JPS6211071B2 - - Google Patents

Info

Publication number
JPS6211071B2
JPS6211071B2 JP16619780A JP16619780A JPS6211071B2 JP S6211071 B2 JPS6211071 B2 JP S6211071B2 JP 16619780 A JP16619780 A JP 16619780A JP 16619780 A JP16619780 A JP 16619780A JP S6211071 B2 JPS6211071 B2 JP S6211071B2
Authority
JP
Japan
Prior art keywords
acid
etching
transparent conductive
conductive film
etchant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16619780A
Other languages
Japanese (ja)
Other versions
JPS5789480A (en
Inventor
Kaname Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16619780A priority Critical patent/JPS5789480A/en
Publication of JPS5789480A publication Critical patent/JPS5789480A/en
Publication of JPS6211071B2 publication Critical patent/JPS6211071B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明導電膜のエツチング液つまりエツ
チヤントに関するものである。 透明導電膜は最近、液晶表示、EL、EPID、コ
ロイダルライトバルブ、EC等のデイスプレイ用
電極として、フオトセルや太陽電池の電極として
広く用いられるようになつた。特に前者のデイス
プレイ用電極として用いられる場合通常パターニ
ングされて用いられる。このようなパターニング
された透明導電膜をいかに安価に、安定に作るか
が問題となつている。つまり、透明導電膜には酸
化インジウム系(酸化インジウム又はそれに四価
金属酸化物例えばSnO2等をドープしたもの)と
酸化スズ系(酸化スズ又はそれに五価金属酸化物
例えばSb2O5等をドープしたもの)がある。 表1は酸化インジウム系と酸化スズ系の透明導
The present invention relates to an etching solution or etchant for transparent conductive films. Transparent conductive films have recently come to be widely used as electrodes for displays such as liquid crystal displays, EL, EPID, colloidal light valves, and EC, and as electrodes for photocells and solar cells. In particular, when used as a display electrode in the former case, it is usually used after being patterned. The problem is how to make such a patterned transparent conductive film inexpensively and stably. In other words, the transparent conductive film contains indium oxide (indium oxide or doped with a tetravalent metal oxide such as SnO 2 ) and tin oxide (tin oxide or doped with a pentavalent metal oxide such as Sb 2 O 5 ). There is a doped version). Table 1 shows the transparent conductivity of indium oxide and tin oxide.

