JPS6184326A - Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density - Google Patents

Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density

Info

Publication number
JPS6184326A
JPS6184326A JP20292884A JP20292884A JPS6184326A JP S6184326 A JPS6184326 A JP S6184326A JP 20292884 A JP20292884 A JP 20292884A JP 20292884 A JP20292884 A JP 20292884A JP S6184326 A JPS6184326 A JP S6184326A
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
plate
hot
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20292884A
Other languages
Japanese (ja)
Inventor
Soji Matsuo
松尾 宗次
Tomohiko Sakai
酒井 知彦
Takahide Shimazu
高英 島津
Fumio Yamamatsu
山松 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20292884A priority Critical patent/JPS6184326A/en
Publication of JPS6184326A publication Critical patent/JPS6184326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture the titled steel sheet having highly stabilized quality characteristic, by cold rolling preliminarily a hot rolled plate contg. specified quantities of Si, SolAl under a specified condition and the state in which as scale is adhered to said plate. CONSTITUTION:The hot rolled steel contg. 2-4% Si, 0.02-0.04% SolAl is cold rolled preliminarily by 15-40% draft under the state in which as scale is adhered to said plate. Thereat, rolling direction inverse to that of hot rolling is favorable. Next, said plate is annealed at about 800-1,200 deg.C, then surface scale is removed by pickling, and the final cold rolling is applied by 80-90% draft to finish said plate to 0.15-0.25mm thickness. Then, usual decarburization annealing at about 700-1,000 deg.C and the final finish annealing by batch furnace are performed, then tension coating is coated on said sheet to manufacture said products.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、変圧器等の電気機器の鉄心材料に用いられる
いわゆる(110)(001)ゴス組織をもった一方向
性電磁鋼板の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a unidirectional electrical steel sheet having a so-called (110)(001) Goss structure, which is used as a core material for electrical equipment such as transformers. It is related to.

(従来の技術) かかる電気機器には、近年の厳しいエネルギー事情から
、鉄損値のよシ少ない電磁鋼板を用いようとする動きが
活発である。他方、機器の小型化など忙関連して磁束密
度の高い材料の改善努力もなされている。低鉄損を得る
一つの方法として、渦電流損を軽減させるため製品板厚
を薄くすることが知られている。また、高磁束密度材を
得□る手段として、AtNやsbなどを利用することも
公知である。
(Prior Art) Due to the severe energy situation in recent years, there is an active movement toward using electrical steel sheets with lower iron loss values in such electrical equipment. On the other hand, efforts are being made to improve materials with high magnetic flux density in connection with the miniaturization of equipment. It is known that one method of obtaining low core loss is to reduce the thickness of the product plate in order to reduce eddy current loss. It is also known to use AtN, sb, etc. as a means to obtain a high magnetic flux density material.

しかしながら、AtNのような窒化物をインヒビターと
して使った場合、最終仕上焼鈍での二次再結晶過程中、
表面よシ窒素の侵入又は脱窒により表面層窒化物の形態
変化が起きやすい。このため、インヒビターとして有効
な微細性が著るしくそこなわれ、結果として二次再結晶
が不安定となシやすい問題がある。一方、一般的に二次
再結晶核となるゴス方位粒は、表面層近傍(約1/7厚
層)にある。薄手材はとくに、このゴス方位粒と表面と
の距離が、厚手材にくらべ短かくなるため、前述の窒化
物形態変化の影響を受けやすく、このため最終品質特性
の高位安定が達成されない。
However, when a nitride such as AtN is used as an inhibitor, during the secondary recrystallization process in the final annealing,
The morphology of surface layer nitrides tends to change due to the intrusion of nitrogen into the surface or denitrification. For this reason, the fineness that is effective as an inhibitor is significantly impaired, resulting in the problem that secondary recrystallization tends to become unstable. On the other hand, Goss-oriented grains, which generally serve as secondary recrystallization nuclei, are located near the surface layer (approximately 1/7th thick layer). Thin materials are particularly susceptible to the aforementioned nitride morphology changes because the distance between the Goss-oriented grains and the surface is shorter than in thick materials, and therefore a high level of stability in final quality properties cannot be achieved.

