JPS6186664A - Apparatus for measuring element - Google Patents

Apparatus for measuring element

Info

Publication number
JPS6186664A
JPS6186664A JP20879284A JP20879284A JPS6186664A JP S6186664 A JPS6186664 A JP S6186664A JP 20879284 A JP20879284 A JP 20879284A JP 20879284 A JP20879284 A JP 20879284A JP S6186664 A JPS6186664 A JP S6186664A
Authority
JP
Japan
Prior art keywords
voltage
external power
power source
pulse
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20879284A
Other languages
Japanese (ja)
Other versions
JPS649595B2 (en
Inventor
Ryoichi Sakai
良一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Japan Ltd
Original Assignee
Sony Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Tektronix Corp filed Critical Sony Tektronix Corp
Priority to JP20879284A priority Critical patent/JPS6186664A/en
Priority to NL8502385A priority patent/NL8502385A/en
Priority to GB08522462A priority patent/GB2165363B/en
Priority to DE19853533636 priority patent/DE3533636C2/en
Priority to US06/780,957 priority patent/US4727318A/en
Priority to CA000491897A priority patent/CA1242813A/en
Priority to FR8514776A priority patent/FR2571501B1/en
Publication of JPS6186664A publication Critical patent/JPS6186664A/en
Priority to US07/074,910 priority patent/US4782290A/en
Priority to CA000547089A priority patent/CA1248600A/en
Publication of JPS649595B2 publication Critical patent/JPS649595B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable the prevention of display strain and accurate measurement receiving no effect due to the variation of an external power source, by providing a repeated wave form generator and newly generating repeated wave form voltage such as sine wave voltage. CONSTITUTION:The AC voltage from an external commercial power source is supplied to the primary winding of the transformer 40 in a power source circuit 36 through a power source switch 34. This voltage generates a pulse signal through a voltage comparator 46 and supplied to a frequency divider 52 through a variable frequency signal generator (VCO)50. The frequency divider 52 outputs the pulse synchronous to the external power source to supply said pulse to a repeated wave form generator 54. By this mechanism, the generator 54 generates repeated wave form voltage having the same phase as the external power source frequency and predetermined amplitude, for example, sine wave voltage. The wave form of this voltage contains no strain like the wave form of the external power source and is symmetric and can prevent the generation of display strain. Because of the independence from the voltage of the external power source, accurate measurement is enabled without being affected by the external power source and constitution can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイオード、トランジスタ等の素子の特性を測
定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the characteristics of elements such as diodes and transistors.

〔従来技術〕[Prior art]

素子特性測定装置、特にカーブ・トレーサは、トランジ
スタやダイオード等の基本的な素子の特性を測定するの
に有効な装置である。従来のカーブ・トレーサは第4図
に示す如き構成となっている。即ち、コレクタ電圧供給
回路10は、外部商用電源からの交流電圧を可変変圧器
により昇圧又は降圧して所望撮幅の正弦波電圧を発生し
、この正弦波電圧を変圧器12の1次巻線に供給する。
Device characteristic measuring devices, particularly curve tracers, are effective devices for measuring the characteristics of basic devices such as transistors and diodes. A conventional curve tracer has a configuration as shown in FIG. That is, the collector voltage supply circuit 10 uses a variable transformer to step up or step down an alternating current voltage from an external commercial power source to generate a sine wave voltage with a desired imaging width. supply to.

この変圧器1202次巻線は複数のタップを有し、選択
整流回路14が測定レンジに応じてこれらタップの1つ
を選択し、選択されたタップからの正弦波電圧を整流す
る。選択整流回路14からの整流された電圧は、リミッ
タ用抵抗器16を介して被測定素子としてのトランジス
タ18のコレクタに供給する。なお、抵抗器16の値は
測定レンジに応じて切替える。変圧器12の2次巻線の
下端は、電流検出用抵抗器20を介して被測定トランジ
スタ18のエミッタに接続すると共に接地する。
The secondary winding of the transformer 120 has a plurality of taps, and the selective rectifier circuit 14 selects one of these taps depending on the measurement range and rectifies the sinusoidal voltage from the selected tap. The rectified voltage from the selective rectifier circuit 14 is supplied to the collector of a transistor 18 as an element to be measured via a limiter resistor 16. Note that the value of the resistor 16 is changed depending on the measurement range. The lower end of the secondary winding of the transformer 12 is connected to the emitter of the transistor to be measured 18 via a current detection resistor 20 and grounded.

壕だ、トランジスタ18のベースには、ステップ状に変
化するバイアス信号をバイアス供給回路22から供給す
る。なお、第4図では被測定トランジスタ18がエミッ
タ接地形式でカーブ・トレーサに接続されているが、ベ
ース接地形式又はコレクタ接地形式でもよい。高入力イ
ンピーダンスの電圧検出回路24は被測定トランジスタ
18のコレクタ及びエミッタ間の電圧V。Eを検出し、
適当に分圧した後、増幅器26を介して表示器である陰
極線管(CRT)28の水平偏向板に供給する。
Finally, a stepwise changing bias signal is supplied to the base of the transistor 18 from a bias supply circuit 22. In FIG. 4, the transistor to be measured 18 is connected to the curve tracer in an emitter-grounded manner, but it may be connected in a base-grounded manner or a collector-grounded manner. The high input impedance voltage detection circuit 24 detects the voltage V between the collector and emitter of the transistor under test 18. detect E,
After appropriately dividing the voltage, it is supplied via an amplifier 26 to a horizontal deflection plate of a cathode ray tube (CRT) 28, which is a display.