【表】 膜の各種性質を比較したものである。酸化インジ
ウム系は抵抗も低くエツチング性も良い。(温塩
酸とか塩化第一鉄を含んだ塩酸で容易に浸漬エツ
チングできる)が、製造方法がバツチ処理になる
ためコストが高くなつていた。又デイスプレイ用
電極に用いるとき、電気化学的安定性が悪いた
め、SiO2のような無機物とかポリイミドのよう
な有機物でコーテイングして用いる必要があつ
た。1方酸化スズ系は無水塩化第二スズから
CVD法(Sb2O5のドープは無水五塩化アンチモン
から)で安価に得られ、抵抗も五酸化アンチモン
のドープにより酸化インジウム並のものが得られ
るが唯一の欠点はエツチング性である。従来は
Zn粉末をふりかけ、その上に塩酸をシヤワー、
ハケ等でコスリ落としていた。この方法はハケコ
スリという物理的手段が加わるため、パターニン
グする時のレジストのハク離等を促進し、ピンホ
ール、切れ、オーバーエツチング等の問題を引き
おこしていた。1方浸漬エツチング方法として
USP4009061にある二価クロムイオンと三価クロ
ムのレドツクス系を用いるものがある。このエツ
チヤントは、エツチングスピードが遅い、液の劣
化スピードが急速等の大きな問題点を含んでい
る。この二つは全く同等であり、ポテンシヤルエ
ネルギーである二価クロムが液調合の際にも三価
クロムに変化し、エツチング開始時にはレドツク
ス系のポテンシヤルエネルギーが初期から低くな
つていることが考えられる。この二価クロムの三
価クロムへの変化は、1つは空気中の酸素の還元
反応にともなうものであり、1つは二価クロムの
プロトンとの反応による水素発生(Cr2 ++H+
Cr3++1/2H2)によるものではないかと思われ
る。本発明者は、このようなレドツクス系の酸素
還元反応の過電圧の増加と、水素発生反応の過電
圧増加を検討した結果、有機酸の添加が非常に大
きな効果をもたらすことを発見した。 本発明の目的は、酸化スズ系透明導電膜を浸
漬、シヤワー等の物理的手段を供なわない方法に
より、エツチングスピードが速く、長時間使用で
き、しかも精度の良いエツチング液を得ることに
ある。 本発明に述べる酸化スズ及び酸化スズに五価金
属酸化物をドープした透明導電膜は、例えば
CVD法により、塩化物、又は塩素含有有機金属
化合物をソースとして熱分解することにより得ら
れる。酸化スズソースとしては、無水塩化第2ス
ズ、塩化トリメチルスズ等があげられる。五価酸
化物としては、五酸化アンチモン、五酸化リン等
である。特に前者はよくドーピング剤として用い
られ、0.01〜1モル%ドープされる。約500℃に
加熱した絶縁基板(ガラス、セラミツク等)上に
CVDされた透明導電膜は、フオトレジスト、レ
ジストインクのスクリーン印刷法等により所定の
パターンが形成される。レジストパターニングさ
れた透明導電膜付絶縁基板は、塩酸、臭化水素
酸、ヨウ化水素酸、硝酸、硫酸、リン酸等の無機
酸から選ばれた一種以上を含む0.5N以上の酸性
水溶液中にレドツクス電位−0.20V(v.s.NHE)
以下を有する金属イオンを溶解し、5g/以上
の有機酸を添加したエツチング液中に常温〜90℃
の適当な温度に浸漬、又は液をシヤワー等するこ
とによつて透明導電膜をエツチングする。前記無
機酸で主として用いられるのが塩酸、硝酸、硫
酸、リン酸である。レドツクス電位−0.20V(v.
s.NHE)を有する系とは、Cr2+/Cr3+,Ti2+
Ti3+,V2+/V3+,Zn2+/Zn3+等である。これら
のレドツクス系は前記無機酸に金属を溶解させる
例えば金属クロムを溶解させるか、価数の大きな
金属塩として溶解し、Zn―HCl系で還元して
(CrCl3の塩酸酸性溶液にZn粉末を添加する。
T:Cl4の塩酸酸性溶液にZn粉末を添加する)形
成するか、外部電源による電解還元を行なつても
良い。これらは酸化スズの4価が2価イオンにな
るレドツクス電位−0.14V(vs.NHE)より卑な
電位をもつものであれば良い。例えばCrのレド
ツクス系を用いたときのエツチングの全反応は Cr2+→Cr3++e ……(1) 1/2SnO2+H++e →1/2SnD+1/2H2O ……(2) (1)+(2) Cr2++1/2SnO2+H+ →Cr3++1/2SnO+1/2H2O ……(3) 1/2SnO+HCl →1/2SnCl2+1/2H2O ……(4) と思われる。前記したように(1),(2)の反応と競合
して Cr2→Cr3+e ……(5) 1/4O2+1/2H++e→1/2H2O ……(6) (5)+(6) Cr2+1/4O2+1/2H+ →Cr3B+1/2H2O ……(7) の空気中の酸素の還元反応により2価クロムはど
んどん消費されてしまう。工業的に空気を立ち切
つてエツチングをすることはむずかしい。そこで
本発明者は(6)の反応速度を低下させる、つまり酸
素の還元反応に対する過電圧の大きな添加剤を
種々検討した結果、5g/以上の有機酸が有効
であることを発見した。効果的な有機酸には、酒
石酸、マロン酸、乳酸、ステアリン酸、ピクリン
酸、グルコン酸、コハク酸、クエン酸、永酢酸、
フマル酸、リンゴ酸等であり、場合によつてはこ
れらの塩の形、(例えばクエン酸ナトリウム等)
で添加してもよい。この場合前記酸性溶液のPHが
3以上にならないようにしなければならない。 以下実施例によつて本発明を詳細に説明する。 実施例 1 ホウケイ酸系ガラス基板にCVD法を用いて、
基板を500℃に加熱しながら無水塩化第2スズの
ベイパーを用い、SnO2透明導電膜300Åの厚みに
形成した。ネガ型フオトレジストをロールコータ
ーで塗布し所定のガラスマスクを用い露光現象し
た。次に6N塩酸100c.c.にクエン酸を40g加熱しな
がら溶解した。完全溶解したら金属クロムを0.6
g添加し60℃で約5分間水素を発生しながら溶解
した。このエツチヤントを用い前記フオトパター
ニングされた酸化スズ透明導電膜付ガラス基板を
浸漬した。約10秒間で透明導電膜は完全にエツチ
ングされた。 比較例 実施例1でエツチヤント中にクエン酸を添加し
ない場合約40秒後にエツチングされた。第1図は
実施例1のエツチヤント及び比較例のエツチヤン
トの各種温度におけるエツチングスピードを示し
たものである。第1図で1は実施例1の本発明の
エツチヤント、2は比較例のエツチヤントのエツ
チングスピードを示す。 実施例 2 実施例1において酸化スズに五酸化アンチモン
を0.1モル%添加した透明導電膜を用いた。第1
図の3及び4はこの透明導電膜のエツチングスピ
ードを示したものであり、3は本発明品、4は前
述比較例のエツチヤントのエツチングスピードを
示す。 第1図によつて本発明品のエツチングスピード
は従来品より非常に速くなつていることがわか
る。 第2図はこのようなエツチヤントを60℃に保持
した場合のエツチングスピードの経時的変化を示
す。第2図より本発明品は60℃に放置しても液の
劣化スピードが格段に遅いことがわかる。第2図
の6は本発明のエツチヤント、5は比較例のエツ
チヤントを示す。 実施例 3 実施例1において透明導電膜のパターン幅10μ
ピツチ15μで長さ5cmのパターニングを行なつ
た。従来行なわれているZn―HCl系のハケコスリ
法によるエツチングではパターン数100本中88本
が断線していた。比較例1のエツチングでは100
本中48本が断線、エツチング不足によるシヨート
が20本あつた。1方本発明によるエツチングでは
切れは100本中わずかに1本であり、シヨートは
全くなかつた。有機酸の添加により液の表面張力
が低くなり表面のぬれがよくなりエツチング精度
が向上したものと思われる。 以上実施例に従つて説明したが本発明のエツチ
ヤントは酸化インジウム系透明導電膜にも応用で
きることは明らかである。 本発明のエツチヤントによつてパターニングさ
れた透明導電膜は液晶、EC、EPIP、コロイダル