この対策として、インヒビターそのものを強化する方法
としてのSn添加(%開田58−217630号公報)
が提案され、又本出願人は先に板厚方向の集合組織の改
善としての予備冷間圧延法(特願昭58−001693
号)を出願したが、薄手材の表面層集合組織コントロー
ルに着眼できなかった点で、その品質特性に限界があっ
た。
As a countermeasure for this, Sn addition is used as a method to strengthen the inhibitor itself (%Kaida No. 58-217630).
has been proposed, and the present applicant has previously proposed a preliminary cold rolling method (Japanese Patent Application No. 58-001693) for improving the texture in the sheet thickness direction.
However, its quality characteristics were limited because it could not focus on controlling the texture of the surface layer of thin materials.

(発明が解決しようとする問題点) 本発明は、AtNを利用した高磁束密度電磁鋼板を製造
するに際し、とくに薄手材の品質特性を高位安定化させ
る方法を提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention aims to provide a method for highly stabilizing the quality characteristics of thin materials when manufacturing high magnetic flux density electrical steel sheets using AtN. be.

本発明は薄手材製造のメタラジ−を考察し、とくに表面
層近傍にしか存在しないゴス方位粒そのものの改質すな
わち表面層集合組織のコントロールを狙っておシ、冷間
圧延での結晶回転に着眼したものである。
The present invention considers metallurgy in the production of thin materials, and in particular aims at modifying the Goss-oriented grains themselves that exist only near the surface layer, that is, controlling the surface layer texture, and focusing on crystal rotation during cold rolling. This is what I did.

(問題点を解決するための手段) 本発明の要旨とするところは下記のとおシである。(Means for solving problems) The gist of the present invention is as follows.

(1) S12〜4%、SoA入t O,02〜0.0
4 qbを含有する熱延板を15〜40係の冷延率で予
備冷間圧延を行なった後、焼鈍し、次いで80〜90係
の冷延率で最終冷間圧延を行々い、0.15〜0.25
諺の板厚とした後、脱炭焼鈍及び高温仕上焼鈍する製造
工程において、上記予備冷間圧延を熱延板スケール付着
のまま行なうことを特徴とする鉄損の優れた薄手高磁束
密度一方向性電磁鋼板の製造方法。
(1) S12~4%, SoA included tO,02~0.0
After performing preliminary cold rolling at a cold rolling rate of 15 to 40, the hot rolled sheet containing 4 qb was annealed, and then final cold rolling was performed at a cold rolling rate of 80 to 90. .15-0.25
A thin, high magnetic flux density unidirectional sheet with excellent core loss characterized by performing the above preliminary cold rolling with scale adhering to the hot rolled sheet in the manufacturing process of decarburization annealing and high-temperature finish annealing after achieving the proverbial thickness. manufacturing method of magnetic steel sheet.

(2)  上記予備冷間圧延の圧延方向を熱間圧延での
圧延方向と逆の方向とする前項記載の方法。
(2) The method according to the preceding item, wherein the rolling direction of the preliminary cold rolling is opposite to the rolling direction of the hot rolling.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の出発素材は公知の方法によって製鋼、熱間圧延
され、以下の成分を含む。
The starting material of the present invention is steel-made and hot-rolled by a known method, and contains the following components.

すなわち、812〜4チを含有し、ビス方位の選択成長
を積極的に行なわせるため、紅及びNを含む。又その他
のインヒビターとして公知の析出分散型元素(Mn +
 Cu + S )や粒界偏析型元素(Sn)を含んで
も良い。かかる化学成分からなる熱延板を、熱間圧延中
の2次スケールがついたまま、15〜40%の冷延率で
の予備冷間圧延(以下、黒皮圧延)を施し、次いでAA
N微細析出のためと再結晶集合組織を得るために800
〜1200℃の焼鈍処理を行なう。次いで、酸洗を行な
い表面スケールを除去し、80〜90%冷延率で最終冷
間圧延を施し、0.15〜0.25 amの板厚に仕上
げる。
That is, it contains 812 to 4 chi, and also contains crimson and N in order to actively selectively grow the screw orientation. In addition, other inhibitors include well-known precipitated and dispersed elements (Mn +
Cu + S) or a grain boundary segregation type element (Sn) may be included. A hot-rolled sheet made of such chemical components is subjected to preliminary cold rolling (hereinafter referred to as black skin rolling) at a cold rolling rate of 15 to 40% with the secondary scale still attached during hot rolling, and then AA
800 for N fine precipitation and to obtain recrystallized texture.
Annealing treatment is performed at ~1200°C. Next, pickling is performed to remove surface scale, and final cold rolling is performed at a cold rolling rate of 80 to 90% to give a plate thickness of 0.15 to 0.25 am.