高入力インピーダンスの電圧検出回路30は抵抗器20
0両端の電圧差、即ち被測定トランジスタ18のコレク
タ電流■。を検出し、増幅器32を介してCRT28の
垂直偏向板に供給する。よって、CRT28にトランジ
スタ18のV。E  IC特性を表示することができる
The voltage detection circuit 30 with high input impedance has a resistor 20
0, that is, the collector current of the transistor under test 18 (■). is detected and supplied to the vertical deflection plate of the CRT 28 via the amplifier 32. Therefore, the V of the transistor 18 is applied to the CRT 28. E IC characteristics can be displayed.

〔発明が解決しようとする問題点〕 ところで、第4図に示した従来の素子測定装置(カーブ
・トレーサ)には次のような種々の問題点がある。まず
、コレクタ電圧供給回路10は外部商用電源を直接利用
しているが、外部商用電源の波形は完全な正弦波ではな
く、即ち、対称な繰返し波形ではなく、種々の歪を含ん
でいる。よって、カーブ・トレーサにおいて、被測定素
子に供給される繰返し電圧波形も完全な正弦波でないた
め、即ち、完全に対称でないため、CRT28に表示さ
れる特性曲線の行き(整流された正弦波電圧の上昇期間
)のトレースと戻り(整流された正弦波電圧の下降期間
)のトレースとが異なり、正確に被測定トランジスタの
特性が測定できない。この現象を便宜的に表示歪と呼ぶ
。また、商用電源電圧の振幅は正確ではなく、ある一定
の幅で変化するため、被測定トランジスタに供給される
繰返し波形電圧の振幅も商用電源に応じて変化し、正確
な特性測定が困難になる。更に、第4図のカーブ・トレ
ーサにデジタル・ストレージ回路を適用した場合、即ち
、電圧検出回路24及び増幅器26の間、並びに電圧検
出回路30及び増幅器32の間に、A/D変換器、デジ
タル記憶回路及びD/A変換器の組合せを接続した場合
、A/D変換器のクロック周波数が商用電源周波数と独
立なので、A/D変換器の出力に電源のリップルの影響
が現われ、測定精度が低下する。仮え、A/D変換器の
クロック周波数を商用電源周波数に同期させるとしても
、新だに専用の位相制御回路が必要となり、カーブ・ト
レーサが高価となる。
[Problems to be Solved by the Invention] By the way, the conventional device measuring device (curve tracer) shown in FIG. 4 has various problems as follows. First, although the collector voltage supply circuit 10 directly uses an external commercial power source, the waveform of the external commercial power source is not a perfect sine wave, that is, it is not a symmetrical repeating waveform, and contains various distortions. Therefore, in a curve tracer, since the repetitive voltage waveform supplied to the device under test is not a perfect sine wave, that is, it is not completely symmetrical, the curve of the characteristic curve displayed on the CRT 28 (rectified sine wave voltage The trace during the rising period) and the trace during the return (falling period of the rectified sine wave voltage) are different, making it impossible to accurately measure the characteristics of the transistor under test. This phenomenon is conveniently called display distortion. In addition, since the amplitude of the commercial power supply voltage is not accurate and changes within a certain range, the amplitude of the repetitive waveform voltage supplied to the transistor under test also changes depending on the commercial power supply, making accurate characteristic measurements difficult. . Furthermore, when a digital storage circuit is applied to the curve tracer of FIG. 4, that is, an A/D converter, a digital When a combination of a storage circuit and a D/A converter is connected, the clock frequency of the A/D converter is independent of the commercial power supply frequency, so the output of the A/D converter is affected by the ripple of the power supply, resulting in reduced measurement accuracy. descend. Even if the clock frequency of the A/D converter were to be synchronized with the commercial power supply frequency, a new dedicated phase control circuit would be required, making the curve tracer expensive.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明の素子測定装置は、外部電源周波数に同期12、
かつこの外部電源周波数よりも高い周波数のパルスを発
生するパルス発生手段48〜50と、このパルス発生手
段からの出力パルスを分周する分周器52と、この分周
器の出力パルスに応じて外部電源と同相の繰返し波形電
圧を発生する繰返し波形発生器54と、この繰返し波形
発生器からの繰返し波形電圧を被測定素子に供給する電
圧供給手段12〜14と、被測定素子に供給される電圧
及び被測定素子に流れる電流を、パルス発生手段又は分
周器の出力パルスに応じてデジタル信号に変換するアナ
ログ・デジタル変換手段58〜64と、このアナログ・
デジタル変換手段のデジタル出力信号を記憶する記憶回
路66とを具えている。
The device measuring device of the present invention is synchronized with the external power supply frequency.
and pulse generating means 48 to 50 that generate pulses with a frequency higher than this external power supply frequency, a frequency divider 52 that frequency divides the output pulse from this pulse generating means, and a frequency divider 52 that divides the output pulse from this frequency divider. A repetitive waveform generator 54 that generates a repetitive waveform voltage that is in phase with an external power source; voltage supply means 12 to 14 that supplies the repetitive waveform voltage from the repetitive waveform generator to the device under test; Analog-to-digital conversion means 58 to 64 convert voltage and current flowing through the device under test into digital signals according to output pulses from the pulse generation means or frequency divider;
The storage circuit 66 stores the digital output signal of the digital conversion means.

