JPS594434A - Vapor phase reactor - Google Patents

Vapor phase reactor

Info

Publication number
JPS594434A
JPS594434A JP11458682A JP11458682A JPS594434A JP S594434 A JPS594434 A JP S594434A JP 11458682 A JP11458682 A JP 11458682A JP 11458682 A JP11458682 A JP 11458682A JP S594434 A JPS594434 A JP S594434A
Authority
JP
Japan
Prior art keywords
susceptor
top plate
reaction
partition plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11458682A
Other languages
Japanese (ja)
Inventor
Hirozo Shima
島 博三
Junichi Nozaki
野崎 順一
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11458682A priority Critical patent/JPS594434A/en
Publication of JPS594434A publication Critical patent/JPS594434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain uniformity of film thickness, by installing a top plate and a partition plate made of transparent quartz only at the part in which Ir lamps faces a susceptor for placing a semiconductor substrate. CONSTITUTION:A reaction vessel consists of a metallic housing comprising a stand 6, a support frame 7, and a fixed frame 9; and a top plate 8. The insides of the frames 7 and 9 are provided with holes 10 for circulating cooling water. The susceptor 11 for supporting a semiconductor substrate 12 is installed in the reaction vessel consisting of the housing and the top plate 8. The partition plate 13 made of transparent quartz is held between the plate 8 and the susceptor 11 and on a level changed part 14 formed on a part of the frame 7. IR heating lamps 16 are installed facing the surface of the susceptor 11 through the plates 13 and 8.

Description

【発明の詳細な説明】 本発明は、半導体製造における気相反応装置に係り、反
応容器の内壁に反応生成物を防ぐと共に、高温加熱に耐
え得る強度を有し、基板への加熱が均一となる気相反応
装置金得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas phase reaction apparatus for semiconductor manufacturing, which prevents reaction products from forming on the inner wall of a reaction vessel, has strength capable of withstanding high temperature heating, and uniformly heats a substrate. The purpose is to obtain gold using a gas phase reactor.

従来の気相反応装置としては、第1図に示すように、透
明石英からなるペルジャー1で反応容器を構成し、この
反応容器内部に設けられたサセプター2に半導体基板3
を載置し、この半導体装置3を、ペルジャー1外部に設
けられ、かつサセプター2と対向するよう設けられた赤
外線ラング4により加熱しながら、ガス供給口6より反
応ガスを流して、半導体基板3の上に、気相成長させる
ものがある。
As shown in FIG. 1, in a conventional gas phase reaction apparatus, a reaction vessel is constituted by a Pelger 1 made of transparent quartz, and a semiconductor substrate 3 is mounted on a susceptor 2 provided inside the reaction vessel.
The semiconductor device 3 is heated by an infrared rung 4 provided outside the Pelger 1 and facing the susceptor 2, and a reactive gas is flowed through the gas supply port 6 to heat the semiconductor device 3. On top of that, there are things that can be grown in a vapor phase.

