JPS6184375A - Chemical vapor deposition method - Google Patents

Chemical vapor deposition method

Info

Publication number
JPS6184375A
JPS6184375A JP20456384A JP20456384A JPS6184375A JP S6184375 A JPS6184375 A JP S6184375A JP 20456384 A JP20456384 A JP 20456384A JP 20456384 A JP20456384 A JP 20456384A JP S6184375 A JPS6184375 A JP S6184375A
Authority
JP
Japan
Prior art keywords
vapor deposition
gas
chemical vapor
gaseous
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20456384A
Other languages
Japanese (ja)
Other versions
JPS6149390B2 (en
Inventor
Kimio Nakada
仲田 公夫
Hiroshi Mikita
三喜田 浩
Nobuatsu Watanabe
渡辺 信淳
Takeshi Nakajima
剛 中島
Youhou Tei
容宝 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KAGAKU KENKYUSHO
Toho Kinzoku Co Ltd
Original Assignee
OYO KAGAKU KENKYUSHO
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KAGAKU KENKYUSHO, Toho Kinzoku Co Ltd filed Critical OYO KAGAKU KENKYUSHO
Priority to JP20456384A priority Critical patent/JPS6184375A/en
Publication of JPS6184375A publication Critical patent/JPS6184375A/en
Publication of JPS6149390B2 publication Critical patent/JPS6149390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Abstract

PURPOSE:To form stably and easily a tungsten carbide film having a dense and smooth surface on the surface of a material to be subjected to vapor deposition by supplying a reactive gas consisting of gaseous WF6, H2 and gaseous C3H6 into the reaction chamber together with a carrier gas which is an inert gas. CONSTITUTION:The material 4 to be subjected to vapor deposition is imposed on a rotary table 5 in the reaction chamber 3 in a chemical vapor deposition device 1 and is rotated via a revolving shaft 7 by a rotating device 6. Gaseous H2, gaseous Ar, gaseous C3H6 and WF6 are respectively supplied from cylinders 10-13 into the chamber 3. The material 4 is heated preferably to 350-600 deg.C by a heating furnace 2 provided on the outside of the chamber 2. The reactive gas is composed of WF6:H2=1:3-1:15 molar ratio and is preferably added with 0.01-0.3 molar ratio C3H6 with respect to (WF6+H2). The chemical vapor deposition is executed under the above-mentioned reaction conditions, by which the tungsten film of the columnar structures, by which the tungsten film of the columnar structure consisting essentially of homogeneous W2C and having Knoop hardness as high as about 2300-2500HK is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は被蒸着物の表面に緻密かつ平滑な炭化タング
ステン被膜を形成するための化学蒸着法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a chemical vapor deposition method for forming a dense and smooth tungsten carbide film on the surface of an object to be deposited.

(技術的背景) 金属等の表面に化学蒸着法(CVD)によって炭化タン
グステン被膜を形成する表面硬化法が知られている。こ
の化学蒸着法として従来採用されてきた方法は、六フッ
化タングステン(WFs)と水素ガス(H2)にベンゼ
ン(C6H6)をアルゴンガス(Ar)をキャリヤガス
として添加し、高温に保持された被蒸着物表面に導く方
法である。この方法によって炭化タングステンの蒸着被
膜を形成することはできるが、ベンゼン(C1,H6)
は液体であるため供給操作が難しく、しかも均一な蒸着
被膜を形成することのできる反応条件の領域が狭いとい
う問題があった。また、ベンゼンを用いる従来の方法で
は、形成された被膜表面の平滑さが充分ではなく、実用
面で問題があった。
(Technical Background) A surface hardening method is known in which a tungsten carbide film is formed on the surface of a metal or the like by chemical vapor deposition (CVD). The conventional chemical vapor deposition method involves adding benzene (C6H6) to tungsten hexafluoride (WFs) and hydrogen gas (H2), and adding argon gas (Ar) as a carrier gas to the substrate, which is kept at a high temperature. This method leads to the surface of the deposit. Although it is possible to form a vapor deposited film of tungsten carbide by this method, benzene (C1, H6)
Since it is a liquid, it is difficult to supply it, and there is a problem that the range of reaction conditions that can form a uniform vapor-deposited film is narrow. Further, in the conventional method using benzene, the surface of the formed film was not sufficiently smooth, which caused problems in practical use.