〔作用〕[Effect]

本発明によれば、繰返し波形発生器によυ新たに繰返し
波形電圧、例えば正弦波電圧を発生しているので、この
電圧波形は外部電源波形のように歪を含んでおらず対称
であるため、上述の表示歪の問題を解決できる。また、
新たに発生した繰返し波形電圧は外部電源電圧と独立し
ているので、この外部電源電圧の変動にも影響されず、
正確な測定ができる。更に、パルス発生手段及び分周器
により、繰返し波形発生器からの繰返し波形電圧は外部
電源と同相になるので、この繰返し波形電圧を受ける各
回路は外部電源によるリップル、位相変動等の影響を受
けない。また、アナログ・デジタル変換手段は外部電源
に同期して被測定素子の電圧及び電流をサンプルするの
で、外部電源の変動による影響を受けない。更にまた、
パルス発生手段及び分周器の出力信号は繰返し波形発生
器及びアナログ・デジタル変換手段に共用できるので、
構成を簡略化できる。
According to the present invention, since the repetitive waveform generator generates a new repetitive waveform voltage, for example, a sine wave voltage, this voltage waveform does not include distortion and is symmetrical unlike the external power supply waveform. , the above-mentioned display distortion problem can be solved. Also,
The newly generated repetitive waveform voltage is independent of the external power supply voltage, so it is not affected by fluctuations in this external power supply voltage.
Accurate measurements can be made. Furthermore, the pulse generation means and frequency divider cause the repetitive waveform voltage from the repetitive waveform generator to be in phase with the external power supply, so each circuit that receives this repetitive waveform voltage is not affected by ripples, phase fluctuations, etc. caused by the external power supply. do not have. Further, since the analog-to-digital conversion means samples the voltage and current of the device under test in synchronization with the external power supply, it is not affected by fluctuations in the external power supply. Furthermore,
The output signals of the pulse generation means and frequency divider can be shared by the repetitive waveform generator and analog-to-digital conversion means.
The configuration can be simplified.

〔実施例〕〔Example〕

以下、添付図を参照して本発明の好適な実施例を説明す
る。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1及び第2図は本発明の好適な実施例のブロック図で
あり、第1図の信号が第2図に供給され、全体として1
つの素子測定装置を構成する。外部の商用電源からの交
流電圧は電源スィッチ34を介して電源回路36内の変
圧器40の1次巻線に供給する。変圧器40の複数の2
次巻線を電源回路36内の直流電圧安定化回路(図示せ
ず)に接続して、各回路用の直流電圧を発生させる。変
圧器40の最下端の2次巻線における接地に対する交流
電圧を抵抗器42及び44により分圧する。
1 and 2 are block diagrams of a preferred embodiment of the present invention, in which the signals of FIG. 1 are fed into FIG.
A single element measuring device is constructed. AC voltage from an external commercial power source is supplied to the primary winding of a transformer 40 in a power supply circuit 36 via a power switch 34 . 2 of the transformers 40
The next winding is connected to a DC voltage stabilizing circuit (not shown) in power supply circuit 36 to generate DC voltage for each circuit. The alternating current voltage with respect to ground in the lowermost secondary winding of transformer 40 is divided by resistors 42 and 44 .

電圧比較器46はこの分圧された交流電圧と接地電圧と
を比較し、電源電圧が接地電圧と交差する毎にそのレベ
ルが反転するパルス信号fLを発生する。このパルス信
号fLは外部電源電圧と周波数及び位相が等しいことに
注意されたい。
The voltage comparator 46 compares this divided AC voltage with the ground voltage, and generates a pulse signal fL whose level is inverted every time the power supply voltage crosses the ground voltage. It should be noted that this pulse signal fL has the same frequency and phase as the external power supply voltage.

可変周波数信号発生器(VCO)50の発振周波数はパ
ルス信号fLの2n倍(n:正の整数)であシ、例えば
4096倍であり、その出力信号(4096fL)を分
周器52であるカウンタのクロック端子に供給する。分
周器52はV6O13の出力信号を分周し、周波数がパ
ルス信号f、の2048倍の信号2048f、1024
倍の信号1024f 、  16倍の信号16f、8倍
の信号材、4倍の信号「、2倍の信号U及び等しい信号
fを発生する。なお、2048f。
The oscillation frequency of the variable frequency signal generator (VCO) 50 is 2n times (n: a positive integer) the pulse signal fL, for example 4096 times, and the output signal (4096fL) is applied to the counter which is the frequency divider 52. Supplied to the clock terminal of The frequency divider 52 divides the output signal of the V6O13 to generate a signal 2048f, 1024, whose frequency is 2048 times that of the pulse signal f.
A double signal 1024f, a 16 times signal 16f, an 8 times signal material, a 4 times signal "," a double signal U, and an equal signal f are generated. Note that 2048f.

1024f、 N汀、訂、n及び訂の横線は人力信号に
対し、位相反転されたものであることを示す。
1024f, N, correction, horizontal lines of n and correction indicate that the phase of the human input signal has been inverted.