なお、最終冷間圧延前の酸洗は、鋼板形状をフラットに
仕上げるために不可欠である。このとき、複数・やス間
に100〜400℃のC,N時効処理をすることが好ま
しい。続いて、通常の脱炭焼鈍を700〜1000℃で
行ない、最終仕上焼鈍をパッチ炉で実施した後、張力コ
ーティングを塗布し製品となす。
Note that pickling before the final cold rolling is essential in order to finish the steel plate shape flat. At this time, it is preferable to perform C, N aging treatment at 100 to 400° C. between the plurality of layers. Subsequently, normal decarburization annealing is performed at 700 to 1000°C, and after final finish annealing is performed in a patch furnace, a tension coating is applied to produce a product.

黒皮圧延時の圧延方向としては、熱間圧延での仕上圧延
中の圧延方向と逆方向に圧延した方が、よシ好ましい。
As for the rolling direction during black skin rolling, it is more preferable to roll in the opposite direction to the rolling direction during finish rolling in hot rolling.

以下、本発明者達の行なった実験結果について、説明す
る。供試材は、第1表に示すAt含有一方向性電磁鋼板
である。
Below, the results of experiments conducted by the present inventors will be explained. The test materials were At-containing unidirectional electrical steel sheets shown in Table 1.

これを、第2表に示す工程で製品とした。This was made into a product through the steps shown in Table 2.

第2表 かくして得られた製品の磁気特性の結果を、第1図(a
) 、 (b)に示す。なお、1点のプロットは、6測
定点の平均を示す。予備冷延を黒皮圧延したものの磁性
が優れており、その中でも予備冷間圧延を熱間圧延の方
向と逆方向に圧延した方が最も良いことが分る。本発明
者らはこの原因として以下の様に考える。
Table 2 The results of the magnetic properties of the product thus obtained are shown in Figure 1 (a
), shown in (b). Note that one point plot indicates the average of six measurement points. It can be seen that the magnetic properties of the pre-cold-rolled and black-skin-rolled samples are excellent, and among these, it is best to perform the pre-cold rolling in the direction opposite to the hot rolling direction. The present inventors believe that the cause of this is as follows.

まず、黒皮圧延の効果として、表面スケールの影響によ
シ冷間圧延時の摩擦係数が増加したため相当応力歪分布
が変化し、塑性変形における結晶方位回転が変わり、と
くに表面層集合組織が改善されることである。
First, as an effect of black skin rolling, the friction coefficient during cold rolling increases due to the influence of surface scale, which changes the equivalent stress strain distribution, changes the crystal orientation rotation during plastic deformation, and improves the surface layer texture in particular. It is to be done.

