discharge gas introduction port is provided for supplying discharge gas, and a discharge gas introduction port is provided in the partition between each discharge tube unit to supply discharge gas from the discharge gas introduction port. A light source is equipped with a communication hole that introduces gas into each discharge tube unit at equal pressure, and a light source that accommodates each discharge tube unit in the light source and that uses light from each discharge tube unit to cause a photodecomposition reaction of the reaction gas introduced into the reaction chamber. a light source chamber introduced into the reaction chamber;
It consists of a partition wall equipped with a mesh that partitions the light source chamber and the reaction chamber and forms a light transmission opening with a large aperture ratio.Inert gas is introduced along the partition wall on the light source chamber side, and the pressure inside the light source chamber is reduced. The pressure is kept slightly higher than the pressure inside the room.

[作用] このように構成した本発明による光励起プロセ
ス装置では、各放電管ユニツトは、発光空間が比
較的小さく、発光効率を高くとることができ、ま
た光透過窓を薄くでき、良好な光透過率を保証す
ることができる。これにより、光源は高エネルギ
で大照射面積をもちしかも高輝度の光を発生する
ことができる。
[Function] In the optical excitation process device of the present invention configured as described above, each discharge tube unit has a relatively small light emitting space, and can achieve high light emitting efficiency. Furthermore, the light transmitting window can be made thin, so that good light transmittance can be achieved. rate can be guaranteed. This allows the light source to generate high-energy, large-irradiation area, and high-intensity light.

また、本発明の別の特徴による装置では、光源
室内における不活性ガスの流れは隔壁およびメツ
シユに沿つて層流となり、反応室内に導入される
反応ガスに対する一種の隔壁として作用し、また
不活性ガスの一部はメツシユを通つて反応室内へ
拡散する。その結果、反応ガスの光源室への逆拡
散は防止され、光強度の減少を抑制することがで
きる。
In addition, in the device according to another feature of the present invention, the flow of the inert gas in the light source chamber is laminar along the partition wall and the mesh, which acts as a kind of partition wall for the reaction gas introduced into the reaction chamber, and A portion of the gas diffuses into the reaction chamber through the mesh. As a result, back diffusion of the reaction gas into the light source chamber is prevented, and a decrease in light intensity can be suppressed.

[実施例] 以下、添附図面を参照して本発明の実施例につ
いて説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図には本発明による光励起プロセス装置の
一実施例を概略的に示し、1は反応室であり、そ
の内部に回転可能な基板ホルダ2が配置され、こ
の基板ホルダ2に処理すべき基板3が装着され、
また基板ホルダ2は図示していないが加熱手段を
備えている。反応室1の壁には図示したように反
応ガス導入ポート4と排気ポート5とが設けら
れ、反応ガス導入ポート4は適当な反応ガス供給
源(図示してない)に連結され、一方、排気ポー
ト5は真空ポンプ(図示してない)に連結され
る。
FIG. 1 schematically shows an embodiment of a photoexcitation processing apparatus according to the present invention, in which 1 is a reaction chamber, in which a rotatable substrate holder 2 is disposed, and a substrate to be processed is placed on this substrate holder 2. 3 is installed,
Further, although not shown, the substrate holder 2 is equipped with heating means. A reaction gas introduction port 4 and an exhaust port 5 are provided in the wall of the reaction chamber 1 as shown, and the reaction gas introduction port 4 is connected to a suitable reaction gas supply source (not shown), while the exhaust port 4 is connected to a suitable reaction gas supply source (not shown). Port 5 is connected to a vacuum pump (not shown).

隔壁6によつて反応室1から仕切られた光源室
7には壁を通して外部から放電管8が設けられ、
この放電管8は図示したように多数の放電管ユニ
ツト9から成つている。各放電管ユニツト9の前
端には第2図に明瞭に示すように光透過窓10が
それぞれ装着されている。また各放電管ユニツト
9間の仕切りには穴があけられており、そして放
電管8は光源室7の外側に設けられた放電用ガス
導入ポート11を介して図示してない放電用ガス
供給源に連結される。各放電管ユニツト9はまた
放電用電源12に接続されている。
A light source chamber 7 separated from the reaction chamber 1 by a partition wall 6 is provided with a discharge tube 8 from the outside through the wall.
The discharge tube 8 is made up of a large number of discharge tube units 9 as shown. A light transmitting window 10 is installed at the front end of each discharge tube unit 9, as clearly shown in FIG. In addition, a hole is made in the partition between each discharge tube unit 9, and the discharge tube 8 is connected to a discharge gas supply source (not shown) through a discharge gas introduction port 11 provided on the outside of the light source chamber 7. connected to. Each discharge tube unit 9 is also connected to a power source 12 for discharge.