しかし、このような気相反応装置においては、反応容器
内壁に反応物質が付着しやすく、一度付着がはじまると
、付着物による吸熱が起こるため、ますます付着速度が
早められ、たちまち内壁が付着物で被われてしまう。こ
れは内壁の温度が加熱により上昇するためと考えられる
。とくにジクロールシラン(SiH2C112)を反応
ガスとして用いた場合には、その分解温度が約650℃
と低く、壁面温度が350℃以上になると壁面への付着
が起る。とぐにサセプターと向い合ったペルジャー内面
は、サセプターからの輻射熱による温度上昇のため付着
が著しい。このため、反応ガスの流れ方向によって半導
体基板表面の温度のバラツキが起こ9、気相成長層の厚
さのバラツキが生じやすかった。また壁面に付着した付
着物が半導体基板上に飛散してきて異常突起等の結晶欠
陥を生じやすかった。さらに石英ペルジャーの側壁部で
の赤外線の反射や屈折及び上記付着物形成などに起因し
て石英ペルジャーへの蓄熱がなされる結果、高温加熱状
態で石英ペルジャーに熱応力によるクラックを生じ、危
険な状態になることや、石英ペルジャーからの熱輻射に
よって基板表面に加熱の均一性が得られないことなどの
欠点を有していた。。
However, in such a gas-phase reactor, reactants tend to adhere to the inner walls of the reaction vessel, and once adhesion begins, heat is absorbed by the adhering substances, so the rate of adhesion is further accelerated, and the inner walls quickly become covered with adhering substances. It will be covered with This is considered to be because the temperature of the inner wall increases due to heating. In particular, when dichlorosilane (SiH2C112) is used as a reaction gas, its decomposition temperature is approximately 650°C.
When the wall surface temperature exceeds 350°C, adhesion to the wall surface occurs. The inner surface of the Pelger, which faces the susceptor, has significant adhesion due to the temperature increase due to radiant heat from the susceptor. For this reason, the temperature of the surface of the semiconductor substrate varies depending on the flow direction of the reaction gas9, and the thickness of the vapor-phase growth layer tends to vary. In addition, deposits attached to the wall surface are scattered onto the semiconductor substrate, which tends to cause crystal defects such as abnormal protrusions. Furthermore, as a result of heat accumulation in the quartz Pelger due to reflection and refraction of infrared rays on the side walls of the quartz Pelger and the formation of the above-mentioned deposits, cracks occur in the quartz Pelger due to thermal stress when heated to high temperatures, creating a dangerous situation. However, the quartz Pelger's heat radiation from the quartz Pelger does not provide uniform heating on the surface of the substrate. .

さらに、反応容器全体に対し石英ペルジャーの占める割
合が大きいため、容器内外の圧力差や外部力に対し、強
度的に脆いという欠点、及び従来例の形状をなす石英ペ
ルジャーの製作が困難であるという欠点を有していた。
Furthermore, since the quartz Peljar occupies a large proportion of the entire reaction vessel, it has the disadvantage of being brittle against pressure differences inside and outside the container and external forces, and it is difficult to manufacture a quartz Pelger in the shape of the conventional example. It had drawbacks.

本発明は、上記従来の欠点を解消するもので、以下にそ
の一実施例を第2図に基いて説明する。
The present invention is intended to eliminate the above-mentioned conventional drawbacks, and one embodiment thereof will be described below with reference to FIG. 2.

第2図において、6はステンレス製の基台であり、7は
基台6の上に既知の方法で固定され反応容器の円筒形状
の側壁をなすステンレス製の支持枠であり、この支持枠
7の上部に透明な石英平板からなるトッププレート8が
、ステンレス製で中空円板形状をなす固定枠9によって
固定されている。すなわち反応容器は基台6、支持枠7
、固定枠9からなる金属性の筐体部とトッププレート8
から構成されている。支持枠7及び固定枠9の内部には
、冷却水の循環孔10が設けられている。
In FIG. 2, 6 is a stainless steel base, and 7 is a stainless steel support frame that is fixed on the base 6 by a known method and forms a cylindrical side wall of the reaction vessel. A top plate 8 made of a transparent quartz flat plate is fixed to the upper part of the housing by a fixing frame 9 made of stainless steel and having a hollow disk shape. In other words, the reaction container has a base 6 and a support frame 7.
, a metal casing consisting of a fixed frame 9 and a top plate 8
It consists of Cooling water circulation holes 10 are provided inside the support frame 7 and the fixed frame 9.