これを、第2図に示す。図中、酸洗材、黒皮材の意味は
、各々酸洗後、予備冷間圧延した材料及び黒皮材の−t
−i予備冷間圧延した材料であることを示す。なお何れ
も予備冷間圧延は、熱間圧延と逆方向に行々った。この
図で見る如く、酸洗材の差として、表面から測定上の第
1層と第2Nに着目しなければならガい。すなわち、黒
皮材では(111) (100) 、 (112) 、
 (110)面の全てにわたって第1層よシ第2層の方
が面強度増加していることで酸洗材ではこの傾向が見ら
れない。なおX線(Mo−Ka)の浸透深さは約10〜
20μm(95%浸透)あるため、図中第2層は全厚の
1/6 tで測定していることになる。このため、第2
層は二次再結晶発生核と考えられ、この層で(110)
と(111)面粗が黒皮材で増加していることは、二次
再結晶発達過程で極めて重要である。すなわち、(11
0)面粗の増加による二次再結晶核数の確保とコ9ス粒
に喰われやすい(111)面粗((110)〈OOl〉
と(111)〈112〉は、(110>軸まわシに35
°回転の関係にあシ、(111) (112’)方位粒
が(110) <001>方位粒の周囲にあった場合、
(110) <001>方位粒が成長しやすい条件にあ
ると考えられる。)の増加は、二次再結晶の安定化に寄
与したものと推察される。
This is shown in FIG. In the figure, the meanings of pickled material and black-skinned material are respectively the material pre-cold rolled after pickling and the -t of black-skinned material.
-i Indicates that the material is pre-cold rolled. In each case, the preliminary cold rolling was performed in the opposite direction to the hot rolling. As seen in this figure, as a difference between the pickling materials, it is necessary to pay attention to the first layer and the second layer measured from the surface. That is, for black bark wood, (111) (100), (112),
This tendency is not observed in the pickled material because the surface strength of the second layer is higher than that of the first layer over the entire (110) surface. The penetration depth of X-rays (Mo-Ka) is approximately 10~
Since the thickness is 20 μm (95% penetration), the second layer in the figure is measured at 1/6 t of the total thickness. For this reason, the second
This layer is considered to be a secondary recrystallization generation nucleus, and in this layer (110)
The increase in (111) surface roughness in black-skinned materials is extremely important in the secondary recrystallization development process. That is, (11
0) Ensuring the number of secondary recrystallized nuclei by increasing surface roughness and (111) surface roughness that is easily eaten by cos grains ((110)〈OOl〉
and (111)<112> is (110>35 on the axis)
If there is a (111) (112') oriented grain around a (110) <001> oriented grain in the relationship of rotation,
(110) It is considered that the conditions are such that grains with <001> orientation are easy to grow. ) is presumed to have contributed to the stabilization of secondary recrystallization.

また、予備冷間圧延の圧延方向の影響に関して以下に考
察する。熱延板の集合組織を観察すると1/7厚層にお
いて、ゴス方位が主方位であるが、TD/ <110>
を回転軸として約10°傾斜していることが分る。この
とき、熱間圧延方向に向かつて材料の頭、すなわちRD
/<100>方位先端が中心層へ10°傾いている。こ
の傾斜角を、次工程以下の冷延−再結晶過程でコントロ
ールし、よりシャープなゴス方位にすることh″−出来
れば、製品磁束密度の向上をはかれる。この考え方に立
って実験したのが冷間圧延での圧延方向試験であるが、
結果的に予備冷間圧延を熱間圧延方向と逆に行なったこ
とが、ゴス方位のTD/ (110>軸回転をコントロ
ールし、よりシャープカゴス方位を形成したものと考え
られる。
Furthermore, the influence of the rolling direction during preliminary cold rolling will be discussed below. Observing the texture of the hot rolled sheet, in the 1/7th thick layer, the Goss orientation is the main orientation, but TD/<110>
It can be seen that the axis of rotation is approximately 10°. At this time, the head of the material toward the hot rolling direction, that is, RD
/<100> azimuth tip is tilted 10° toward the central layer. By controlling this inclination angle in the cold rolling-recrystallization process that follows the next process, it is possible to obtain a sharper Goss orientation, and if possible, to improve the product magnetic flux density. This is a rolling direction test in cold rolling.
As a result, it is thought that performing the preliminary cold rolling in the opposite direction to the hot rolling direction controlled the TD/(110> axis rotation of the Goss orientation and formed a sharper Goss orientation.

なお、本発明者らは薄手材の表面層集合組織コントロー
ルの目的で、冷間圧延ロール性状、す々わちダル、スム
ースロール々どの影響も調査したが、この予備圧延をス
ムースロール(0,9μm以下)で行なう方が、ダルロ
ール(1μm以上)で圧延するよシも若干磁性が安定化
する方向であることが確められた。
In addition, the present inventors have investigated the effects of cold rolling roll properties, whether they are dull or smooth rolls, for the purpose of controlling the surface layer texture of thin materials. It was confirmed that rolling with a diameter of 9 μm or less stabilizes the magnetism slightly more than rolling with dull rolls (1 μm or more).

