JPS63317675A - Plasma vapor growth device - Google Patents

Plasma vapor growth device

Info

Publication number
JPS63317675A
JPS63317675A JP15218387A JP15218387A JPS63317675A JP S63317675 A JPS63317675 A JP S63317675A JP 15218387 A JP15218387 A JP 15218387A JP 15218387 A JP15218387 A JP 15218387A JP S63317675 A JPS63317675 A JP S63317675A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
plasma vapor
silicon nitride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15218387A
Other languages
Japanese (ja)
Inventor
Makoto Morita
信 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15218387A priority Critical patent/JPS63317675A/en
Publication of JPS63317675A publication Critical patent/JPS63317675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a high quality film when a thin film is deposited on a semiconductor substrate, by fitting a means of irradiating the surface of the substrate with UV having a specified wavelength so as to make the hydrogen content in the film optimum. CONSTITUTION:Gases such as SiH4 and NH3 are introduced into a reaction furnace 1 from the gas inlet and plasma is generated by impressing high frequency power through a coil 4 to deposit a silicon nitride film on the surface of a semiconductor substrate 2. At the same time, the surface of the substrate 2 is irradiated with UV having <=about 3,500Angstrom wavelength to selectively decomposite NH into N and H. The amt. of hydrogen contained in the silicon nitride film can be made optimum and the stability of the electrical characteristics of a semiconductor device can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ気相成長装置に関し、特に堆積膜中に
おける水素含有量の最適化を図り、高品質の膜を提供で
きるプラズマ気相成長装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma vapor phase epitaxy apparatus, and particularly to a plasma vapor phase epitaxy apparatus that can optimize the hydrogen content in a deposited film and provide a high quality film. Regarding.

(従来の技術〕 従来、一般的には真空状態の反応炉中へSiH4とNH
,を導入し、高周波電力を投入することによりSiH,
とNH,が分解・励起して解離生成物となる。そしてこ
れら解離生成物は半導体基板上で互いに反応しシリコン
窒化膜を形成していた。
(Prior art) Conventionally, SiH4 and NH were generally introduced into a vacuum reactor.
, and by inputting high frequency power, SiH,
and NH, are decomposed and excited to become dissociation products. These dissociation products react with each other on the semiconductor substrate to form a silicon nitride film.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

上述した従来のプラズマ気相成長装置を用いてシリコン
窒化膜の堆積を行う場合、堆積した膜中に多量の水素を
含んでいる。シリコン窒化膜はパッシベーション膜、層
間膜として耐水性、汚染に対するバリア性に非常に優れ
ているが、堆積膜中に含有される水素は半導体装置の電
気的安定性、膜のストレス、耐クラツク性と関係がある
ため、薄膜中での水素含有量の最適化が不可欠である。
When a silicon nitride film is deposited using the above-described conventional plasma vapor phase growth apparatus, the deposited film contains a large amount of hydrogen. Silicon nitride film has excellent water resistance and contamination barrier properties as a passivation film and interlayer film, but the hydrogen contained in the deposited film affects the electrical stability of semiconductor devices, film stress, and crack resistance. Because of this relationship, optimization of hydrogen content in thin films is essential.

ところが、薄膜中の水素含有量はプラズマ条件により異
なり、かつプラズマ中での反応機・構が解明されていな
いこともあり、水素含有量の制御はできないという欠点
がある。
However, the hydrogen content in the thin film varies depending on the plasma conditions, and the reaction mechanism in the plasma has not been elucidated, so there is a drawback that the hydrogen content cannot be controlled.