11は上記筐体部とトッププレート8からなる反応容器
内部に設けられた半導体基板12を支持するサセプター
である。13はトッププレート8とサセプター11の間
に位置し、支持枠7の一部に設けた段差部14に支持さ
れた透明石英からなる仕切板で、複数個のガス流通孔1
5を有しており、反応容器内を仕切っている。16は加
熱用赤外線ランプであり、サセプター11の表面に対し
、仕切板13、トッププレート8をはさんで対面するよ
うに設置されている。17は基台6に設けられた第1の
ガス供給口であり、18は支持枠7に設けられたガス第
2の供給口であり、19は基台6に設けられた排気口で
ある。
Reference numeral 11 denotes a susceptor that supports a semiconductor substrate 12 provided inside the reaction vessel consisting of the casing and top plate 8. Reference numeral 13 denotes a partition plate made of transparent quartz that is located between the top plate 8 and the susceptor 11 and supported by a stepped portion 14 provided in a part of the support frame 7, and includes a plurality of gas flow holes 1.
5 to partition the inside of the reaction vessel. Reference numeral 16 denotes a heating infrared lamp, which is installed so as to face the surface of the susceptor 11 with the partition plate 13 and the top plate 8 in between. 17 is a first gas supply port provided on the base 6; 18 is a second gas supply port provided on the support frame 7; and 19 is an exhaust port provided on the base 6.

上記構−成において、サセプター11に半導体基板12
を載置し、これを反応容器外部にあシ、サセプター11
と対向するよう設けられた赤外線ランプ16によシ加熱
しながら、ガス供給口1,17より反応室内に反応ガス
(例えばH2と5iH2Ce2金混合したガス)を矢印
入方向に流し、かつ支持枠7に設けられたガス供給口2
.18より非反応ガス(例えばH2ガス)を矢印B方向
に流す。この時反応ガスの流れが、半導体基板12上で
実質的に乱れないように、仕切板13のガス流通孔、1
6より吹き出される非反応ガスの圧力または流速を定め
る。半導体基板12の加熱流度は、気相成長層の目的、
反応ガス等によって異なるが約400乃至1200℃の
範囲の一度湛度にする。
In the above configuration, the semiconductor substrate 12 is attached to the susceptor 11.
Place the susceptor 11 on the outside of the reaction vessel.
While heating with an infrared lamp 16 installed opposite to the support frame 7, a reaction gas (for example, a gas mixed with H2 and 5iH2Ce2 gold) is flowed into the reaction chamber from the gas supply ports 1 and 17 in the direction of the arrow. Gas supply port 2 provided in
.. 18, a non-reactive gas (for example, H2 gas) is caused to flow in the direction of arrow B. At this time, in order to prevent the flow of the reaction gas from being substantially disturbed on the semiconductor substrate 12,
6. Determine the pressure or flow rate of the non-reactive gas blown out from 6. The heating flow rate of the semiconductor substrate 12 is determined by the purpose of the vapor growth layer,
Although it varies depending on the reaction gas etc., the temperature is once filled in the range of about 400 to 1200°C.

この時、支持枠7、固定枠9に伝導された熱はその内部
を循環する冷却水によって吸収されるため、反応容器の
トッププレート8以外の筐体部の蓄熱を防止されている
。また仕切板13は多数のガス流通孔15より吹き出さ
れる非反応ガスにより反応ガスが仕切板13に接触する
ことを妨げるために高温加熱によって反応内壁への反応
物質の付着が防げると共に、反応容器の密閉異常や破損
を生じることがない。また上記容器の蓄熱防止により半
導体基板12の表面は石英トッププレート8全通して直
接輻射される熱のみによって加熱されることとなり、半
導体基板12上の加熱状態に関する均一性を保つ効果を
うむ。また反応室の中の反応ガスの流速とバランスをと
った流速で非反応ガスをガス流通孔16より吹き出させ
ているため、気相成長層の厚さのバラツキの少ない一様
性のよい成長層が得られる反応装置を得ることができる
At this time, the heat conducted to the support frame 7 and the fixed frame 9 is absorbed by the cooling water circulating inside the support frame 7 and the fixed frame 9, so that heat accumulation in the casing other than the top plate 8 of the reaction vessel is prevented. In addition, the partition plate 13 prevents the reaction gas from coming into contact with the partition plate 13 due to the non-reactive gas blown out from the large number of gas flow holes 15, so that the reaction material can be prevented from adhering to the inner wall of the reaction vessel by high-temperature heating. No sealing abnormalities or damage will occur. Further, by preventing heat accumulation in the container, the surface of the semiconductor substrate 12 is heated only by the heat directly radiated through the entire quartz top plate 8, which has the effect of maintaining uniformity in the heating state on the semiconductor substrate 12. In addition, since the non-reactive gas is blown out from the gas flow holes 16 at a flow rate that is balanced with the flow rate of the reactant gas in the reaction chamber, a uniformly grown layer with less variation in the thickness of the vapor-grown layer can be achieved. It is possible to obtain a reactor that can obtain the following.