ライトバルブ等の表示体、フオトセル、太陽電池
等の電極として用いることができる。
[Table] Comparison of various properties of membranes. Indium oxide type materials have low resistance and good etching properties. (It can be easily immersed in etching using warm hydrochloric acid or hydrochloric acid containing ferrous chloride.) However, the production method involves batch processing, which increases costs. Furthermore, when used in display electrodes, it was necessary to coat it with an inorganic material such as SiO 2 or an organic material such as polyimide because of its poor electrochemical stability. Unilateral tin oxide system is made from anhydrous stannic chloride.
It can be obtained inexpensively by the CVD method (Sb 2 O 5 doping is from anhydrous antimony pentachloride), and resistance comparable to that of indium oxide can be obtained by doping antimony pentoxide, but the only drawback is etching properties. conventionally
Sprinkle Zn powder, shower hydrochloric acid on top,
I had scrubbed it off with a brush, etc. This method involves the physical means of brushing and scraping, which promotes peeling of the resist during patterning, causing problems such as pinholes, cuts, and over-etching. As a one-way immersion etching method
There is one that uses a redox system of divalent chromium ions and trivalent chromium as described in USP4009061. This etchant has major problems such as slow etching speed and rapid deterioration of the solution. These two are completely equivalent, and it is thought that divalent chromium, which is the potential energy, changes to trivalent chromium during liquid preparation, and the potential energy of the redox system is initially low at the start of etching. This change from divalent chromium to trivalent chromium is due to the reduction reaction of oxygen in the air, and hydrogen generation due to the reaction of divalent chromium with protons (Cr 2 + +H +
This is thought to be due to Cr 3+ +1/2H 2 ). The present inventor investigated the increase in overvoltage of such a redox-based oxygen reduction reaction and the increase in overvoltage of a hydrogen generation reaction, and as a result, discovered that the addition of an organic acid has a very large effect. An object of the present invention is to obtain an etching solution that can be used for a long time, can be used for a long time, and has high accuracy by a method that does not require physical means such as dipping or showering a tin oxide-based transparent conductive film. The transparent conductive film of tin oxide and tin oxide doped with a pentavalent metal oxide described in the present invention is, for example,
It is obtained by thermal decomposition using a chloride or a chlorine-containing organometallic compound as a source using the CVD method. Examples of the tin oxide source include anhydrous stannic chloride, trimethyltin chloride, and the like. Examples of pentavalent oxides include antimony pentoxide and phosphorus pentoxide. In particular, the former is often used as a doping agent and is doped with 0.01 to 1 mol%. on an insulating substrate (glass, ceramic, etc.) heated to approximately 500°C.
A predetermined pattern is formed on the CVD transparent conductive film using photoresist, resist ink screen printing, or the like. The resist-patterned insulating substrate with a transparent conductive film is placed in an acidic aqueous solution of 0.5N or more containing one or more types of inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, and phosphoric acid. Redox potential −0.20V (vsNHE)