(発明の目的) この発明は、上記従来の化学蒸着法の問題点を改良し、
緻密で平滑な表面を有する炭化タングステン被膜を容易
に形成することのできる化学蒸着法を提供することを目
的としている。
(Object of the invention) This invention improves the problems of the conventional chemical vapor deposition method,
The object of the present invention is to provide a chemical vapor deposition method that can easily form a tungsten carbide film having a dense and smooth surface.

(発明の開示) 本発明にかかる化学蒸着法は、六フッ化タングステン、
水素ガスおよびシクロプロパンガスt−反応ガスとして
用い、キャリヤガスである不活性ガスとともに反応室内
に供給して反応室内の被蒸着物表面に炭化タングステン
被膜を形成することを特徴としている。すなわち、従来
法におけるベンゼンのかわりにシクロプロパンガスを採
用することによってすぐれた炭化タングステン被膜を形
成するものであり、シクロプロパンガスがベンゼンと違
って気体であるため、適当なキャリヤガスを用いること
によって安定状態でうまく供給することができるのであ
る。以下これを具体的に説明する。
(Disclosure of the invention) The chemical vapor deposition method according to the present invention uses tungsten hexafluoride,
Hydrogen gas and cyclopropane gas are used as reaction gases and are supplied into the reaction chamber together with an inert gas as a carrier gas to form a tungsten carbide film on the surface of the object to be deposited in the reaction chamber. In other words, an excellent tungsten carbide film is formed by using cyclopropane gas instead of benzene in the conventional method, and since cyclopropane gas is a gas unlike benzene, by using an appropriate carrier gas. It can be successfully supplied in a stable state. This will be explained in detail below.

第1図は本発明を実施するための化学蒸着装置の1例を
あられす系統図であって、この化学蒸着装置lは、外周
部に加熱炉2が設けられた管状の竪型反応室をそなえ、
その内部に被蒸着物を載置する回転テーブル5が設けら
れている。回転テーブル5は、反応室3の底部に設けら
れた回転装置6の回転軸7によって支持されている。
FIG. 1 is a system diagram showing an example of a chemical vapor deposition apparatus for carrying out the present invention. Prepare,
A rotary table 5 on which an object to be deposited is placed is provided inside. The rotary table 5 is supported by a rotating shaft 7 of a rotating device 6 provided at the bottom of the reaction chamber 3.

反応室3のガス供給口3aには、水素ガスボンベ10、
アルゴンガスポンベ11、シクロプロパンガスポンへ1
2および六フッ化タングステンポンベ13が接続されて
いる。図中、14.15.18.17はそれぞれのガス
の涼量を調節するためのガス流量調節バルブ、18.1
9.20は回転浮遊式流量計、21は質量流量計である
。反応室3の底部に設けた排気口3bには、排ガス処理
槽22とターボファン23が接続されている。また、反
応室3の人気側と排気側には、ガスの流通を停止するこ
とのできる閉塞用バルブ24.25が設けられている。
A hydrogen gas cylinder 10,
Argon gas pump 11, cyclopropane gas pump 1
2 and a tungsten hexafluoride pump 13 are connected. In the figure, 14.15.18.17 are gas flow rate control valves for adjusting the cooling amount of each gas, 18.1
9.20 is a rotating floating flowmeter, and 21 is a mass flowmeter. An exhaust gas treatment tank 22 and a turbo fan 23 are connected to an exhaust port 3b provided at the bottom of the reaction chamber 3. Further, on the popular side and the exhaust side of the reaction chamber 3, closing valves 24 and 25 are provided that can stop the flow of gas.

