JPS6254846B2 - - Google Patents

Info

Publication number
JPS6254846B2
JPS6254846B2 JP57135128A JP13512882A JPS6254846B2 JP S6254846 B2 JPS6254846 B2 JP S6254846B2 JP 57135128 A JP57135128 A JP 57135128A JP 13512882 A JP13512882 A JP 13512882A JP S6254846 B2 JPS6254846 B2 JP S6254846B2
Authority
JP
Japan
Prior art keywords
annealing
product
silicon steel
rolled
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57135128A
Other languages
Japanese (ja)
Other versions
JPS5925958A (en
Inventor
Katsuro Kuroki
Yozo Suga
Shozaburo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57135128A priority Critical patent/JPS5925958A/en
Publication of JPS5925958A publication Critical patent/JPS5925958A/en
Publication of JPS6254846B2 publication Critical patent/JPS6254846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉄損の優れた高磁束密度一方向性珪素
鋼板の製造方法に関するものである。 一方向性珪素鋼板は軟磁性材料として主にトラ
ンス、その他の電気機器の鉄心材料として使用さ
れるもので磁気特性として励磁特性と鉄損特性が
良好でなくてはならない。磁気特性の優れた材料
を得るには磁化容易軸である<001>軸が圧延方
向に高度に揃うことが重要であるが、この他に結
晶粒度、固有抵抗、表面皮膜等が大きく影響して
くる。方向性の程度は田口悟等による特公昭40−
15644号公報で示された一回冷延法の開発で大巾
に向上し、現在では磁束密度が理論値の96%程度
のものまで製造されるようになつて来ている。こ
れに伴なつて鉄損特性も大巾に向上したが、今後
更に改善していくにはこの方向性の向上だけでは
解決出来ず、固有抵抗の増加及び成品の二次再結
晶粒の微細化を図る製造技術が必要となつて来て
いる。中でも最終冷延時の強圧下を特徴とする高
磁束密度一方向性珪素鋼板の場合には、磁束密度
の向上に伴なつて成品の二次再結晶粒が大きくな
る方向にあり、折角の方向性の向上による鉄損の
改善が打ち消される。そこで結晶粒径を微細化す
る技術開発が待たれていた。 ところが、AlNを二次再結晶の発生に必要な析
出物として用い、最終冷延時の強圧下を特徴とす
る高磁束密度一方向性珪素鋼板の製造方法におい
て、成品結晶粒径を小さくする製造工程条件を採
用すると二次再結晶不良が多発し、工業的安定生
産が不可能であつた。例えば、素材中の酸可溶性
Al量を増やすこと、熱延温度を下げること、お
よび熱延板焼鈍後の冷却時の冷却速度を速くする
こと等が成品結晶粒の微細化に特に効果がある
が、いずれの場合も二次再結晶不良の発生頻度が
増加する。 本発明は成品結晶粒径の微細化を図る製造工程
条件下で発生する二次再結晶不良が溶鋼中にCr
を添加することによつて解消することを見い出し
たものである。ところがCr添加による問題は成
品の表面皮膜の劣化である。周知の如く、一方向
性珪素鋼板の表面には、焼鈍分離剤として塗布し
たMgOと鋼板中のSiを主成分としたフオルテラ
イト系の皮膜を存在させることが一般的に行なわ
れている。この表面皮膜は珪素鋼板をトランス等
に積層して使用する場合の絶縁皮膜として重要な
役割を果すばかりでなく、鋼板と皮膜の膨張係数