本発明の目的は前記問題点を解決するプラズマ気相成長
装置を提供することにある。
An object of the present invention is to provide a plasma vapor phase growth apparatus that solves the above problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来のプラズマ気相成長装置に対し、本発明は
シリコン窒化膜を堆積させている半導体基板表面に紫外
光線を照射してシリコン窒化膜を形成するNHの結合を
切断し水素を解離、放出することにより堆積膜中の水素
含有量を最適化するという独創的内容を有する。
In contrast to the conventional plasma vapor phase growth apparatus described above, the present invention irradiates the surface of a semiconductor substrate on which a silicon nitride film is deposited with ultraviolet light to break the NH bonds that form the silicon nitride film and dissociate and release hydrogen. This method has the original content of optimizing the hydrogen content in the deposited film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はプラズマ気相成長装置の真空槽内に薄膜を堆積
すべき半導体基板を設置する手段と、前記真空槽内に薄
膜を形成する元素を含むガスを導入する手段と、前記基
板を加熱する手段と、前記ガスを放電させる手段と、前
記基板上に薄膜を堆積させるときに基板表面をおよそ3
500Å以下の波長を有する紫外光線で照射せしめる手
段とを含むことを特徴とするプラズマ気相成長装置であ
る。
The present invention provides means for installing a semiconductor substrate on which a thin film is to be deposited in a vacuum chamber of a plasma vapor deposition apparatus, means for introducing a gas containing an element for forming a thin film into the vacuum chamber, and heating the substrate. means for discharging said gas; and a means for discharging said gas;
A plasma vapor phase epitaxy apparatus characterized in that it includes means for irradiating with ultraviolet light having a wavelength of 500 Å or less.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は本発明の第1の実施例を示す断面図である。第
1図において、1は反応炉、2は半導体基板、3は半導
体基板加熱用のヒーター、4はプラズマ発生用のコイル
、5は光反射用のミラー、6は波長分光用の光学素子、
7は光源、8は窓である。真空状態にある反応炉1中へ
ガス導入口よりSiH,及びNH3を導入し、およそ1
 torrに保つ。
(Example 1) FIG. 1 is a sectional view showing a first example of the present invention. In FIG. 1, 1 is a reactor, 2 is a semiconductor substrate, 3 is a heater for heating the semiconductor substrate, 4 is a coil for plasma generation, 5 is a mirror for light reflection, 6 is an optical element for wavelength spectroscopy,
7 is a light source, and 8 is a window. SiH and NH3 are introduced from the gas inlet into the reactor 1 in a vacuum state, and approximately 1
Keep torr.

そして、プラズマ発生用のコイル4を通して高周波電力
を投入してプラズマを発生させる。このときに半導体基
板2の表面には、プラズマ窒化膜が堆積しているわけで
あるが、同時に紫外光線の照射を行う。まず光源7とし
てはアルゴンランプ、キセノンランプ、水銀ランプ等が
あり紫外光源としておよそ2200人までの光を得るこ
とができる。
Then, high frequency power is applied through the plasma generation coil 4 to generate plasma. At this time, a plasma nitride film is deposited on the surface of the semiconductor substrate 2, and at the same time, ultraviolet light is irradiated. First, the light source 7 includes an argon lamp, a xenon lamp, a mercury lamp, etc., and can provide light for up to about 2,200 people as an ultraviolet light source.

次にNHを選択的に効率良くNとHに分解させる波長に
紫外光線を光学素子6を用いて分光させる。
Next, an optical element 6 is used to disperse ultraviolet light into wavelengths that selectively and efficiently decompose NH into N and H.

この分光された紫外光線はミラー5により光路を変更さ
れ、反応炉1の上部に設けられた窓8を通して半導体基
板2の表面に照射される。ここで窓8としてLiF又は
CaF2を使用することにより、紫外光線は反応炉1中
へ入射でき、半導体基板2の表面を照射できる。
The optical path of the separated ultraviolet light is changed by a mirror 5, and the surface of the semiconductor substrate 2 is irradiated through a window 8 provided in the upper part of the reactor 1. By using LiF or CaF2 as the window 8, ultraviolet light can enter the reactor 1 and illuminate the surface of the semiconductor substrate 2.

解離するNHの量は紫外光線の光量、即ち、ランプの明
るさに比例するから、光量を制御することにより解離す
るNHの量を変化させることができ、結果的に堆積して
いるプラズマ窒化膜中の水素量を制御し、最適化するこ
とができる。
Since the amount of NH dissociated is proportional to the amount of ultraviolet light, that is, the brightness of the lamp, the amount of NH dissociated can be changed by controlling the amount of light, and as a result, the plasma nitride film deposited can be changed. The amount of hydrogen inside can be controlled and optimized.

