JPH0250194B2 - - Google Patents

Info

Publication number
JPH0250194B2
JPH0250194B2 JP57232073A JP23207382A JPH0250194B2 JP H0250194 B2 JPH0250194 B2 JP H0250194B2 JP 57232073 A JP57232073 A JP 57232073A JP 23207382 A JP23207382 A JP 23207382A JP H0250194 B2 JPH0250194 B2 JP H0250194B2
Authority
JP
Japan
Prior art keywords
gas
tungsten
vapor deposition
deposited layer
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57232073A
Other languages
Japanese (ja)
Other versions
JPS59123765A (en
Inventor
Hiroshi Mikita
Kazuhiko Tanizawa
Nobuyuki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP23207382A priority Critical patent/JPS59123765A/en
Publication of JPS59123765A publication Critical patent/JPS59123765A/en
Publication of JPH0250194B2 publication Critical patent/JPH0250194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、被蒸着物にタングステン蒸着層を
形成するための化学蒸着法に関するものである。 高温で保持された被蒸着物上で六フツ化タング
ステンを水素ガスにより還元してタングステン蒸
着層を形成するタングステンの化学蒸着法
(CVD法)が知られている。上記従来のタングス
テン蒸着法によつて比較的緻密な蒸着層が得られ
るが、最近タングステン蒸着層の利用範囲の拡大
にともなつて、より硬度が高く緻密な蒸着層に対
する要望が強くなつていた。 この発明は上記事情に鑑み、緻密で硬度の高い
蒸着層を能率的に形成することのできる化学蒸着
法を提供すべくなされたもので、その特徴とする
ところは、反応室内に保持された被メツキ物に、
六フツ化タングステンと水素ガスからなる反応ガ
スと、該反応ガスに対しモル比で0.05乃至5の割
合の窒素ガスを含む混合ガスを供給しつつ化学蒸
着を行なう点にある。以下、実施例をあらわす図
面に基いて具体的に説明する。 第1図は本発明の実施に用いられる蒸着装置の
1例をあらわす系統図であり、外周部に加熱炉2
が設けられた管状の反応室1のガス流入口1a
に、水素ガスボンベ5、窒素ガスボンベ6、六フ
ツ化タングステンボンベ7が流量調節バルブ8,
9,10および流量計11,12,13を介して
接続されている。水素ガス(H2)および窒素ガ
ス(N2)用の流量計11,12は回転浮遊式流
量計(ロータメータ)であり、六フツ化タングス
テン(WF6)用の流量計13は質量流量計であ
る。また、反応室1の排気口1bには排ガス処理
槽14と排ガス用のターボフアン15が接続され
ている。図中、P1,P2はガス管、16,17は
開閉バルブである。 反応室1の内部には、テーブル4が設けられて
おり、このテーブル4上に被蒸着物3が載置され
る。被蒸着物3は、テーブル4上にあつて加熱炉
2によつて所定の加熱温度に加熱され、水素ガス
(H2)、窒素ガス(N2)および六フツ化タングス
テン(WF6)の混合ガスにさらされる。これに
より、被蒸着物3の表面にタングステンを主成分
とする蒸着層が形成されるのである。蒸着中にお
ける被蒸着物3の加熱温度は400〜700℃とするの
が好ましく、450〜600℃とするのがより好まし
い。また、上記混合ガスの成分中、窒素ガス
(N2)の添加量は、水素ガス(H2)と六フツ化
タングステン(WF6)からなる反応ガスに対し、
モル比で0.05〜5の割合とするのが好ましく、
0.1〜4の割合とするのがより好ましい。反応ガ
スにおける六フツ化タングステン(WF6)と水
素ガス(H2)の好ましい混合比率(WF6:H2
はモル比で1:3乃至1:15であり、より好まし
くは1:6乃至1:12である。 このようにして得られる蒸着層は、従来の蒸着
法によつて得られるタングステン蒸着層に較べて
はるかに硬度が高く、しかも緻密で平滑な表面を
そなえているのが普通である。例えば、従来法に
よるタングステン蒸着層の硬度(ビツカース硬
さ、Hv)が約500であるのに対し、本発明の最も
好ましい実施例では1100〜1200(Hv)程度の硬度
が得られる。この理由は必ずしも明らかではない
が、窒素ガス中の窒素(N)がタングステン結晶
格子内に侵入し、結晶格子を歪ませるためではな
いかと推定される。つぎに、本発明の実施例と比
較例について説明する。 実施例 第1図に示すような装置を用い、板状の被蒸着
物(表面にニツケルメツキを施した鉄板)の表面
に次の条件で化学蒸着を行なつた。 被蒸着物の温度:450℃ WF6流量:100c.c./min H2流量:800c.c./min N2流量:100〜3000c.c./min 蒸着時間30分で20μm(ミクロン)の厚みのタ
ングステン蒸着層が得られた。この蒸着層の性質
を第1表に示す。第1表には、比較のため窒素ガ
スを添加せず、反応ガスのみで化学蒸着を行なつ
た場合の結果、および窒素ガスのかわりにアルゴ
ンガス(Ar)を添加した場合の結果が併記され
ている。第2図および第3図は蒸着層表面の微小
組織をあらわす顕微鏡写真であり、第2図は窒素
ガスを添加しない比較例の組織を、また第3図は
窒素ガスを500c.c./minの割合で添加した実施例
(No.1)の組織をそれぞれあらわしている。第1
表からわかるように、窒素ガスのかわりにアルゴ
ンガスを添加した場合は蒸着層の硬さも表面粗さ
も全く改良されない。なお、硬度はマイクロビツ
カース硬度計(荷重50g)を用いて測定し、表面
粗さは10点の平均粗さであらわした。
The present invention relates to a chemical vapor deposition method for forming a tungsten vapor deposited layer on an object to be vapor deposited. A tungsten chemical vapor deposition method (CVD method) is known in which a tungsten vapor deposition layer is formed by reducing tungsten hexafluoride with hydrogen gas on an object to be deposited that is maintained at a high temperature. Although a relatively dense vapor deposited layer can be obtained by the conventional tungsten vapor deposition method described above, as the range of use of tungsten vapor deposited layers has recently expanded, there has been a strong demand for a denser vapor deposited layer with higher hardness. In view of the above circumstances, the present invention was made to provide a chemical vapor deposition method that can efficiently form a dense and hard vapor deposited layer. To the metsuki thing,
Chemical vapor deposition is carried out while supplying a mixed gas containing a reaction gas consisting of tungsten hexafluoride and hydrogen gas, and nitrogen gas at a molar ratio of 0.05 to 5 to the reaction gas. Hereinafter, embodiments will be specifically described based on drawings showing examples. FIG. 1 is a system diagram showing an example of a vapor deposition apparatus used for carrying out the present invention, in which a heating furnace 2 is installed on the outer periphery.