位相比較器48はパルス信号fLと分周器52からの出
力パルス信号fとの位相を比較し、パルス信号fLとf
との位相が等しくなるように、V6O13の発振周波数
を制御する。よって、位相比較器48、V6O13及び
分周器52は位相ロック−ループを形成し、分周器52
の各出力パルスは外部電源に同期する。壕だ、位相比較
器48及びV6O13はパルス発生手段となる。
The phase comparator 48 compares the phases of the pulse signal fL and the output pulse signal f from the frequency divider 52, and compares the phases of the pulse signal fL and the output pulse signal f from the frequency divider 52.
The oscillation frequency of V6O13 is controlled so that the phase is equal to that of V6O13. Therefore, the phase comparator 48, V6O13 and the frequency divider 52 form a phase-locked loop, and the frequency divider 52
Each output pulse of is synchronized to an external power supply. In fact, the phase comparator 48 and V6O13 serve as pulse generating means.

分周器52の出力パルス16f、8f、4f、2f及び
fを繰返し波形発生器54に供給して、外部電源周波数
と同相で所定振幅の繰返し波形電圧、例えば正弦波電圧
(以下、正弦波電圧として説明する)を発生する。この
繰返し波形発生器54については、第3図を参照して詳
細に後述する。繰返し波形発生器54からの正弦波電圧
は、可変増幅器56又は他の適当なアナログ掛算器を介
して変圧器12の1次巻線に供給する。変圧器12の2
次側は、第4図の従来例と同様であり、選択整流回路1
4が測定レンジに応じて2次巻線のタップの1つを選択
し、選択されたタップからの正弦波電圧を整流する。選
択整流回路14からの整流された電圧は、リミッタ用抵
抗器16を介して被測定半導体素子であるトランジスタ
18のコレクタに供給する。これら変圧器12及び選択
整流回路14等は電圧供給手段となる。変圧器12の2
次巻線の下端は、電流検出用抵抗器2oを介して被測定
素子であるトランジスタ18のエミッタに接続すると共
に接地する。また、トランジスタ18のベースには、分
周器52の出力パルスfに同期してステップ状に変化す
るバイアス信号をバイアス供給回路22から供給する。
The output pulses 16f, 8f, 4f, 2f, and f of the frequency divider 52 are supplied to a repetitive waveform generator 54 to produce a repetitive waveform voltage having a predetermined amplitude and in phase with the external power supply frequency, such as a sine wave voltage (hereinafter referred to as a sine wave voltage). ) occurs. This repetitive waveform generator 54 will be described in detail later with reference to FIG. The sinusoidal voltage from the repetitive waveform generator 54 is applied to the primary winding of the transformer 12 via a variable amplifier 56 or other suitable analog multiplier. Transformer 12-2
The next side is the same as the conventional example shown in FIG. 4, and the selective rectifier circuit 1
4 selects one of the taps of the secondary winding according to the measurement range and rectifies the sinusoidal voltage from the selected tap. The rectified voltage from the selective rectifier circuit 14 is supplied to the collector of a transistor 18, which is a semiconductor element to be measured, via a limiter resistor 16. These transformer 12, selective rectifier circuit 14, etc. serve as voltage supply means. Transformer 12-2
The lower end of the next winding is connected to the emitter of the transistor 18, which is the element to be measured, via the current detection resistor 2o, and is also grounded. Further, a bias signal that changes stepwise in synchronization with the output pulse f of the frequency divider 52 is supplied to the base of the transistor 18 from the bias supply circuit 22 .

々お、図では被測定トランジスタ18がエミッタ接地形
式でカーブ・トレーサに接続されているが、ベース接地
形式又はコレクタ接地形式でもよい。高入力インピーダ
ンスの電圧検出回路24は被測定トランジスタ18のコ
レクタ及びエミッタ間の電圧vcEを検出し、適当に分
圧する。また、高入力インピーダンスの電圧検出回路3
0は抵抗器20の両端の電圧差、即ち被測定トランジス
タ18のコレクタ電流ICを検出する。
In the figure, the transistor to be measured 18 is connected to the curve tracer in an emitter-grounded manner, but it may be in a base-grounded type or a collector-grounded type. The high input impedance voltage detection circuit 24 detects the voltage vcE between the collector and emitter of the transistor under test 18 and divides it appropriately. In addition, the voltage detection circuit 3 with high input impedance
0 detects the voltage difference across the resistor 20, that is, the collector current IC of the transistor under test 18.

本発明では、電圧検出器24及び3oの検出した電圧(
検出器30の場合は、電圧に変換された電流)をデジタ
ル信号に変換するため、アナログ・デジタル(A/D 
)変換手段を設けている。このA/1)変換手段はサン
プル・ホールド(S/H)回路、A/D変換器等で構成
されている。S/H回路58及び60は分周器52の出
力パルス1024fに応じて電圧検出器24及び30の
出力電圧をサンプルし、ホールドする。正弦波発生器5
4の1周期はf分の1なので、この1周期内に1024
の点がサンプルされることになる。電子スイッチ62は
分周器52の出力パルス1024fの半周期毎KS/H
回路58及び60を交互に選択して、その出力信号をA
/D変換器64に供給する。このA/D変換器64は、
スイッチ62がS/H回路58及び60を交互に選択す
るだめ、クロック信号として分周器52の出力パルス2
048f (1024fの2倍の周波数)を受け、S/
H回路58及び60からのアナログ電圧を交互にデジタ
ル信号に変換する。なお、パルス1024f及び204
8fは共に外部電源に同期している点に注意されたい。
In the present invention, the voltage detected by the voltage detectors 24 and 3o (
In the case of the detector 30, analog/digital (A/D) is used to convert the current converted into voltage into a digital signal.
) A conversion means is provided. This A/1) conversion means is composed of a sample and hold (S/H) circuit, an A/D converter, and the like. The S/H circuits 58 and 60 sample and hold the output voltages of the voltage detectors 24 and 30 according to the output pulse 1024f of the frequency divider 52. Sine wave generator 5
One period of 4 is 1/f, so within this one period there are 1024
points will be sampled. The electronic switch 62 outputs KS/H every half period of the output pulse 1024f of the frequency divider 52.
Circuits 58 and 60 are alternately selected to output their output signals to A.
/D converter 64. This A/D converter 64 is
Since the switch 62 alternately selects the S/H circuits 58 and 60, the output pulse 2 of the frequency divider 52 is used as a clock signal.
048f (twice the frequency of 1024f), S/
Analog voltages from H circuits 58 and 60 are alternately converted to digital signals. In addition, pulses 1024f and 204
Note that both 8f are synchronized to an external power supply.