この化学蒸着装置1を用いて炭化タングステン被膜を形
成するには、被蒸着物4をテーブル5上に載置し、加熱
炉2によって所定の温度に加熱するとともに、それぞれ
のボンベから所定量のガスを反応室内に供給する。蒸着
中における被蒸着物の温度は350〜600”Oとする
のが好ましく、400〜550℃とするのがより好まし
い。反応室3に供給される混合ガス中の六フッ化タング
ステン(w FG)と水素ガス(Hz)の混合比率は、
モル比でW FG :Hz =1 : 3〜1:15と
するのが好ましく、WF6:H2=1 : 6〜1:1
2とするのがより好ましい。また、シクロプロパンガス
(c3■6)の添加量は、水素ガス(Hz)と六フッ化
タングステン(W FG)とを合わせた量(WF6+H
2)に対しモル比で0.01〜0.3の割合とするのが
好ましく。
To form a tungsten carbide film using this chemical vapor deposition apparatus 1, the object to be deposited 4 is placed on the table 5, heated to a predetermined temperature by the heating furnace 2, and a predetermined amount of gas is supplied from each cylinder. is supplied into the reaction chamber. The temperature of the object to be deposited during vapor deposition is preferably 350 to 600"O, more preferably 400 to 550°C. Tungsten hexafluoride (w FG) in the mixed gas supplied to the reaction chamber 3 The mixing ratio of and hydrogen gas (Hz) is
It is preferable that the molar ratio is WFG:Hz = 1:3 to 1:15, and WF6:H2 = 1:6 to 1:1.
It is more preferable to set it to 2. In addition, the amount of cyclopropane gas (c3■6) added is the combined amount of hydrogen gas (Hz) and tungsten hexafluoride (WFG) (WF6+H
The molar ratio to 2) is preferably 0.01 to 0.3.

0.01〜0.15の割合とするのがより好ましい。シ
クロプロパンガス供給用のキャリアガスとしては、入手
性等の面でアルゴンガスを用いるのがよいが、他の適当
な不活性ガスを用いてもよい。高温に加熱された被蒸着
物が混合ガスにさらされると、その表面に炭化タングス
テン被膜が形成される。この被膜は、W2Cを主成分と
する柱状組織となるのが普通であり、従来のものに較べ
て緻密で、しかも平滑な表面をそなえている。また、従
来の化学蒸着法による炭化タングステン被膜の400〜
500℃の比較的低い温度領域におけるヌープ硬度が1
600 (Hk)程度であり、反応条件によって大きな
バラツキを示すのに対し、本発明によって形成される被
膜のヌープ硬度は一般に2300〜2500 (Hk)
と高くて安定した値を示す傾向がある。これは、従来法
による蒸着被膜がW、W2C。
More preferably, the ratio is 0.01 to 0.15. As the carrier gas for supplying cyclopropane gas, argon gas is preferably used in terms of availability, but other suitable inert gases may also be used. When a deposition target heated to a high temperature is exposed to a mixed gas, a tungsten carbide film is formed on its surface. This coating usually has a columnar structure mainly composed of W2C, and has a denser and smoother surface than conventional coatings. In addition, tungsten carbide coatings made by conventional chemical vapor deposition have a
Knoop hardness in the relatively low temperature range of 500℃ is 1
600 (Hk) and shows large variations depending on the reaction conditions, whereas the Knoop hardness of the coating formed by the present invention is generally 2300 to 2500 (Hk).
It tends to show a high and stable value. This is because the vapor deposited film by the conventional method is W, W2C.

W3C等が混在する不均質組織となりやすいのに対し、
本発明の蒸着法では比較的均質なW2Cの柱状組織が得
られるからであろうと考えられる。
While it tends to become a heterogeneous organization in which W3C etc. are mixed,
This is thought to be because the vapor deposition method of the present invention allows a relatively homogeneous columnar structure of W2C to be obtained.