放電管8と基板ホルダ2とを結ぶ光軸の通る隔
壁6の部分には光透過開口部13が設けられ、こ
の光透過開口部13には開口率の高いメツシユ1
4が張られている。また光源室7には隔壁6に沿
つてパージガス導入ポート15と排気ポート16
とが設けられ、パージガス導入ポート15は適当
な不活性ガス供給源(図示してない)に連結さ
れ、またその先端部はメツシユ14すなわち光透
過開口部13の近くまでのび、メツシユ14の全
域に沿つて不活性ガスを流すようにされる。また
排気ポート16は図示してない適当な真空ポンプ
に連結される。
A light transmitting opening 13 is provided in the part of the partition wall 6 through which the optical axis connecting the discharge tube 8 and the substrate holder 2 passes, and a mesh 1 with a high aperture ratio is provided in the light transmitting opening 13.
4 is posted. In addition, the light source chamber 7 has a purge gas introduction port 15 and an exhaust port 16 along the partition wall 6.
The purge gas introduction port 15 is connected to a suitable inert gas supply source (not shown), and its tip extends close to the mesh 14, that is, the light transmission opening 13, and the purge gas introduction port 15 is connected to a suitable inert gas supply source (not shown). An inert gas is allowed to flow along the line. The exhaust port 16 is also connected to a suitable vacuum pump, not shown.

このように構成した図示装置において、放電用
ガス導入ポート11から各放電管ユニツト9間の
仕切りに設けられた穴を通つて放電用ガスが各放
電管ユニツト9に等しい圧力で導入され、また放
電用電源12からは各放電管ユニツト9に電力が
供給され、これにより、各放電管ユニツト9は放
電して真空紫外光を発生し、各真空紫外光は組み
合さつた光透過窓10を通つて放射される。
In the illustrated device configured in this manner, discharge gas is introduced into each discharge tube unit 9 at equal pressure from the discharge gas introduction port 11 through the hole provided in the partition between each discharge tube unit 9, and the discharge gas is introduced into each discharge tube unit 9 at equal pressure. Power is supplied from the power source 12 to each discharge tube unit 9, so that each discharge tube unit 9 discharges and generates vacuum ultraviolet light, and each vacuum ultraviolet light is emitted through the combined light transmission window 10. be done.

一方、反応ガス導入ポート4を介して反応室1
内には所望の反応ガスが導入され、またパージガ
ス導入ポート15を介して光源室7内には隔壁6
に沿つてN2、He、Ar等の不活性ガスが導入され
る。この場合、光源室7内の圧力は反応室1内の
圧力より僅かに高くなるように設定される。放電
管8の各放電管ユニツト9から放射された光は各
光透過窓10および光透過開口部13のメツシユ
14を通つて反応室1内に導入される。こうして
基板上に膜を堆積させるCVDやエツチングを行
なうことができる。この場合、基板ホルダ2を回
転させることにより均一性の良いCVDやエツチ
ングが可能である。
On the other hand, the reaction chamber 1 is
A desired reaction gas is introduced into the interior of the light source chamber 7, and a partition wall 6 is introduced into the light source chamber 7 through a purge gas introduction port 15.
An inert gas such as N 2 , He, or Ar is introduced along the line. In this case, the pressure inside the light source chamber 7 is set to be slightly higher than the pressure inside the reaction chamber 1. The light emitted from each discharge tube unit 9 of the discharge tube 8 is introduced into the reaction chamber 1 through each light transmission window 10 and the mesh 14 of the light transmission opening 13. In this way, CVD or etching can be performed to deposit a film on the substrate. In this case, by rotating the substrate holder 2, uniform CVD and etching can be performed.

なお、図示実施例では、放電管8は9個の四角
柱状の放電管ユニツトで構成しているが、当然放
電管を構成する放電管ユニツトの数および形状は
必要に応じて任意に選定することができ、例えば
放電管ユニツトを円筒状に形成してもよい。
In the illustrated embodiment, the discharge tube 8 is composed of nine quadrangular columnar discharge tube units, but the number and shape of the discharge tube units constituting the discharge tube can of course be arbitrarily selected as necessary. For example, the discharge tube unit may be formed into a cylindrical shape.