Dissolve the following metal ions in an etching solution containing 5 g/or more of an organic acid at room temperature to 90°C.
The transparent conductive film is etched by dipping it at an appropriate temperature or by showering it with a solution. Hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are mainly used as the inorganic acids. Redox potential −0.20V (v.
s.NHE) is a system with Cr 2+ /Cr 3+ , Ti 2+ /
These include Ti 3+ , V 2+ /V 3+ , Zn 2+ /Zn 3+ and the like. These redox systems dissolve metals in the above-mentioned inorganic acids, such as dissolving metal chromium, or dissolving it as a metal salt with a high valence, and reducing it with a Zn-HCl system (Zn powder is dissolved in an acidic solution of CrCl3 in hydrochloric acid). Added.
T: Adding Zn powder to an acidic solution of Cl 4 in hydrochloric acid) or electrolytic reduction using an external power source may be performed. These may have a potential less noble than the redox potential -0.14 V (vs.NHE) at which tetravalent tin oxide becomes a divalent ion. For example, the total etching reaction when using a Cr redox system is Cr 2+ →Cr 3+ +e ...(1) 1/2SnO 2 +H + +e →1/2SnD+1/2H 2 O ...(2) (1 )+(2) Cr 2+ +1/2SnO 2 +H + →Cr 3+ +1/2SnO+1/2H 2 O ……(3) 1/2SnO+HCl →1/2SnCl 2 +1/2H 2 O …(4) It can be done. As mentioned above, Cr 2 →Cr 3 +e ...(5) 1/4O 2 +1/2H + +e→1/2H 2 O ...(6) (5 )+(6) Cr 2 +1/4O 2 +1/2H + →Cr 3B +1/2H 2 O ...(7) Due to the reduction reaction of oxygen in the air, divalent chromium is rapidly consumed. It is difficult to perform etching by cutting off the air in an industrial manner. Therefore, the present inventor investigated various additives that reduce the reaction rate (6), that is, has a large overvoltage for the oxygen reduction reaction, and found that 5 g/or more of an organic acid is effective. Effective organic acids include tartaric acid, malonic acid, lactic acid, stearic acid, picric acid, gluconic acid, succinic acid, citric acid, acetic acid,
fumaric acid, malic acid, etc., sometimes in the form of their salts (e.g. sodium citrate, etc.)
It may be added with In this case, the pH of the acidic solution must not exceed 3. The present invention will be explained in detail below with reference to Examples. Example 1 Using the CVD method on a borosilicate glass substrate,
A SnO 2 transparent conductive film was formed to a thickness of 300 Å using an anhydrous stannic chloride vapor while heating the substrate to 500°C. A negative type photoresist was applied using a roll coater and exposed using a predetermined glass mask. Next, 40 g of citric acid was dissolved in 100 c.c. of 6N hydrochloric acid while heating. After completely melting, add 0.6% of metallic chromium.
g was added and dissolved at 60°C for about 5 minutes while generating hydrogen. Using this etchant, the photo-patterned glass substrate with a tin oxide transparent conductive film was immersed. The transparent conductive film was completely etched in about 10 seconds. Comparative Example When citric acid was not added to the etchant in Example 1, etching occurred after about 40 seconds. FIG. 1 shows the etching speed of the etchant of Example 1 and the etchant of Comparative Example at various temperatures. In FIG. 1, 1 indicates the etching speed of the etchant of the present invention of Example 1, and 2 indicates the etching speed of the etchant of the comparative example. Example 2 In Example 1, a transparent conductive film in which 0.1 mol% of antimony pentoxide was added to tin oxide was used. 1st