これまでにシリコン窒化膜は5i)1.からの5it(
、SiH2のどちらか、もしくは両方とNH3からのN
Hが反応し、堆積することが知られているが、シリコン
窒化膜中の水素のうち、特にNHとして含有される水素
が半導体特性に悪影響を及ぼしているといわれている。
So far, silicon nitride films have been developed using 5i) 1. 5it from (
, SiH2, or both and NH3
Although it is known that H reacts and is deposited, it is said that hydrogen contained in the silicon nitride film, especially hydrogen contained as NH, has an adverse effect on semiconductor characteristics.

そこで本発明ではこのNH結合を光照射を行うことによ
り選択的に切断して、膜中に含有される水素量を最適化
することを特徴としている。NH結合の結合エネルギー
は3 、54eVであるから、約3500Å以下の波長
を有する光であれば切断可能である。従って、本発明で
はおよそ3500Å以下の波長を有する紫外光線を照射
する手段を有している。また、シリコン窒化膜成長反応
は表面反応が主反応であることから、シリコン窒化膜の
堆積時に、半導体基板表面に紫外光線を照射し、NH結
合を効率的に切断することにより、シリコン窒化膜中に
含有される水素量を最適化できる。
Therefore, the present invention is characterized in that this NH bond is selectively cut by light irradiation to optimize the amount of hydrogen contained in the film. Since the bond energy of the NH bond is 3.54 eV, it can be cut by light having a wavelength of about 3500 Å or less. Therefore, the present invention includes means for irradiating ultraviolet light having a wavelength of about 3500 Å or less. In addition, since the silicon nitride film growth reaction is mainly a surface reaction, it is possible to irradiate the surface of the semiconductor substrate with ultraviolet light during the deposition of the silicon nitride film to efficiently break the NH bonds. The amount of hydrogen contained in the fuel can be optimized.

(実施例2) 第1の実施例は誘導結合型のプラズマ気相成長装置に本
発明のおよそ3500Å以下の波長を有する紫外光線を
照射する手段を適用した場合であるのに対し、第2の実
施例は容量結合型のプラズマ気相成長装置に適用した場
合である。第2図は第2の実施例のプラズマ気相成長装
置を示す断面図である。21は反応炉、22は半導体基
板、23はヒーター、24は電極、25はミラー、26
は光学素子、27は光源、28は窓である。この実施例
では平行平板型であるために広域にわたって均一な薄膜
が堆積可能である。したがって、大口径の半導体基板を
枚葉で処理するときに有利になるという利点がある。
(Example 2) The first example is a case in which the means for irradiating ultraviolet light having a wavelength of about 3500 Å or less of the present invention is applied to an inductively coupled plasma vapor deposition apparatus, whereas the second example The embodiment is a case where the present invention is applied to a capacitively coupled plasma vapor phase growth apparatus. FIG. 2 is a sectional view showing a plasma vapor phase growth apparatus of a second embodiment. 21 is a reactor, 22 is a semiconductor substrate, 23 is a heater, 24 is an electrode, 25 is a mirror, 26
27 is an optical element, 27 is a light source, and 28 is a window. In this embodiment, since it is a parallel plate type, a uniform thin film can be deposited over a wide area. Therefore, there is an advantage that it is advantageous when processing large-diameter semiconductor substrates one by one.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は半導体基板上に薄膜製堆積
させるときに半導体基板表面を光照射せしめる手段を有
することにより、高品質の薄膜を提供できる効果がある
。即ち、シリコン窒化膜においては膜に含有される水素
量を紫外光線照射量により制御できるため、水素含有量
の最適化を図ることができ、高品質の膜を提供でき、そ
のために半導体装置の電気的特性の安定性を向上するこ
とができる。さらに半導体製造プロセスの管理の定量化
ができるために製品の歩留りの向上、製造プロセスの安
定化を実現できるという効果を有するものである。
As explained above, the present invention has the effect of providing a high quality thin film by having means for irradiating the surface of the semiconductor substrate with light when depositing the thin film on the semiconductor substrate. In other words, in silicon nitride films, the amount of hydrogen contained in the film can be controlled by the amount of ultraviolet light irradiation, so it is possible to optimize the hydrogen content and provide a high-quality film. The stability of physical properties can be improved. Furthermore, since the management of the semiconductor manufacturing process can be quantified, it has the effect of improving product yield and stabilizing the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るプラズマ気相成長装置の第1の実
施例を示す断面図、第2図は本発明の第2の実施例を示
す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a plasma vapor phase growth apparatus according to the present invention, and FIG. 2 is a sectional view showing a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)プラズマ気相成長装置の真空槽内に薄膜を堆積す
べき半導体基板を設置する手段と、前記真空槽内に薄膜
を形成する元素を含むガスを導入する手段と、前記基板
を加熱する手段と、前記ガスを放電させる手段と、前記
基板上に薄膜を堆積させるときに基板表面をおよそ35
00Å以下の波長を有する紫外光線で照射せしめる手段
とを含むことを特徴とするプラズマ気相成長装置。
(1) means for installing a semiconductor substrate on which a thin film is to be deposited in a vacuum chamber of a plasma vapor deposition apparatus; means for introducing a gas containing an element for forming a thin film into the vacuum chamber; and heating the substrate. means for discharging said gas; and a means for discharging said gas;
1. A plasma vapor phase growth apparatus comprising means for irradiating with ultraviolet light having a wavelength of 00 Å or less.
JP15218387A 1987-06-18 1987-06-18 Plasma vapor growth device Pending JPS63317675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15218387A JPS63317675A (en) 1987-06-18 1987-06-18 Plasma vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15218387A JPS63317675A (en) 1987-06-18 1987-06-18 Plasma vapor growth device