A/D変換器64のデジタル出力信号は第2図の制御回
路68のアドレス信号に応じてデジタル記憶回路66に
記憶される。制御回路68は記憶回路66の書込みモー
ド及び読出しモードを制御すると共に、書込みモードで
は分周器52の出力パルス2048fを計数して書込み
アドレス信号を発生し、また読出しモードでは読出しク
ロック信号発生器70のクロック信号を計数して読出し
アドレス信号を発生する。よって、書込みモードにおい
て、例えばS/H回路58の出力信号(VCE )は記
憶回路66の奇数アドレスに記憶され、S/H回路工C 60の出力信号(井)は記憶回路66の偶数アドレスに
記憶される。このように、被測定半導体素子18に供給
される電圧は、外部電源と同相であるが、その振幅や波
形が外部電源に影響されず、またS/H回路58及び6
0、電子スイッチ62、A/D変換器64が外部電源に
同期して動作するので、外部電源の電圧や位相変動、波
形歪に関係なく、被測定半導体素子の特性を表わすデジ
タル値を記憶回路に記憶できる。
The digital output signal of the A/D converter 64 is stored in the digital storage circuit 66 in response to the address signal of the control circuit 68 shown in FIG. The control circuit 68 controls the write mode and the read mode of the memory circuit 66, and in the write mode, counts the output pulses 2048f of the frequency divider 52 to generate a write address signal, and in the read mode, it counts the output pulses 2048f of the frequency divider 52 and generates a write address signal. A read address signal is generated by counting the clock signals. Therefore, in the write mode, for example, the output signal (VCE) of the S/H circuit 58 is stored in the odd address of the storage circuit 66, and the output signal (I) of the S/H circuit C 60 is stored in the even address of the storage circuit 66. be remembered. In this way, the voltage supplied to the semiconductor device under test 18 is in phase with the external power supply, but its amplitude and waveform are not affected by the external power supply, and the S/H circuits 58 and 6
0. Since the electronic switch 62 and A/D converter 64 operate in synchronization with the external power supply, the storage circuit stores digital values representing the characteristics of the semiconductor device under test, regardless of the voltage, phase fluctuation, and waveform distortion of the external power supply. can be memorized.

読出しモードにおいて、ランチ回路72はアドレス信号
のLSB(最下位ビット)によシ記憶回路66の偶数ア
ドレスの記憶内容を順次ラッチし、ラッチ回路74はイ
ンバータ76で位相反転されたアドレス信号のLSBに
よシ記憶回路66の奇数アドレスの記憶内容を順次ラッ
チする。ラッチ回路78はラッチ回路74のラッチ動作
と同時にラッチ回路72の内容をラッチするので、デジ
タル・アナログ(D/A )変換器80及び82には、
夫工G 夫ラッチ回路78の#のデジタル値及びラッチ回路74
0■。、のデジタル値が同時に供給され、アナログ信号
に変換される。これらアナログ信号は増幅器26及び3
2を介してCRT28の垂直偏向板及び水平偏向板に供
給されて、ICVCE特性を表示する。なお、記憶回路
66の読出しデジタル信号をコンビーータ等に供給して
、種々の処理を行なってもよい。
In the read mode, the launch circuit 72 sequentially latches the contents of even addresses in the storage circuit 66 using the LSB (least significant bit) of the address signal, and the latch circuit 74 latches the LSB (least significant bit) of the address signal whose phase has been inverted by the inverter 76. The contents stored at odd addresses in the storage circuit 66 are sequentially latched. Since the latch circuit 78 latches the contents of the latch circuit 72 simultaneously with the latching operation of the latch circuit 74, the digital-to-analog (D/A) converters 80 and 82
#digital value of # of latch circuit 78 and latch circuit 74
0 ■. , are simultaneously supplied and converted into analog signals. These analog signals are transmitted to amplifiers 26 and 3.
2 to the vertical deflection plate and horizontal deflection plate of the CRT 28 to display ICVCE characteristics. Note that the read digital signal of the storage circuit 66 may be supplied to a converter or the like to perform various processing.

次に第3図を参照して繰返し波形発生器54の一例を説
明する。なお、この例では正弦波電圧を発生する。分周
器52の出力パルス石汀、 8f、 4f。
Next, an example of the repetitive waveform generator 54 will be explained with reference to FIG. Note that in this example, a sine wave voltage is generated. Output pulses of the frequency divider 52, 8f, 4f.