の差によつて鋼板に張力を付与し鉄損低減に役立
つものでこの効果は方向性の優れた材料程大き
い。従つて、Cr添加によつて成品結晶粒の微細
化を狙つた製造工程条件を採用しても、一方では
皮膜特性を劣化させることになれば鉄損に対する
微細化効果を充分に生かしているとは言えない。 本発明者等はこうした問題を解決するため、種
種検討した結果、珪素鋼溶鋼中にCuを添加する
ことによつて優れた表面皮膜が形成されることを
見い出した。このように本発明の一つの特徴は、
溶鋼中に皮膜形成に有効な元素を添加することに
ある。従来からの皮膜改善の方法は仕上高温焼鈍
前に塗布される焼鈍分離剤の性質の改良、あるい
は焼鈍分離剤への元素添加が主であつた。ところ
がCrを含んだ材料では、焼鈍分離剤を塗布する
前に行なわれる脱炭焼鈍工程で形成される鋼板表
面の酸化層の生成状態に影響が出てくるためこの
様な方法だけでは抜本的な改善につながらないと
考え溶鋼中に元素を添加し、この働きを利用する
方法を試みたものである。この様な溶鋼中への元
素添加の方法は一般に二次再結晶への影響が大き
いためこれまではほとんど行なわれていなかつた
が、本発明ではCrとCuの複合添加で各々の元素
の特徴を生かし得ることを見い出し、結果として
結晶粒の小さな成品を安定して製造し、かつその
皮膜特性も良好である、鉄損の良い一方向性珪素
鋼板の製造を可能にしたものである。 以下本発明を詳細に述べる。 本発明において用いる珪素鋼素材の成分は次の
通りである。すなわち、C0.025〜0.100%、Si2.5
〜4.0%、Mn0.03〜0.15%、S0.010〜0.050%、酸
可溶性Al0.010〜0.050%、N0.0030〜0.0100%を
基本成分として、かつ本発明の特徴であるCrを
0.03〜0.30%とCuを0.02〜0.30%および必要に応
じてSn0.02〜0.30%を含むものである。 Cは0.025%未満では二次再結晶が不安定にな
り、0.100%を超すと脱炭焼鈍工程における焼鈍
時間が長くなり、好ましくない。 Siは2.5%未満では本発明の目的である低鉄損
が得られない。一方4.0%を超えると冷延時の割
れ発生が著るしくなり好ましくない。 酸可溶性AlとNは、最終冷延率80%以上の強
圧下冷延を基本工程条件とする本発明において、
二次再結晶に必須のAlNを形成させるために必要
であり、下限値として酸可溶性Alは0.010%、
N0.0030%である。そして酸可溶性Alが0.050%を
超えると二次再結晶不良が増大する。Nは0.0100
%を超えると成品鋼板表面にブリスターと呼ばれ
る膨れ状の欠陥が発生し、好ましくない。 MnとSは二次再結晶を一層安定させるに必要
なMnSを形成させるに必要な元素であり、Mnが
0.03%未満、Sが0.010%未満ではMnSの量が不
足し、そしてMnが0.15%を超えるか、Sが0.050
%を超えるとMnSの分散状態が不適切となり、
いずれの場合も二次再結晶不良が増大する。 本発明の特徴の一つであるCrの添加量は0.03〜
0.30%、Cuの添加量は0.02〜0.30%の範囲で複合
添加する必要がある。 Crは前述した様に成品結晶粒の微細化を図る
製造工程条件を採用した場合に発生する二次再結
晶不良を抑え、結果として成品結晶粒の微細化を
達成するものであり、0.03%未満では効果が弱
く、一方0.30%を超すと脱炭焼鈍工程において脱
炭性が悪くなりCを充分に下げることが不可能に
なる。 第1図はC0.060%、Si3.10%、Mn0.07%、
S0.025%、酸可溶性Al0.032%、N0.0085%、
Cu0.10%を有する含Cr珪素鋼スラブを1380℃に
加熱し、2.3mm厚まで熱延し、1120℃×2minの焼
鈍をし、急冷し、0.30mm厚まで冷延し、840℃で
脱炭焼鈍し、焼鈍分離剤としてMgOを塗布し、
1200℃×20hrの仕上高温焼鈍を行なつて得た成品
の二次再結晶不良の発生率と鉄損に及ぼす溶鋼中
Crの影響を示す図である。Cr含有量が多いほど
二次再結晶不良の発生が少なくなり、0.03%以上
は皆無である。この時の鉄損はW17/50
1.01w/Kgであつた。この値は日本工業規格
(JIS)で規定されている最高級等級の1.05w/Kg