(実施例および比較例) 被蒸着物(基材)としてグラファイト板(I G −1
’l)および無酸素銅板を用い、種々の条件で化学蒸着
を行なった結果を第1表に示す。また、実施例2と比較
例1で得られた被膜の顕微鏡組織を第2図(a)、(b
)および第3図(a)、(b)に示す。第2図は実施例
2の被膜を、第3図は比較例1の被膜をあられす。いず
れも(a)は被膜の表面を、(b)は断面をあられす。
(Example and Comparative Example) A graphite plate (I G-1
Table 1 shows the results of chemical vapor deposition carried out under various conditions using 1) and an oxygen-free copper plate. In addition, the microscopic structures of the coatings obtained in Example 2 and Comparative Example 1 are shown in Figure 2 (a) and (b).
) and shown in FIGS. 3(a) and (b). FIG. 2 shows the coating of Example 2, and FIG. 3 shows the coating of Comparative Example 1. In both cases, (a) shows the surface of the coating, and (b) shows the cross section.

従来法による被膜が10〜30ILm程度の塊状粒子(
積層体)からなる粗い表面を有するのに対し、本発明に
よる被膜は微細な柱状組織を呈し、表面の凹凸も5Bm
程度と平滑で緻密なものであることがわかる。
The coating by the conventional method is about 10 to 30 ILm of lumpy particles (
In contrast, the coating according to the present invention has a fine columnar structure, and the surface unevenness is 5 Bm.
It can be seen that the texture is smooth and precise.

(発明の効果) 以上の説明から明らかなように、本発明にかかる化学蒸
着法は、緻密で平滑な安定した炭化タングステ被膜を容
易に形成することのできるきわめてすぐれたものである
(Effects of the Invention) As is clear from the above explanation, the chemical vapor deposition method according to the present invention is extremely superior in that it can easily form a dense, smooth, and stable tungsten carbide film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いられる化学蒸着装置の1例
をあられす系統図、第2図および第3図はそれぞれ実施
例と比較例における炭化タングステン蒸着被膜の(、a
)表面顕微鏡写真(X 1000)および(b)断面顕
微鏡写真(X 4GG)である。 1・・・化学蒸着装置、2・・・加熱炉、3・・・反応
室、4・・・被蒸着物1.5・・・テーブル。
FIG. 1 is a system diagram showing an example of a chemical vapor deposition apparatus used in carrying out the present invention, and FIGS.
) Surface micrograph (X 1000) and (b) cross-sectional micrograph (X 4GG). DESCRIPTION OF SYMBOLS 1...Chemical vapor deposition apparatus, 2...Heating furnace, 3...Reaction chamber, 4...Deposition object 1.5...Table.

Claims (2)

【特許請求の範囲】[Claims] (1)六フッ化タングステン、水素ガスおよびシクロプ
ロパンガスを反応ガスとして用い、キャリヤガスである
不活性ガスとともに反応室内に供給して反応室内の被蒸
着物表面に炭化タングステン被膜を形成することを特徴
とする化学蒸着法。
(1) Tungsten hexafluoride, hydrogen gas, and cyclopropane gas are used as reaction gases and are supplied into the reaction chamber together with an inert gas as a carrier gas to form a tungsten carbide film on the surface of the object to be deposited in the reaction chamber. Characteristic chemical vapor deposition method.
(2)被蒸着物の温度が350〜600℃、六フッ化タ
ングステン(WF_6)と水素ガス(H_2)との混合
比がモル比でWF_6:H_2=1:3〜1:15、シ
クロプロパンガスの添加量が六フッ化タングステンと水
素ガスを合わせた量に対しモル比で0.01〜0.3の
反応条件下で被膜の形成を行なう特許請求の範囲第1項
記載の化学蒸着法。
(2) The temperature of the deposition target is 350 to 600°C, the molar mixing ratio of tungsten hexafluoride (WF_6) and hydrogen gas (H_2) is WF_6:H_2 = 1:3 to 1:15, and cyclopropane gas The chemical vapor deposition method according to claim 1, wherein the film is formed under reaction conditions in which the amount of tungsten hexafluoride and hydrogen gas added is 0.01 to 0.3 in molar ratio to the combined amount of tungsten hexafluoride and hydrogen gas.
JP20456384A 1984-09-29 1984-09-29 Chemical vapor deposition method Granted JPS6184375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20456384A JPS6184375A (en) 1984-09-29 1984-09-29 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20456384A JPS6184375A (en) 1984-09-29 1984-09-29 Chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPS6184375A true JPS6184375A (en) 1986-04-28
JPS6149390B2 JPS6149390B2 (en) 1986-10-29