2f及びfを符号化回路に供給する。この符号化回路は
4個の排他的オア・ゲー)(XOR)84〜90を含ん
でおり、XOR84はパルス16f 及びΣ1”を受け
、X0R86はパルス訂及び2fを受け、X0R88は
パルス丁]1及び■を受け、X0R90はパルス2f及
びfを受ける。よって、X0R90(7)出力パルスS
はパルスf即ちfLよりも位相が90度遅れ、X0R8
4〜88の出力パルス信号A −CはパルスSの90度
(4分の1周期)毎にro 00J〜rl l IJに
まだrlllJ〜r000Jに変化する3ビツトのデジ
タル信号となる。
2f and f to the encoding circuit. This encoding circuit includes four exclusive OR gates (XOR) 84-90, where XOR84 receives pulses 16f and Σ1'', X0R86 receives pulse correction and 2f, and X0R88 receives pulses 16f and Σ1''. and ■, X0R90 receives pulses 2f and f. Therefore, X0R90 (7) output pulse S
is delayed in phase by 90 degrees from the pulse f, that is, fL, and X0R8
The output pulse signals A to C of 4 to 88 are 3-bit digital signals that change from ro00J to rllIJ to rllllJ to r000J every 90 degrees (one quarter period) of the pulse S.

第1選択手段であるアナログ・マルチプレクサ92はX
0R84〜88からのデジタル信号A〜Cにより、入力
端子■を出力端子O〜7の1つに選択的に接続する。即
ち、選択端子A−Cの信号がro OOJのとき出力端
子0を選択し、ro 01Jのとき出力端子1を選択し
、ro 10Jのとき出力端子2を選択し、以下同様に
rollJ 、  rlooJ 。
The analog multiplexer 92, which is the first selection means,
Digital signals A-C from 0R84-88 selectively connect input terminal (2) to one of output terminals O-7. That is, when the signal at the selection terminals A-C is ro OOJ, output terminal 0 is selected, when ro 01J, output terminal 1 is selected, when ro 10J, output terminal 2 is selected, and so on.rollJ, rlooJ.

rlolj 、  rllOJ及びrl 11Jのとき
夫々出力端子3.4.5.6及び7を選択する。マルチ
プレクサ92の出力端子O〜7を夫々抵抗器94〜10
8の一端に接続し、これら抵抗器の他端を積分器の入力
端に接続する。この積分器は、非反転入力端が接地され
た演算増幅器110、並びにこの演算増幅器の反転入力
端及び出力端間に接続されたコンデンサ112により構
成する。よって、選択された抵抗器94〜108の1つ
が入力抵抗器であるミラー積分器となる。なお、これら
抵抗器94〜108の値は例えば、夫々15.OKO,
16,9KΩ。
When rlolj, rllOJ and rl11J, select output terminals 3.4.5.6 and 7, respectively. The output terminals O to 7 of the multiplexer 92 are connected to resistors 94 to 10, respectively.
8, and the other ends of these resistors are connected to the input of the integrator. This integrator consists of an operational amplifier 110 whose non-inverting input terminal is grounded, and a capacitor 112 connected between the inverting input terminal and the output terminal of this operational amplifier. Therefore, one of the selected resistors 94-108 becomes a Miller integrator as the input resistor. Note that the values of these resistors 94 to 108 are, for example, 15. OK,
16.9KΩ.

19、IKΩ、23.7にΩ、31.6にΩ、51.1
にΩ及び154にΩであり、コンデンサ112の値は例
えば0.1μFである。
19, IKΩ, Ω at 23.7, Ω at 31.6, 51.1
Ω and 154Ω, and the value of the capacitor 112 is, for example, 0.1 μF.

積分器の出力信号Qをピーク値検出器を介して電圧比較
器114に供給する。このピーク検出器はダイオード1
16、コンデンサ118、抵抗器120及び122によ
り構成する。電圧比較器114は、積分器の出力信号Q
のピーク値と基準電圧VREFとを比較し、それらの差
である出力電圧は抵抗器124及び126により、分圧
されて、反転増幅器128及び非反転増幅器130に供
給される。なお、反転増幅器128の入力抵抗器132
及び帰還抵抗器134の値は等しい。増幅器128及び
130の出力電圧は第2選択手段である電子スイッチ1
36を介してマルチプレクサ92の入力端子■に供給す
る。また、電子スインf−136t−パルス信号Sによ
り制御する。
The output signal Q of the integrator is provided to a voltage comparator 114 via a peak value detector. This peak detector is diode 1
16, a capacitor 118, and resistors 120 and 122. Voltage comparator 114 outputs the integrator output signal Q
The peak value of is compared with the reference voltage VREF, and the output voltage that is the difference between them is divided by resistors 124 and 126 and supplied to an inverting amplifier 128 and a non-inverting amplifier 130. Note that the input resistor 132 of the inverting amplifier 128
and the values of feedback resistor 134 are equal. The output voltages of the amplifiers 128 and 130 are controlled by the electronic switch 1 which is the second selection means.
36 to the input terminal (3) of the multiplexer 92. Further, it is controlled by an electronic swing f-136t-pulse signal S.