また、黒皮圧延に関しての公知例として特開昭58−5
2425号公報記載の方法がある。この目的は、電磁鋼
熱延板への予備冷延による結晶組織の調整と次の焼鈍で
の脱炭の容易化であるが、黒皮圧延の意味は、表面5i
02スケールの破壊にょる脱炭性向上であシ、製造品種
としては実施例にある如く無方向性電磁鋼板である。之
に対して本発明は、薄手一方向性電磁鋼板を対象として
、二次再結晶の安定化を狙って、表面層集合組織をコン
トロールしたものであシ、対象も目的も前者とは相違す
る。
Also, as a known example of black skin rolling, JP-A-58-5
There is a method described in No. 2425. The purpose of this is to adjust the crystal structure by pre-cold rolling to electrical steel hot-rolled sheets and to facilitate decarburization in the subsequent annealing.
The decarburization property was improved by 02 scale fracture, and the manufactured product was a non-oriented electrical steel sheet as shown in the examples. In contrast, the present invention targets a thin unidirectional electrical steel sheet and controls the surface layer texture with the aim of stabilizing secondary recrystallization, and is different in target and purpose from the former. .

次に、本発明における構成要件の限定理由について述べ
る。
Next, the reasons for limiting the constituent elements in the present invention will be described.

Stは2チ未満では良好々鉄損が得られず4チを超える
と冷間圧延性が著るしく劣化する。
If St is less than 2 inches, good iron loss cannot be obtained, and if it exceeds 4 inches, cold rollability will be significantly deteriorated.

At及びNはインヒビターAtNを形成するため必要で
ある。SoL、ALの適量は0.02〜0.04%が良
い。SoL、ALが、低過ぎると磁束密度が低く、高過
ぎると二次再結晶が不安定と々る。Nの適量は、0.0
04〜0.0121である。低過ぎるとAtNが不足し
、高過ぎると製品にブリスターが発生する。
At and N are required to form the inhibitor AtN. The appropriate amount of SoL and AL is preferably 0.02 to 0.04%. When SoL and AL are too low, the magnetic flux density is low, and when SoL and AL are too high, secondary recrystallization becomes unstable. The appropriate amount of N is 0.0
04 to 0.0121. If it is too low, AtN will be insufficient, and if it is too high, blistering will occur in the product.

Mn及びSけMnSを形成させるために必要な元素であ
ジインヒビターの作用を奏させるためK Mn0.03
〜0.15係、80.01〜0.05係が適量である。
K Mn0.03 is an element necessary to form Mn and S.
~0.15 ratio and 80.01~0.05 ratio are appropriate amounts.

その他、Sn + Cuを複合添加することによシ、イ
ンヒビターの強化とグラスフィルムの向上カ達成され、
各々の適量範囲は0.02〜0,3%である。
In addition, by adding Sn + Cu in combination, the ability to strengthen the inhibitor and improve the glass film was achieved.
The appropriate amount range for each is 0.02 to 0.3%.

少なすぎると効果がなく、多すぎるとコスト高となる。If it is too small, it will be ineffective, and if it is too large, it will be costly.

スラブの鋳造まで公知の方法で行なわれ、熱間圧延も公
知手法である。熱延板の厚みは、1.6〜3.5mが好
ましい。薄すぎると熱延中の冷却が早く、インヒビター
のコントロールカ難かしり、厚すぎると熱延板処理工程
での曲げ変形時制れる。
The casting of the slab is carried out by a known method, and hot rolling is also a known method. The thickness of the hot rolled plate is preferably 1.6 to 3.5 m. If it is too thin, it will cool quickly during hot rolling, making it difficult to control the inhibitor, and if it is too thick, it will be difficult to control bending deformation during the hot rolling process.