Gas inlet 1a of tubular reaction chamber 1 provided with
A hydrogen gas cylinder 5, a nitrogen gas cylinder 6, and a tungsten hexafluoride cylinder 7 are connected to a flow rate control valve 8,
9, 10 and flowmeters 11, 12, 13. Flowmeters 11 and 12 for hydrogen gas (H 2 ) and nitrogen gas (N 2 ) are rotary floating flowmeters (rotameters), and flowmeter 13 for tungsten hexafluoride (WF 6 ) is a mass flowmeter. be. Further, an exhaust gas treatment tank 14 and a turbo fan 15 for exhaust gas are connected to the exhaust port 1b of the reaction chamber 1. In the figure, P 1 and P 2 are gas pipes, and 16 and 17 are on-off valves. A table 4 is provided inside the reaction chamber 1, and a deposition target 3 is placed on the table 4. The object to be deposited 3 is placed on a table 4 and heated to a predetermined heating temperature in a heating furnace 2, and a mixture of hydrogen gas (H 2 ), nitrogen gas (N 2 ), and tungsten hexafluoride (WF 6 ) is generated. exposed to gas. As a result, a vapor deposition layer containing tungsten as a main component is formed on the surface of the object 3 to be vapor deposited. The heating temperature of the deposition target 3 during vapor deposition is preferably 400 to 700°C, more preferably 450 to 600°C. In addition, among the components of the above mixed gas, the amount of nitrogen gas (N 2 ) added to the reaction gas consisting of hydrogen gas (H 2 ) and tungsten hexafluoride (WF 6 ) is
It is preferable that the molar ratio is 0.05 to 5.
A ratio of 0.1 to 4 is more preferable. Preferred mixing ratio of tungsten hexafluoride (WF 6 ) and hydrogen gas (H 2 ) in the reaction gas (WF 6 :H 2 )
is in a molar ratio of 1:3 to 1:15, more preferably 1:6 to 1:12. The vapor-deposited layer thus obtained usually has much higher hardness than the tungsten vapor-deposited layer obtained by conventional vapor deposition methods, and also has a dense and smooth surface. For example, while the hardness (Vickers hardness, Hv) of the tungsten vapor deposited layer according to the conventional method is about 500, the hardness of about 1100 to 1200 (Hv) is obtained in the most preferred embodiment of the present invention. Although the reason for this is not necessarily clear, it is presumed that nitrogen (N) in the nitrogen gas invades the tungsten crystal lattice and distorts the crystal lattice. Next, examples and comparative examples of the present invention will be described. Example Using an apparatus as shown in FIG. 1, chemical vapor deposition was carried out on the surface of a plate-shaped object (an iron plate whose surface was plated with nickel) under the following conditions. Temperature of the object to be deposited: 450℃ WF 6 flow rate: 100 c.c./min H 2 flow rate: 800 c.c./min N 2 flow rate: 100 to 3000 c.c./min 20 μm (micron) in 30 minutes of evaporation time A thick tungsten deposited layer was obtained. The properties of this deposited layer are shown in Table 1. For comparison, Table 1 also shows the results when chemical vapor deposition was performed using only the reaction gas without adding nitrogen gas, and the results when argon gas (Ar) was added instead of nitrogen gas. ing. Figures 2 and 3 are microscopic photographs showing the microstructure on the surface of the vapor deposited layer. Figure 2 shows the structure of a comparative example without adding nitrogen gas, and Figure 3 shows the structure of a comparative example in which nitrogen gas was added at 500c.c./min. The structure of Example (No. 1) in which the amount of 100% was added is shown below. 1st
As can be seen from the table, when argon gas is added instead of nitrogen gas, neither the hardness nor the surface roughness of the deposited layer is improved at all. The hardness was measured using a micro-Vickers hardness meter (load: 50 g), and the surface roughness was expressed as the average roughness of 10 points.