さらに半導・体基板12と赤外線ランプ16を反応容器
の内部と外部に分離する平板形状の透明石英カラなるト
ッププレート8は、従来例の一体的ニ製作されたペルジ
ャー型に比べその製作は容易であり、しかも反応容器の
主な部分にステンレスを用いたことにより、充分な強度
をもつ反応容器を得ることができる。
Furthermore, the flat plate-shaped top plate 8 made of transparent quartz that separates the semiconductor substrate 12 and the infrared lamp 16 into the inside and outside of the reaction vessel is easier to manufacture than the conventional Pelger type, which is manufactured in one piece. Moreover, by using stainless steel for the main parts of the reaction vessel, a reaction vessel with sufficient strength can be obtained.

第3図は本発明の他の実施例で、2oは石英からなるリ
ングで支持枠7の内面を覆うように位置し、かつ仕切板
13を支持するようになっている。
FIG. 3 shows another embodiment of the present invention, in which a ring 2o is made of quartz and is positioned so as to cover the inner surface of the support frame 7, and supports the partition plate 13.

21は石英からなるプレートで、基台6の上に載置され
ており、気相成長を行なう時、基台6及び支持枠7のス
テンレス表面からの不純物の混入を防ぐために、反応室
内部を全て石英で覆うことにより、半導体基板12に成
長する膜の結晶性の向上を行なっている。またサセプタ
ー11は反応ガスの流れ方向Aに対して成長層の膜厚が
均一になるよう傾斜させている。
Reference numeral 21 denotes a plate made of quartz, which is placed on the base 6. When performing vapor phase growth, the inside of the reaction chamber is sealed to prevent impurities from entering from the stainless steel surfaces of the base 6 and the support frame 7. By covering everything with quartz, the crystallinity of the film grown on the semiconductor substrate 12 is improved. Further, the susceptor 11 is inclined with respect to the flow direction A of the reaction gas so that the thickness of the grown layer is uniform.

なお、上記実施例においては反応容器の形状化円筒形と
したが、角形等の他の形状でもよい。また基台d内部に
冷却流体循環孔を設けて蓄熱防止効果を得ることもでき
る。また、トッププレート8に対する蓄熱全防止するた
めに外部からトップグレート表面に冷却ガスを吹きつけ
ることも可能である。さらに本装置を減圧状態で使用す
ることも可能である。またサセプター11を図示してい
ない回転手段で回転しながら気相成長させ、成長層の膜
厚の均一性を得ることができる。
In the above embodiments, the reaction vessel is cylindrical in shape, but other shapes such as a rectangular shape may be used. Furthermore, cooling fluid circulation holes may be provided inside the base d to obtain the effect of preventing heat accumulation. Further, in order to completely prevent heat accumulation on the top plate 8, it is also possible to blow cooling gas from the outside onto the surface of the top grate. Furthermore, it is also possible to use the device under reduced pressure. Further, by performing vapor phase growth while rotating the susceptor 11 by a rotating means (not shown), uniformity in the thickness of the grown layer can be obtained.