[発明の効果] 以上説明してきたように、本発明による光励起
プロセス装置においては、光源をMgF2、CaF2
LiF等の窓材を用いた比較的小さな多数の放電管
ユニツトで構成しているので、各放電管ユニツト
における発光空間を比較的小さくしてしかも発光
効率を高くとることができ、また光透過窓を薄く
でき、良好な光透過率を保証することができる。
これにより、光源は高エネルギで大照射面積をも
ちしかも高輝度の光を発生することができる。従
つて、大面積でしかも堆積速度やエツチング速度
の大きなCVDやエツチング処理等の光励起プロ
セスが可能となる。
[Effects of the Invention] As explained above, in the optical excitation process apparatus according to the present invention, the light source is MgF 2 , CaF 2 ,
Since it is composed of a large number of relatively small discharge tube units using window materials such as LiF, the light emitting space in each discharge tube unit can be made relatively small and the light emission efficiency can be high. can be made thinner and ensure good light transmittance.
This allows the light source to generate high-energy, large-irradiation area, and high-intensity light. Therefore, photoexcitation processes such as CVD and etching treatments can be performed over a large area and at high deposition and etching rates.

また、本発明の装置において上記の構成に加え
て、光源室と反応室とを隔壁で分離し、上記隔壁
における光透過開口部を開口率の大きなメツシユ
で仕切り、光源室側において上記隔壁に沿つて不
活性ガスを導入し、光源室内の圧力を反応室内の
圧力より僅かに高くするように構成することによ
り、反応生成物等が光源の光透過窓に付着して光
透過窓の光透過率を低下させるのを抑制すること
ができ、これにより、装置を長時間安定して作動
させることができる。
In addition to the above configuration, in the apparatus of the present invention, the light source chamber and the reaction chamber are separated by a partition wall, and the light transmission opening in the partition wall is partitioned by a mesh with a large aperture ratio. By introducing an inert gas and making the pressure inside the light source chamber slightly higher than the pressure inside the reaction chamber, reaction products etc. adhere to the light transmitting window of the light source and the light transmittance of the light transmitting window increases. This allows the device to operate stably for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略断面図、
第2図は第1図の装置における放電管部分の構成
を示す拡大概略斜視図である。 図中、1:反応室、2:基板ホルダ、3:基
板、4:反応ガス導入ポート、5:排気ポート、
6:隔壁、7:光源室、8:放電管、9:放電管
ユニツト、10:光透過窓、11:放電用ガス導
入ポート、12:放電用電源、13:光透過開口
部、14:メツシユ、15:パージガス導入ポー
ト、16:排気ポート。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention;
FIG. 2 is an enlarged schematic perspective view showing the configuration of the discharge tube portion of the apparatus shown in FIG. 1. In the figure, 1: reaction chamber, 2: substrate holder, 3: substrate, 4: reaction gas introduction port, 5: exhaust port,
6: partition wall, 7: light source chamber, 8: discharge tube, 9: discharge tube unit, 10: light transmission window, 11: gas introduction port for discharge, 12: power source for discharge, 13: light transmission opening, 14: mesh , 15: purge gas introduction port, 16: exhaust port.

Claims (1)