【表】 実施例 蒸着条件を下記条件としたほかは上記実施例
と同様な条件で化学蒸着を行なつたところ、蒸着
時間20分で厚み20μmのタングステン蒸着層が得
られた。この蒸着層の硬さは1200(Hv)、表面粗
さは0.6μm(Rz)であつた。 被蒸着物の温度:600℃ WF6流量:80c.c./min H2流量:920c.c./min N2流量:1000c.c./min 以上に説明した如く、本発明にかかる化学蒸着
法は、緻密で硬度の高い蒸着層を能率的に形成す
ることのできるきわめてすぐれたものである。
[Table] Example When chemical vapor deposition was carried out under the same conditions as in the above example except that the vapor deposition conditions were changed to the following conditions, a tungsten vapor deposited layer with a thickness of 20 μm was obtained in a vapor deposition time of 20 minutes. The hardness of this vapor-deposited layer was 1200 (Hv), and the surface roughness was 0.6 μm (Rz). Temperature of the object to be deposited: 600°C WF 6 flow rate: 80 c.c./min H 2 flow rate: 920 c.c./min N 2 flow rate: 1000 c.c./min As explained above, the chemical vapor deposition according to the present invention This method is extremely superior in that it can efficiently form a dense and hard deposited layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いられる化学蒸着装
置の系統図、第2図および第3図はタングステン
蒸着層の顕微鏡写真である。 1……反応室、2……加熱炉、3……被蒸着
物、4……テーブル、5……水素ガスボンベ、6
……窒素ガスボンベ、7……六フツ化タングステ
ンボンベ。
FIG. 1 is a system diagram of a chemical vapor deposition apparatus used to carry out the present invention, and FIGS. 2 and 3 are microscopic photographs of a tungsten vapor deposited layer. 1...Reaction chamber, 2...Heating furnace, 3...Deposited object, 4...Table, 5...Hydrogen gas cylinder, 6
...Nitrogen gas cylinder, 7...Tungsten hexafluoride cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 反応室内に保持された被メツキ物を400℃以
上に加熱しつつ、六フツ化タングステンと水素ガ
スからなり両者の混合比率がモル比で六フツ化タ
ングステン:水素ガス=1:3〜1:15である反
応ガスと、該反応ガスに対しモル比で0.05〜5の
割合の窒素ガスとからなる混合ガスを供給し、被
メツキ物表面にタングステン蒸着層を形成するこ
とを特徴とする化学蒸着法。
1. While heating the object to be plated held in the reaction chamber to 400°C or higher, tungsten hexafluoride and hydrogen gas are mixed in a molar ratio of tungsten hexafluoride: hydrogen gas = 1:3 to 1: 15 and nitrogen gas at a molar ratio of 0.05 to 5 to the reaction gas, and forming a tungsten vapor deposition layer on the surface of the object to be plated. Law.
JP23207382A 1982-12-28 1982-12-28 Chemical vapor deposition method Granted JPS59123765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23207382A JPS59123765A (en) 1982-12-28 1982-12-28 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23207382A JPS59123765A (en) 1982-12-28 1982-12-28 Chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPS59123765A JPS59123765A (en) 1984-07-17
JPH0250194B2 true JPH0250194B2 (en) 1990-11-01