3 and 4 in the figure show the etching speed of this transparent conductive film, 3 shows the etching speed of the etchant of the present invention, and 4 shows the etching speed of the etchant of the above-mentioned comparative example. It can be seen from FIG. 1 that the etching speed of the product of the present invention is much faster than that of the conventional product. FIG. 2 shows the change in etching speed over time when such an etchant is maintained at 60°C. From FIG. 2, it can be seen that the rate of deterioration of the liquid in the product of the present invention is significantly slow even when left at 60°C. In FIG. 2, 6 shows an etchant of the present invention, and 5 shows an etchant of a comparative example. Example 3 In Example 1, the pattern width of the transparent conductive film was 10μ
Patterning was performed with a pitch of 15μ and a length of 5cm. In the conventional Zn-HCl-based etching method, 88 wires out of 100 were broken. 100 for the etching of Comparative Example 1
48 of the wires were broken, and 20 were shot due to insufficient etching. On the other hand, with the etching according to the present invention, only 1 out of 100 pieces was cut, and there were no shoots at all. It is believed that the addition of the organic acid lowered the surface tension of the liquid, resulting in better surface wetting and improved etching accuracy. Although the embodiments have been described above, it is clear that the etchant of the present invention can also be applied to indium oxide-based transparent conductive films. A transparent conductive film patterned with the etchant of the present invention can be used as an electrode for displays such as liquid crystals, ECs, EPIPs, colloidal light valves, photocells, solar cells, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図……エツチング温度とエツチングスピー
ドの関係を示す。第2図……従来品と本発明品の
エツチヤントの60℃におけるエツチング速度の変
化を示す。
Figure 1 shows the relationship between etching temperature and etching speed. Figure 2 shows the change in etching rate at 60°C of the etchants of the conventional product and the product of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化スズ及び酸化スズに5価金属酸化物をド
ープした透明導電膜をエツチングする場合に、塩
酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、リ
ン酸等の無機酸から選ばれた1種以上を含む
0.5N以上の酸性水溶液にレドツクス電位−0.2V
(v・s NHE)以下を有する金属イオンを溶解
し、さらに、5g/以上の有機酸を含んでなる
ことを特徴とする透明導電膜のエツチヤント。
1. When etching a transparent conductive film made of tin oxide and tin oxide doped with a pentavalent metal oxide, an inorganic acid selected from hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid, etc. Contains one or more types
Redox potential -0.2V for acidic aqueous solutions of 0.5N or higher
An etchant for a transparent conductive film, characterized in that it dissolves metal ions having (v·s NHE) or less, and further contains 5 g/or more of an organic acid.
JP16619780A 1980-11-26 1980-11-26 Etchant for transparent electric conductive film Granted JPS5789480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16619780A JPS5789480A (en) 1980-11-26 1980-11-26 Etchant for transparent electric conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16619780A JPS5789480A (en) 1980-11-26 1980-11-26 Etchant for transparent electric conductive film