このように本発明によれば、反応容器の構成として、赤
外線ランプと半導体基板の載置するサセプターの対面し
ている部分にのみ透明石英からなるトッププレートと仕
切板を設け、他の筐体部には内部に冷却流体循環孔を有
し、また高強度を有する部材を用い、また仕切板に非反
応ガスを流すことにより、反応容器内壁に、反応生成物
の付着することなく、高温加熱による熱応力の影響を避
けると共に、加熱の均一性を得、しかも反応容器全体の
強度を増す効果を発揮するものである。
According to the present invention, the structure of the reaction vessel is such that the top plate and partition plate made of transparent quartz are provided only in the facing part of the infrared lamp and the susceptor on which the semiconductor substrate is placed, and the other part of the casing is The system has internal cooling fluid circulation holes, uses high-strength members, and allows non-reactive gas to flow through the partition plate to prevent reaction products from adhering to the inner wall of the reaction vessel, allowing high-temperature heating to occur. This has the effect of avoiding the influence of thermal stress, achieving uniform heating, and increasing the strength of the entire reaction vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気相反応装置の断面図、第2図は本発明
の一実施例における気相反応装置の断面図、第3図は本
発明の他の実施例における気相反応装置の断面図である
。 6・・・・・・基台、7・・・・・・支持枠、8・・・
・・・トッププレート、11・・・・・サセプター、1
2・・・・・・半導体基板、13・・−・・・仕切板、
16・・・・・・ガス流通孔、16・・・・・・赤外線
ランプ、17・・・・・・ガス供給口、18・・・・・
・ガス供給口、19・・・・・・排気口。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a sectional view of a conventional gas phase reactor, FIG. 2 is a sectional view of a gas phase reactor in an embodiment of the present invention, and FIG. 3 is a sectional view of a gas phase reactor in another embodiment of the present invention. FIG. 6...Base, 7...Support frame, 8...
...Top plate, 11...Susceptor, 1
2... Semiconductor substrate, 13... Partition plate,
16...Gas distribution hole, 16...Infrared lamp, 17...Gas supply port, 18...
・Gas supply port, 19...exhaust port. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] (1)  ガス供給口と排気口を備え内部に冷却流体の
循環孔を有する筐体部及びこの筐体部上部の開口部に設
けられた透明石英からなる平板形状のトッププレートか
ら構成された反応容器と、この反応容器内部に設けられ
た基板支持のためのサセプターと、このサセプターと、
前記トッププレートとの間に設けられ複数個の流通孔を
有した透明石英からなる仕切板と、前記反応容器外部に
設けられ、サセプターと対向するよう取付けられた輻射
加熱用赤外線ランプとからなり、前記仕切板で仕切られ
たサセプター側の室に反応ガスを流入し、かつトッププ
レートと仕切板との間に非反応ガスを流入するよう構成
した気相反応装置。 (≧ 前記仕切板で仕切−ちれたサセプター側の室の内
部にあって、筐体部の側面及び下面を石英からなる部材
を設け、反応室内面を石英部材で覆うように構成した特
許請求の範囲第1項記載の気相反応装置。
(1) A reaction system consisting of a casing with a gas supply port and an exhaust port and a cooling fluid circulation hole inside, and a flat top plate made of transparent quartz provided in the opening at the top of the casing. a container, a susceptor for supporting a substrate provided inside the reaction container, and the susceptor;
consisting of a partition plate made of transparent quartz that is provided between the top plate and has a plurality of flow holes, and an infrared heating lamp for radiant heating that is provided outside the reaction vessel and is attached to face the susceptor; A gas phase reaction apparatus configured to allow a reactive gas to flow into a chamber on the susceptor side partitioned by the partition plate, and to flow a non-reactive gas between the top plate and the partition plate. (≧ A patent claim in which a member made of quartz is provided on the side and lower surfaces of the casing, and the inner surface of the reaction chamber is covered with the quartz member, within the chamber on the susceptor side partitioned by the partition plate. The gas phase reactor according to item 1.
JP11458682A 1982-06-30 1982-06-30 Vapor phase reactor Pending JPS594434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11458682A JPS594434A (en) 1982-06-30 1982-06-30 Vapor phase reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11458682A JPS594434A (en) 1982-06-30 1982-06-30 Vapor phase reactor