Family

ID=16933561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23207382A Granted JPS59123765A (en) 1982-12-28 1982-12-28 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS59123765A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547767A (en) * 1991-10-14 1996-08-20 Commissariat A L'energie Atomique Multilayer material, anti-erosion and anti-abrasion coating incorporating said multilayer material and process for producing said multilayer material
US5702829A (en) * 1991-10-14 1997-12-30 Commissariat A L'energie Atomique Multilayer material, anti-erosion and anti-abrasion coating incorporating said multilayer material
FR2693477B1 (en) * 1992-07-09 1994-09-02 France Etat Armement Multilayer coating for surface protection against erosion and / or abrasion.
CN104018135B (en) * 2014-04-25 2016-08-24 厦门虹鹭钨钼工业有限公司 A kind of method for short arc high pressure gas-discharge lamp anode surface roughening
CN104213096B (en) * 2014-08-12 2017-01-11 厦门虹鹭钨钼工业有限公司 Preparation method of crucible with tungsten coating
CN105063573B (en) * 2015-07-15 2017-09-29 中国电子科技集团公司第四十六研究所 The technique that a kind of two-step method prepares molybdenum disulfide film

Also Published As

Publication number Publication date
JPS59123765A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
EP0119250B1 (en) Self protecting carbon bodies and method for making same
US3836392A (en) Process for increasing the resistance to wear of the surface of hard metal cemented carbide parts subject to wear
US3874900A (en) Article coated with titanium carbide and titanium nitride
US3574672A (en) Cvd process for producing tungsten carbide and article of manufacture
US3787223A (en) Chemical vapor deposition coatings on titanium
US3721577A (en) Process for the deposition of refractory metal and metalloid carbides on a base material
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
JPS5925902A (en) Sintering method
JPS6221867B2 (en)
US3807008A (en) Chemical vapor deposition coatings on titanium
WO1994009178A1 (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
JP2002538308A5 (en)
US4698244A (en) Deposition of titanium aluminides
JPH0250194B2 (en)
US5304397A (en) Oxidation resistant carbon and method for making same
JPH0513109B2 (en)
JPS6254869B2 (en)
US4869929A (en) Process for preparing sic protective films on metallic or metal impregnated substrates
JPS6149390B2 (en)
JP2801485B2 (en) Composite and method for producing the same
US4591514A (en) Method for making self-protecting carbon bodies
US3200015A (en) Process for coating high temperature alloys
CN115124348B (en) Single phase (Hf) x Zr 1-x ) N solid solution superhigh temperature ablation-resistant ceramic coating and preparation method thereof
Graham et al. Chemical vapor deposition of Ta 2 O 5 corrosion resistant coatings
JP2986715B2 (en) Method of forming carbide-based composite coating and composite coating