Publications (2)

Publication Number Publication Date
JPS5789480A JPS5789480A (en) 1982-06-03
JPS6211071B2 true JPS6211071B2 (en) 1987-03-10

Family

ID=15826883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16619780A Granted JPS5789480A (en) 1980-11-26 1980-11-26 Etchant for transparent electric conductive film

Country Status (1)

Country Link
JP (1) JPS5789480A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145529A (en) * 1984-12-19 1986-07-03 Matsushita Electric Ind Co Ltd Formation of transparent electrode pattern
EP0617144B1 (en) * 1993-03-26 1997-08-06 Nippon Paint Co., Ltd. Use of an aqueous acidic cleaning solution for aluminum and aluminum alloys and process for cleaning the same
DE102005035255A1 (en) * 2005-07-25 2007-02-01 Merck Patent Gmbh Etching media for oxide, transparent, conductive layers

Also Published As

Publication number Publication date
JPS5789480A (en) 1982-06-03

Similar Documents

Publication Publication Date Title
JP5411942B2 (en) Electrode for cell
JP5030403B2 (en) Etching composition for indium oxide based transparent conductive film and etching method using the same
TWI500819B (en) Etchant composition, and method for etching multi-layered metal film
CN103614712B (en) Sol-gel process is prepared Sb, Ce codope SnO2The method in intermediate layer
JPS6211071B2 (en)
WO2021027373A1 (en) Crystal seed and method for manufacturing perovskite solar cell thereby
US4093504A (en) Method for producing electrically conductive indium oxide patterns on an insulating support by etching with hydrochloric acid and ferric chloride
SE433624B (en) ELECTRODES FOR USE IN ELECTROLYSIS OF A WATER SOLUTION OF METAL HALOGENIDE, PROCEDURE FOR MANUFACTURING THE ELECTRODES AND USE OF THEMSELVES
JP3834339B2 (en) Transparent conductive film and method for producing the same
KR20170027931A (en) Etchant composition and method of fabricating thin film transistor substrate using the same
CN106374010B (en) A kind of preparation method of nanometer of silver composite tin oxide transparent conductive film
JP3711650B2 (en) Patterning method for transparent conductive film and substrate with transparent electrode
JPS6248757B2 (en)
KR100765140B1 (en) Etchant composition For Etching Both Aluminium And ITO
JP2010165888A (en) Method of manufacturing resistor film, and resistor film
JP3887899B2 (en) Method for producing bismuth oxide coating
KR101151952B1 (en) Etching solution of Indium Oxide film and etching method thereof
US4377604A (en) Copper stabilized dipping solution for a photovoltaic device incorporating a Cux S layer
JP2625006B2 (en) Method for producing mixed valence transition metal complex film
US9051640B2 (en) Method of manufacturing transparent conductive thin film
JPH02167821A (en) Tin oxide sol and production thereof
JP3332409B2 (en) Glass substrate having a transparent conductive film
TW486512B (en) Method of manufacturing a substrate for electronic device by using etchant and electronic device having the substrate
GB1480807A (en) Electrodes for use in electrolytic processes or cathodic protection
KR101347455B1 (en) Etchant composition for an Indium based oxide layer and method for fabricating metal pattern using the same