よって、最初4分の1周期は、スイッチ136により非
反転増幅器130の出力信号がマルチプレクサ920入
力端子■に供給される。また、パルス信号A−Cにより
、この4分の1周期を8等分して抵抗器94〜108を
順次選択するので、積分器の出力信号Qは正弦波の4分
の1周期となる。次の4分の1周期は、反転増幅器12
8の出力電圧がマルチプレクサ92の入力端子Iに供給
され、またこの期間を8等分して抵抗器108〜94を
順次選択する。以下、同様な動作により積分器の出力信
号Qは電源周波数と同相な繰返し正弦波電圧になる。な
お、ピーク検出器116〜122と電圧比較器114と
により、積分器の入力電圧を制御してこの正弦波電圧Q
の振幅を一定に保持しているので、外部商用電源の周波
数及び振幅の変動に正弦波電圧Qの振幅は影響されない
Therefore, for the first quarter cycle, the switch 136 supplies the output signal of the non-inverting amplifier 130 to the multiplexer 920 input terminal (2). Further, since this quarter period is divided into eight equal parts and the resistors 94 to 108 are sequentially selected by the pulse signal A-C, the output signal Q of the integrator becomes a quarter period of the sine wave. The next quarter period is the inverting amplifier 12
8 output voltages are supplied to input terminal I of multiplexer 92, and this period is divided into eight equal parts to sequentially select resistors 108-94. Thereafter, by similar operation, the output signal Q of the integrator becomes a repetitive sine wave voltage in phase with the power supply frequency. Note that the input voltage of the integrator is controlled by the peak detectors 116 to 122 and the voltage comparator 114 to obtain this sine wave voltage Q.
Since the amplitude of the sine wave voltage Q is held constant, the amplitude of the sine wave voltage Q is not affected by fluctuations in the frequency and amplitude of the external commercial power supply.

本発明の好適な実施例について説明したが、本発明の要
旨を逸脱することなく種々の変形及び変更が可能である
。例えば、 S/H回路58及び60の後段に夫々専用
のA/D変換器及び記憶回路を接続してもよい。また、
A/D変換器の動作が高速ならば、S/H回路は不要で
ある。更に、第3図において、抵抗器94〜108の数
及び値を変更することにより、3角波等の繰返し波形電
圧を発生することもできる。また、アナログ・デジタル
変換手段に供給するパルスは、バイアス供給回路22か
らのステソゲ状バイアスのステップ数に応じて、204
8f及び1024f以外の種々の周波数のパルスが利用
できる。この場合、スイッチによシ分周器の複数の出力
パルスを選択すればよい。
Although preferred embodiments of the invention have been described, various modifications and changes can be made without departing from the spirit of the invention. For example, dedicated A/D converters and memory circuits may be connected to the subsequent stages of the S/H circuits 58 and 60, respectively. Also,
If the A/D converter operates at high speed, the S/H circuit is not necessary. Furthermore, in FIG. 3, by changing the number and values of resistors 94 to 108, it is also possible to generate a repetitive waveform voltage such as a triangular wave. Further, the number of pulses supplied to the analog-to-digital conversion means is 204, depending on the number of steps of the stethoscope bias from the bias supply circuit 22.
Pulses of various frequencies other than 8f and 1024f are available. In this case, a switch may be used to select a plurality of output pulses from the frequency divider.

〔発明の効果〕 上述の如く本発明によれば、新たに正弦波電圧等の繰返
し波形電圧を発生しているので、この電圧波形は外部電
源波形のように歪を含んでおらず対称であるため、表示
歪の問題を解決できる。まだ、新だに発生した繰返し波
形電圧は外部電源電圧と独立しているので、この外部電
源電圧の変動にも影響されず、正確な測定ができる。更
に、繰返し波形電圧は外部電源と同相なので、この繰返
し波形電圧を受ける各回路は外部電源によるリップル、
位相変動等の影響を受けない。塘た、アナログ・デジタ
ル変換手段は外部電源に同期して被測定半導体素子の電
圧及び電流をサンプルするので、外部電源の変動による
影響を受けない。更にまた、パルス発生手段及び分周器
の出力信号は正弦波発生器及びアナログ・デジタル変換
手段に共用できるので、構成を簡略化できる。
[Effects of the Invention] As described above, according to the present invention, since a repetitive waveform voltage such as a sine wave voltage is newly generated, this voltage waveform does not include distortion and is symmetrical unlike the external power supply waveform. Therefore, the problem of display distortion can be solved. However, since the newly generated repetitive waveform voltage is independent of the external power supply voltage, it is not affected by fluctuations in the external power supply voltage and can be accurately measured. Furthermore, since the repetitive waveform voltage is in phase with the external power supply, each circuit that receives this repetitive waveform voltage is subject to ripples and ripples caused by the external power supply.
Not affected by phase fluctuations, etc. Furthermore, since the analog-to-digital conversion means samples the voltage and current of the semiconductor device under test in synchronization with the external power supply, it is not affected by fluctuations in the external power supply. Furthermore, since the output signals of the pulse generating means and the frequency divider can be shared by the sine wave generator and the analog-to-digital converting means, the configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1及び第2図は本発明の好適な一実施例のブロック図
、第3図は第1図内の繰返し波形発生器の一例の回路図
、第4図は従来の素子測定装置のブロック図である。 図において、12〜14は電圧供給手段、48〜50は
パルス発生手段、52は分周器、54は繰返し波形発生
器、58〜64はアナログ・デジタル変換手段、66は
記憶回路である。
1 and 2 are block diagrams of a preferred embodiment of the present invention, FIG. 3 is a circuit diagram of an example of the repetitive waveform generator shown in FIG. 1, and FIG. 4 is a block diagram of a conventional device measuring device. It is. In the figure, 12 to 14 are voltage supply means, 48 to 50 are pulse generation means, 52 is a frequency divider, 54 is a repetitive waveform generator, 58 to 64 are analog/digital conversion means, and 66 is a storage circuit.