予備冷間圧延率は15〜40係が好ましく、15係未満
では線混異常が発生しやすく、40係を超えると磁束密
度が劣化する。最終冷間圧延率は80〜90%であシ、
80係未満で磁束密度の劣化、90チを超えると細粒異
常が発生する。
Preliminary cold rolling ratio is preferably 15 to 40 times. If it is less than 15 times, wire mix-up error is likely to occur, and if it exceeds 40 times, the magnetic flux density will deteriorate. The final cold rolling rate is 80-90%,
When it is less than 80 degrees, the magnetic flux density deteriorates, and when it exceeds 90 degrees, fine grain abnormality occurs.

斎終板厚を0.15−〜0.25++sとした理由は、
0.15mm未満では180°磁区幅が拡大し鉄損劣化
が起きること、0.25閣を超えると予備冷間圧延をす
る必要が々いことからである。
The reason why the final plate thickness was set to 0.15-0.25++s is as follows.
This is because if it is less than 0.15 mm, the magnetic domain width will expand by 180° and iron loss will deteriorate, and if it exceeds 0.25 mm, it will be necessary to perform preliminary cold rolling.

脱炭焼鈍は、800〜1000℃、湿水素中で連続焼鈍
し脱炭させる。
Decarburization annealing is performed by continuous annealing in wet hydrogen at 800 to 1000°C to decarburize.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

C0,05%、813.0%、Mn0.08%、SO,
025% 、 5oLkL 0.033% 、 N O
,006%を含む溶鋼を、連続鋳造し、熱延した。熱延
板2.2 mm厚を酸洗したものと酸洗し々いものの2
種類をつくり、熱延方向を確認しつつ予備冷間圧延方向
を選択し、1.6 mi (27’I=冷延率)に仕上
げ、次いで1100℃で2分均熱し急冷した。その後、
酸洗し0.22w+m(86%冷延率)までレバース圧
延した。
C0.05%, 813.0%, Mn0.08%, SO,
025%, 5oLkL 0.033%, N O
,006% was continuously cast and hot rolled. Hot-rolled plate 2.2 mm thick, pickled and lightly pickled
A type was prepared, a pre-cold rolling direction was selected while confirming the hot rolling direction, the roll was finished to 1.6 mi (27'I=cold rolling rate), and then soaked at 1100° C. for 2 minutes and rapidly cooled. after that,
It was pickled and reverse rolled to 0.22w+m (86% cold rolling rate).

以下、MgO塗布後、1200℃で仕上焼鈍した。かく
して得られた鋼板に、コロイダルシリカ、無水クロム酸
、リン酸アルミニウムを主成分とするコーテイング液を
塗布(張力コーティング)上平板化焼鈍を行って、磁気
特性を測定したところ、以下のとおシであった。
After coating with MgO, finish annealing was performed at 1200°C. The thus obtained steel plate was coated with a coating liquid mainly composed of colloidal silica, chromic acid anhydride, and aluminum phosphate (tension coating), flattened and annealed, and its magnetic properties were measured. there were.

酸洗後、予備冷間圧延し、圧延方向を熱延と順方向とし
たもの W17Ao= 0.98 W/klil 、 B、。=
 1.91 T黒皮性きのまま予備冷延し、圧延方向を
熱延と順方向としたもの Wl、15o=0.91w/に9.13.。=1.93
T黒皮付きのまま予備冷延し、圧延方向を熱延と逆方向
としたもの W17A、 =0.88 w、49 、 B、o= 1
.94 T以上の如く、黒皮圧延材の磁性向上が著るし
く、また圧延方向を熱延方向と逆にすることによって、
−そうの改善が達成された。
After pickling, preliminary cold rolling was carried out, and the rolling direction was the same as the hot rolling direction.W17Ao=0.98 W/klil, B. =
1.91 T Pre-cold rolled with black flakes, with the rolling direction being in the same direction as the hot rolling Wl, 15o=0.91w/9.13. . =1.93
Pre-cold rolled with T black crust, rolling direction opposite to hot rolling W17A, = 0.88 w, 49, B, o = 1
.. 94 T or higher, the magnetic properties of the black skin rolled material are significantly improved, and by reversing the rolling direction to the hot rolling direction,
- Improvements have been achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は予備冷間圧延条件をパラメータ
ーとした板厚とW   、Hの関係図、第2図は黒皮圧
延効果を、板厚方向での集合組織でX線測定した図であ
る。 第1 (a) θ25  620  0./S 友高JliJ’+(ynvr) 図 θ25 θ2θ  0.15 凝あ核Aと1mm)
Figures 1 (a) and (b) are diagrams showing the relationship between plate thickness and W and H using pre-cold rolling conditions as parameters, and Figure 2 shows the black skin rolling effect measured by X-rays using the texture in the plate thickness direction. This is a diagram. 1st (a) θ25 620 0. /S Tomotaka JliJ'+(ynvr) Figure θ25 θ2θ 0.15 Coagulation nucleus A and 1mm)