Publications (1)

Publication Number Publication Date
JPS63317675A true JPS63317675A (en) 1988-12-26

Family

ID=15534870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15218387A Pending JPS63317675A (en) 1987-06-18 1987-06-18 Plasma vapor growth device

Country Status (1)

Country Link
JP (1) JPS63317675A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346578A (en) * 1992-11-04 1994-09-13 Novellus Systems, Inc. Induction plasma source
US6217721B1 (en) 1995-08-07 2001-04-17 Applied Materials, Inc. Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer
US6225744B1 (en) 1992-11-04 2001-05-01 Novellus Systems, Inc. Plasma process apparatus for integrated circuit fabrication having dome-shaped induction coil
JP2008270764A (en) * 2007-03-29 2008-11-06 Hitachi Kokusai Electric Inc Substrate processing device and method for manufacturing semiconductor in the substrate processing device
JP2010222690A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Method for producing gas barrier film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346578A (en) * 1992-11-04 1994-09-13 Novellus Systems, Inc. Induction plasma source
US5405480A (en) * 1992-11-04 1995-04-11 Novellus Systems, Inc. Induction plasma source
US5605599A (en) * 1992-11-04 1997-02-25 Novellus Systems, Inc. Method of generating plasma having high ion density for substrate processing operation
US6225744B1 (en) 1992-11-04 2001-05-01 Novellus Systems, Inc. Plasma process apparatus for integrated circuit fabrication having dome-shaped induction coil
US6217721B1 (en) 1995-08-07 2001-04-17 Applied Materials, Inc. Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer
JP2008270764A (en) * 2007-03-29 2008-11-06 Hitachi Kokusai Electric Inc Substrate processing device and method for manufacturing semiconductor in the substrate processing device
JP2010222690A (en) * 2009-03-25 2010-10-07 Fujifilm Corp Method for producing gas barrier film

Similar Documents

Publication Publication Date Title
US7897215B1 (en) Sequential UV induced chemical vapor deposition
US5753320A (en) Process for forming deposited film
JPS61127121A (en) Formation of thin film
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
JPS60258915A (en) Method and device for depositing laser chemical phase
JPH1098032A (en) Formation of thin film and thin film forming device
JPS60117711A (en) Forming apparatus of thin film
JPS63317675A (en) Plasma vapor growth device
JPS60117712A (en) Forming method of thin film
JPS59188913A (en) Photo cvd device
JPH03139824A (en) Depositing method for semiconductor device
JP3084395B2 (en) Semiconductor thin film deposition method
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS61143585A (en) Thin film forming method
JPH0978245A (en) Formation of thin film
JPH06158327A (en) Thin film depositing method
JPH0294430A (en) Photo-assisted cvd apparatus
JPS62213118A (en) Formation of thin film and device therefor
JPS61127122A (en) Formation of thin film
JPH01730A (en) Method of forming multilayer thin film
JPS624869A (en) Formation of deposited film by photochemical vapor phase growth method
JPS61196528A (en) Thin film forming apparatus
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JPS61127120A (en) Formation of thin film
JPS6118125A (en) Thin film forming apparatus