Claims (1)

【特許請求の範囲】[Claims] 外部電源周波数に同期し、かつ該外部電源周波数よりも
高い周波数のパルスを発生するパルス発生手段と、該パ
ルス発生手段からの出力パルスを分周する分周器と、該
分周器の出力パルスに応じて上記外部電源と同相の繰返
し波形電圧を発生する繰返し波形発生器と、該繰返し波
形発生器からの繰返し波形電圧を被測定素子に供給する
電圧供給手段と、上記被測定素子に供給される電圧及び
上記被測定素子に流れる電流を、上記パルス発生手段又
は上記分周器の出力パルスに応じてデジタル信号に変換
するアナログ・デジタル変換手段と、該アナログ・デジ
タル変換手段のデジタル出力信号を記憶する記憶回路と
を具えた素子測定装置。
A pulse generating means for generating pulses in synchronization with an external power supply frequency and having a higher frequency than the external power supply frequency, a frequency divider for dividing the output pulse from the pulse generation means, and an output pulse of the frequency divider. a repetitive waveform generator that generates a repetitive waveform voltage that is in phase with the external power supply according to the voltage; a voltage supply means that supplies the repetitive waveform voltage from the repetitive waveform generator to the device under test; analog-to-digital conversion means for converting the voltage flowing through the device under test and the current flowing through the device under test into digital signals in accordance with the output pulses of the pulse generation means or the frequency divider; An element measuring device comprising a memory circuit for storing information.
JP20879284A 1984-10-04 1984-10-04 Apparatus for measuring element Granted JPS6186664A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP20879284A JPS6186664A (en) 1984-10-04 1984-10-04 Apparatus for measuring element
NL8502385A NL8502385A (en) 1984-10-04 1985-08-30 DEVICE FOR MEASURING THE CHARACTERISTICS OF ELECTRONIC DEVICES.
GB08522462A GB2165363B (en) 1984-10-04 1985-09-11 Waveform generator and apparatus for measuring characteristics of electronic devices
DE19853533636 DE3533636C2 (en) 1984-10-04 1985-09-20 Device for measuring the characteristic data of electronic components
US06/780,957 US4727318A (en) 1984-10-04 1985-09-27 Apparatus for measuring characteristics of electronic devices
CA000491897A CA1242813A (en) 1984-10-04 1985-09-30 Apparatus for measuring characteristics of electronic devices
FR8514776A FR2571501B1 (en) 1984-10-04 1985-10-04 APPARATUS FOR MEASURING THE CHARACTERISTICS OF ELECTRONIC DEVICES
US07/074,910 US4782290A (en) 1984-10-04 1987-07-17 Apparatus for measuring characteristics or electronic devices
CA000547089A CA1248600A (en) 1984-10-04 1987-09-16 Sine-wave generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20879284A JPS6186664A (en) 1984-10-04 1984-10-04 Apparatus for measuring element

Publications (2)

Publication Number Publication Date
JPS6186664A true JPS6186664A (en) 1986-05-02
JPS649595B2 JPS649595B2 (en) 1989-02-17

Family

ID=16562187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20879284A Granted JPS6186664A (en) 1984-10-04 1984-10-04 Apparatus for measuring element

Country Status (1)

Country Link
JP (1) JPS6186664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255670A (en) * 1987-04-13 1988-10-21 Sony Tektronix Corp Element measuring apparatus
US7466253B2 (en) 2006-08-03 2008-12-16 Kabushiki Kaisha Toshiba Integrated circuit, self-test method for the integrated circuit, and optical disc apparatus including the integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255670A (en) * 1987-04-13 1988-10-21 Sony Tektronix Corp Element measuring apparatus
US7466253B2 (en) 2006-08-03 2008-12-16 Kabushiki Kaisha Toshiba Integrated circuit, self-test method for the integrated circuit, and optical disc apparatus including the integrated circuit

Also Published As

Publication number Publication date
JPS649595B2 (en) 1989-02-17

Similar Documents

Publication Publication Date Title
US4782290A (en) Apparatus for measuring characteristics or electronic devices
KR850000486B1 (en) Data acquisition system
EP0104999B1 (en) Gain switching device with reduced error for watt meter
US4818934A (en) Apparatus for measuring characteristics of electronic devices
US3947760A (en) Integrating component measuring device
US5790480A (en) Delta-T measurement circuit
Mohns et al. Calibration of commercial test sets for non-conventional instrument transformers
JPS6186664A (en) Apparatus for measuring element
US3345562A (en) Ac-dc meter
CA1242813A (en) Apparatus for measuring characteristics of electronic devices
US3714570A (en) Apparatus for measuring the effective value of electrical waveforms
CA1248600A (en) Sine-wave generator
US4151464A (en) Integrating voltage to frequency converter and memory decoder
JPS6187429A (en) Generating circuit of repetitive voltage
JPS63255670A (en) Element measuring apparatus
JPH0721527B2 (en) Element measuring device
JPH0530092B2 (en)
US3324390A (en) Apparatus for determining the voltage ratio of a voltage divider that is energized by pulsed signals
SU720377A1 (en) Device for measuring relative non-linearity of amplitude response
US3502977A (en) Low frequency measuring apparatus with phase locked loop
CA1224845A (en) Method of measuring a frequency domain characteristic
JPS60235070A (en) Tube current detection circuit of x-ray apparatus
SU1628050A1 (en) Ac stabilizer
SU1056151A1 (en) Voltage calibrator
US3297942A (en) Electron tube transconductance testing circuit having transistorized plate current switching means

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term