Claims (2)

【特許請求の範囲】[Claims] (1)Si2〜4%、SolAl0.02〜0.04%
を含有する熱延板を15〜40%の冷延率で予備冷間圧
延を行なった後、焼鈍し、次いで80〜90%の冷延率
で最終冷間圧延を行ない、0.15〜0.25mmの板
厚とした後、脱炭焼鈍及び高温仕上焼鈍する製造工程に
おいて、上記予備冷間圧延を熱延板スケール付着のまま
行なうことを特徴とする鉄損の優れた薄手高磁束密度一
方向性電磁鋼板の製造方法。
(1) Si2-4%, SolAl0.02-0.04%
After performing preliminary cold rolling at a cold rolling rate of 15 to 40%, a hot rolled sheet containing 0.15 to 0.0 A thin high magnetic flux density sheet with excellent iron loss characterized by performing the preliminary cold rolling with scale adhering to the hot rolled sheet in the manufacturing process of decarburization annealing and high temperature finishing annealing after the sheet thickness is 25 mm. A method for manufacturing grain-oriented electrical steel sheets.
(2)上記予備冷間圧延の圧延方向を、熱間圧延での圧
延方向と逆の方向とする特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein the rolling direction of the preliminary cold rolling is opposite to the rolling direction of the hot rolling.
JP20292884A 1984-09-29 1984-09-29 Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density Pending JPS6184326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20292884A JPS6184326A (en) 1984-09-29 1984-09-29 Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20292884A JPS6184326A (en) 1984-09-29 1984-09-29 Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density

Publications (1)

Publication Number Publication Date
JPS6184326A true JPS6184326A (en) 1986-04-28

Family

ID=16465476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20292884A Pending JPS6184326A (en) 1984-09-29 1984-09-29 Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS6184326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130320A (en) * 1987-07-21 1991-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic
JPH05186832A (en) * 1991-08-20 1993-07-27 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
WO2023157703A1 (en) * 2022-02-15 2023-08-24 新東工業株式会社 Motor core manufacturing method, power generator manufacturing method, motor core, and power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130320A (en) * 1987-07-21 1991-06-04 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic
JPH05186832A (en) * 1991-08-20 1993-07-27 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
WO2023157703A1 (en) * 2022-02-15 2023-08-24 新東工業株式会社 Motor core manufacturing method, power generator manufacturing method, motor core, and power generator

Similar Documents

Publication Publication Date Title
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
CN103069032B (en) Grain oriented electrical steel sheet and method for manufacturing the same
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
EP1081238A2 (en) Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
KR20190058542A (en) Directional electric steel sheet and manufacturing method thereof
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JPH0633138A (en) Manufacture of grain-oriented silicon steel sheet having excellent coating characteristic and magnetic characteristic
JPS6184326A (en) Manufacture of grain oriented silicon steel sheet having superior iron loss and high magnetic flux density
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
KR19980044925A (en) A method for manufacturing a high magnetic flux density directional electric steel sheet by a low temperature slab heating method
JPH06287639A (en) Production of nonoriented silicon steel sheet excellent in all-around magnetic property
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3951402B2 (en) Method for producing grain-oriented electrical steel sheet
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP3951369B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH04362128A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JPH02179823A (en) Manufacture of semiprocess non-oriented electrical sheet having excellent magnetic properties
JPH11264019A (en) Production of grain oriented magnetic steel sheet
JPS6254846B2 (en)