Publications (1)

Publication Number Publication Date
JPS594434A true JPS594434A (en) 1984-01-11

Family

ID=14641555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11458682A Pending JPS594434A (en) 1982-06-30 1982-06-30 Vapor phase reactor

Country Status (1)

Country Link
JP (1) JPS594434A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186476A (en) * 1985-02-14 1986-08-20 Yasuo Tarui Photochemical reaction device
JPS62207871A (en) * 1986-03-07 1987-09-12 Ulvac Corp Photochemical vapor growth device
JPS6326366A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6326367A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6328868A (en) * 1986-07-22 1988-02-06 Ulvac Corp Cvd method
US5781693A (en) * 1996-07-24 1998-07-14 Applied Materials, Inc. Gas introduction showerhead for an RTP chamber with upper and lower transparent plates and gas flow therebetween
US6090210A (en) * 1996-07-24 2000-07-18 Applied Materials, Inc. Multi-zone gas flow control in a process chamber
CN111455341A (en) * 2020-06-18 2020-07-28 上海陛通半导体能源科技股份有限公司 Physical vapor deposition equipment based on magnetic coupling rotation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186476A (en) * 1985-02-14 1986-08-20 Yasuo Tarui Photochemical reaction device
JPS62207871A (en) * 1986-03-07 1987-09-12 Ulvac Corp Photochemical vapor growth device
JPS6326366A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6326367A (en) * 1986-07-18 1988-02-03 Ulvac Corp Cvd method
JPS6328868A (en) * 1986-07-22 1988-02-06 Ulvac Corp Cvd method
US5781693A (en) * 1996-07-24 1998-07-14 Applied Materials, Inc. Gas introduction showerhead for an RTP chamber with upper and lower transparent plates and gas flow therebetween
US6090210A (en) * 1996-07-24 2000-07-18 Applied Materials, Inc. Multi-zone gas flow control in a process chamber
CN111455341A (en) * 2020-06-18 2020-07-28 上海陛通半导体能源科技股份有限公司 Physical vapor deposition equipment based on magnetic coupling rotation

Similar Documents

Publication Publication Date Title
US5725673A (en) Semiconductor wafer process chamber with susceptor back coating
US6254686B1 (en) Vented lower liner for heating exhaust gas from a single substrate reactor
US4823735A (en) Reflector apparatus for chemical vapor deposition reactors
US6436837B1 (en) Domed wafer reactor vessel window with reduced stress at atmospheric and above atmospheric pressures
JP2001522138A5 (en)
WO1995031582A1 (en) Chemical vapor deposition reactor and method
US7429717B2 (en) Multizone heater for furnace
JPS594434A (en) Vapor phase reactor
EP1097470B1 (en) Infra-red transparent thermal reactor cover member
JPS59112611A (en) Vapor growth apparatus
JPS60161616A (en) Infrared heating unit for semiconductor wafer
JPS59111997A (en) Device for epitaxial growth
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPH0381295B2 (en)
JPH0544825B2 (en)
JPH0461117A (en) Single-wafer cvd device
JPH0518452B2 (en)
JPH0532902B2 (en)
JPS59112615A (en) Vapor phase reaction device
JPS622614A (en) Infrared heating device
JPS59112613A (en) Vapor growth apparatus
JPH0545052B2 (en)
JPH0638402B2 (en) Gas phase reaction vessel
JPS6365083A (en) Vapor growing apparatus
JPS60208824A (en) Vapor growth unit