【特許請求の範囲】 1 処理すべき基板を挿置しかつ反応ガスを導入
するようにした反応室と、MgF2、CaF2、LiF等
の窓材から成る光透過窓をそれぞれ備えかつ互い
に仕切られた比較的小さな多数の放電管ユニツ
ト、放電用ガスを供給する放電用ガス導入ポー
ト、及び各放電管ユニツト間の仕切りに設けら
れ、放電用ガス導入ポートからの放電用ガスを各
放電管ユニツトへ等しい圧力で導入させる連通孔
を備えた光源と、光源における各放電管ユニツト
を収容し、反応室に導入した反応ガスを光分解反
応させるため各放電管ユニツトからの光を反応室
に導入する光源室とを有することを特徴とする光
励起プロセス装置。 2 処理すべき基板を挿置しかつ反応ガスを導入
するようにした反応室と、MgF2、CaF2、LiF等
の窓材から成る光透過窓をそれぞれ備えかつ互い
に仕切られた比較的小さな多数の放電管ユニツ
ト、放電用ガスを供給する放電用ガス導入ポー
ト、及び各放電管ユニツト間の仕切りに設けら
れ、放電用ガス導入ポートからの放電用ガスを各
放電管ユニツトへ等しい圧力で導入させる連通孔
を備えた光源と、光源における各放電管ユニツト
を収容し、反応室に導入した反応ガスを光分解反
応させるため各放電管ユニツトからの光を反応室
に導入する光源室と、光源室と反応室とを仕切
り、開口率の大きな光透過開口部を形成するメツ
シユを備えた隔壁とから成り、光源室側において
隔壁に沿つて不活性ガスを導入し、光源室内の圧
力を反応室内の圧力より僅かに高くするようにし
たことを特徴とする光励起プロセス装置。
[Claims] 1. A reaction chamber into which a substrate to be processed is inserted and a reaction gas introduced, and a light-transmitting window made of a window material such as MgF 2 , CaF 2 , LiF, etc., and partitioned from each other. A large number of comparatively small discharge tube units, a discharge gas introduction port for supplying discharge gas, and a partition between each discharge tube unit are installed, and the discharge gas from the discharge gas introduction port is connected to each discharge tube unit. A light source equipped with a communication hole that allows the light to be introduced at equal pressure into the reaction chamber, and each discharge tube unit in the light source is housed, and light from each discharge tube unit is introduced into the reaction chamber in order to cause a photodecomposition reaction of the reaction gas introduced into the reaction chamber. A light excitation process device comprising a light source chamber. 2 A relatively small number of relatively small chambers each equipped with a reaction chamber into which the substrate to be processed is inserted and a reaction gas introduced, and a light-transmitting window made of a window material such as MgF 2 , CaF 2 , LiF, etc., and partitioned from each other. A discharge tube unit, a discharge gas introduction port for supplying discharge gas, and a partition between each discharge tube unit are provided to introduce discharge gas from the discharge gas introduction port into each discharge tube unit at equal pressure. A light source equipped with a communication hole, a light source chamber that houses each discharge tube unit in the light source and introduces light from each discharge tube unit into the reaction chamber in order to photodecompose the reaction gas introduced into the reaction chamber, and a light source chamber. and a partition wall equipped with a mesh that forms a light-transmitting opening with a large aperture ratio, and an inert gas is introduced along the partition wall on the light source chamber side to reduce the pressure inside the light source chamber. A light excitation process device characterized in that the pressure is slightly higher than the pressure.
JP4862786A 1986-03-07 1986-03-07 Optical-pumping processing equipment Granted JPS62206823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4862786A JPS62206823A (en) 1986-03-07 1986-03-07 Optical-pumping processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4862786A JPS62206823A (en) 1986-03-07 1986-03-07 Optical-pumping processing equipment

Publications (2)

Publication Number Publication Date
JPS62206823A JPS62206823A (en) 1987-09-11
JPH0573049B2 true JPH0573049B2 (en) 1993-10-13

Family

ID=12808628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4862786A Granted JPS62206823A (en) 1986-03-07 1986-03-07 Optical-pumping processing equipment

Country Status (1)

Country Link
JP (1) JPS62206823A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989063B2 (en) * 1991-12-12 1999-12-13 キヤノン株式会社 Thin film forming apparatus and thin film forming method
JP6827287B2 (en) * 2016-09-28 2021-02-10 株式会社日立ハイテク How to operate the plasma processing equipment
WO2022059188A1 (en) * 2020-09-18 2022-03-24 株式会社Kokusai Electric Substrate processing device, plasma light emission device, method for manufacturing semiconductor device, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194425A (en) * 1983-04-18 1984-11-05 Mitsubishi Electric Corp Photochemical vapor phase film forming apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194425A (en) * 1983-04-18 1984-11-05 Mitsubishi Electric Corp Photochemical vapor phase film forming apparatus

Also Published As

Publication number Publication date
JPS62206823A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
EP0198361A2 (en) Method and apparatus for thin film formation using photo-induced chemical reaction
JPH05109674A (en) Method and device for ashing resist film
JPH0573049B2 (en)
US5089289A (en) Method of forming thin films
JP2008270074A (en) Lamp, and manufacturing device and method thereof
JP3064407B2 (en) Light source for photo-excitation process equipment
JPH0128830B2 (en)
JPS60202928A (en) Optical pumping reaction device
JP3010066B2 (en) Optical excitation process equipment
US5205913A (en) Process of 196 Hg enrichment
JPS6028225A (en) Optical vapor growth method
RU2059322C1 (en) Method of and device for photochemical deposition of thin films
JPS63126229A (en) Processor
JP3010065B2 (en) Optical excitation process equipment
JPH0717146Y2 (en) Wafer processing equipment
JPS6281020A (en) Photo-cvd device
JPH04163911A (en) Photo assisted cvd equipment
JPS63192871A (en) Photochemical vapor growth device
JPH0351090B2 (en)
JP2002093712A (en) Fluid decomposition equipment
JPS62106618A (en) Photochemical vapor growth device
JPS59225736A (en) Film forming method
JPH01306566A (en) Photochemical reaction controller
JPH0238573A (en) Producing device for thin film by directly-exciting vapor phase depositing method