Family

ID=16492540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20456384A Granted JPS6184375A (en) 1984-09-29 1984-09-29 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS6184375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157681A (en) * 1984-12-28 1986-07-17 Toho Kinzoku Kk Chemical vapor deposition method
US5262202A (en) * 1988-02-17 1993-11-16 Air Products And Chemicals, Inc. Heat treated chemically vapor deposited products and treatment method
WO2000047796A1 (en) * 1999-02-11 2000-08-17 Hardide Limited Tungsten carbide coatings and method for producing the same
JP2005248231A (en) * 2004-03-03 2005-09-15 Tokyo Electron Ltd Film deposition method
JP2021510934A (en) * 2018-01-15 2021-04-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Techniques for improving the adhesion and defects of tungsten carbide film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157681A (en) * 1984-12-28 1986-07-17 Toho Kinzoku Kk Chemical vapor deposition method
JPS6254869B2 (en) * 1984-12-28 1987-11-17 Toho Kinzoku Kk
US5262202A (en) * 1988-02-17 1993-11-16 Air Products And Chemicals, Inc. Heat treated chemically vapor deposited products and treatment method
WO2000047796A1 (en) * 1999-02-11 2000-08-17 Hardide Limited Tungsten carbide coatings and method for producing the same
US6800383B1 (en) 1999-02-11 2004-10-05 Hardide Limited Tungsten carbide coating and method for producing the same
JP2005248231A (en) * 2004-03-03 2005-09-15 Tokyo Electron Ltd Film deposition method
JP4651955B2 (en) * 2004-03-03 2011-03-16 東京エレクトロン株式会社 Deposition method
JP2021510934A (en) * 2018-01-15 2021-04-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Techniques for improving the adhesion and defects of tungsten carbide film
US11859275B2 (en) 2018-01-15 2024-01-02 Applied Materials, Inc. Techniques to improve adhesion and defects for tungsten carbide film

Also Published As

Publication number Publication date
JPS6149390B2 (en) 1986-10-29

Similar Documents

Publication Publication Date Title
US3874900A (en) Article coated with titanium carbide and titanium nitride
US3684585A (en) Method for forming adherent titanium carbide coatings on metal or composite substrates
US3836392A (en) Process for increasing the resistance to wear of the surface of hard metal cemented carbide parts subject to wear
US3964937A (en) Method of making a composite coating
US3771976A (en) Metal carbonitride-coated article and method of producing same
JPH0892743A (en) Tool for cutting coating film and its production
US3767456A (en) Chemical vapor deposition of steel with tantalum and columbium
EP0740710A1 (en) Magnetron sputtering apparatus for compound thin films
US4486462A (en) Method for coating by glow discharge
JPS6184375A (en) Chemical vapor deposition method
JPS6254869B2 (en)
JP3388736B2 (en) Double-coated tool and method and apparatus for manufacturing the same
JPS623234B2 (en)
JPH0250194B2 (en)
EP0203616B1 (en) Chemical vapor deposition method for the thin film of semiconductor
JPS62243761A (en) Target for sputtering
JPH05470B2 (en)
CN115124348B (en) Single phase (Hf) x Zr 1-x ) N solid solution superhigh temperature ablation-resistant ceramic coating and preparation method thereof
FR2536422A1 (en) PROCESS FOR COATING CARBIDE WITH METAL SURFACES
JPS58174569A (en) Formation of film comprising metal compound
JPH0215161A (en) Formation of titanium carbide film by ion beam sputtering method
KR100312838B1 (en) Improved method and its apparatus for aluminizing coating process
JPS6242996B2 (en)
JP2833839B2 (en) Coating method of vapor phase diamond
JPS60149780A (en) Formation of cvd film