(G6H)以下の範囲にあり、本発明条件下では安
定して最高級の鉄損が得られることを示してい
る。 第2図はC0.060%、Si3.10%、Mn0.07%、
S0.025%、酸可溶性Al0.023%、N0.0085%、
Cu0.10%を含有する珪素鋼スラブを1380℃に加
熱し、2.3mm厚まで熱延し、1120℃×2minの焼鈍
をし、急冷し、0.30mm厚まで冷延し、840℃で脱
炭焼鈍し、焼鈍分離剤としてMgOを塗布し、
1200℃×20hrの仕上高温焼鈍を行なつて得た成品
の二次再結晶不良の発生率と鉄損に及ぼす溶鋼中
Crの影響を示す図である。 第1図の場合は溶鋼中の酸可溶性Al0.032%で
あるのに対し、第2図の場合は0.023%と低いた
め二次再結晶不良はCr量の低い場合でも発生し
ないが、鉄損はW17/50で1.06w/Kg前後であ
り、最高級鉄損を安定して得るには問題である。
酸可溶性Alを増加させることにより成品結晶粒
は小さくなり、そして磁束密度が向上することに
なるが、二次再結晶不良の発生が増えるので工業
的な安定生産のためには酸可溶性Alはあまり多
く出来なかつた。従つて第2図に示すように、鉄
損として最高級品を得ることが仲々困難であつ
た。ところが、第1図に示すようにCrを含有し
ている場合、酸可溶性Alが高くても二次再結晶
が安定しているため、工業的に安定して最高級品
を製造出来る。酸可溶性Al量を増加させること
と同じような現象(成品結晶粒が微細化するか、
あるいは磁束密度が向上するが、しかし限度を超
すと二次再結晶不良の発生が増大するという現
象)は熱延温度を下げる、熱延板焼鈍後の冷
却速度を急冷にする、冷延工程での複数パス間
に行なう時効の温度を上げる、脱炭焼鈍時の加
熱速度を上げるという条件を採用した場合に生ず
る。なお、これらの条件を単独に採用することで
結晶粒成長を小さくすることができるが、各条件
の適切な組合せでも同様な効果を奏させることが
できる。従つて、酸可溶性Alの添加量が、成品
結晶粒の微細化を達成し得ない程度の量であつて
も、上記諸条件を採用することにより結晶粒成長
を小さくすることができる。これらの条件を採用
した場合に発生する二次再結晶不良の解消にも
Cr添加は効果がある。最近、成品板厚を0.30mmよ
り薄くして、例えば0.23、0.15mmにして、鉄損を
向上させることが行なわれつつあるが、薄手化す
ると二次再結晶不良が増加し、成品結晶粒が大き
くなるといつた問題がある。この対策として本発
明技術は特に有効である。 ところで、製造工程条件を成品結晶粒が微細化
する方向で選択する以外に、成品結晶粒を微細化
する効果的な方法は特開昭53−134722号公報で示
されるように溶鋼中にSnを適当量だけ添加する
ことである。したがつてSnを添加した材料で、
さらに製造工程条件として成品結晶粒が微細化す
る条件を選択し、その時に発生する二次再結晶不
良を解消するためCrを添加した場合に得られる
鉄損は極めて良好である。この時のSnは0.03%未
満では成品結晶粒の微細化効果が小さく、0.30%
を超すと冷延時の割れが著るしくなるので、0.03
〜0.30%にする必要がある。 Cuは成品表面の絶縁皮膜(焼鈍分離剤として
のMgOと鋼中のSiを主成分とする酸化物)の形
成には非常に優れた元素で密着性、絶縁性の良い
皮膜が得られ、さらには密着性が良いため鋼板と
皮膜の膨張係数の差によつて鋼板に付与される張
力が大きくなるため鉄損低減の効果がある。しか
しながらCu単独の添加では成品結晶粒が粗大化
して鉄損が劣化する。本発明はこのCuの皮膜改
善効果を、前記のCr添加材に加え合せることに
よつて、鉄損の極めて良好な成品の製造を可能に
したものである。すなわち、製造工程条件は成品
結晶粒を微細化する方向を採用し、その時に発生
する二次再結晶不良はCr添加で解消し、Cr添加
による皮膜劣化はCu添加で改善し、Cu添加によ
る成品結晶粒の粗大化は製造工程条件の適切化で
無くする、といつた有機的な組合せを見い出した
ものである。 第3図はC0.060%、Si3.15%、Mn0.07%、
S0.025%、酸可溶性Al0.031%、N0.0085%、
Sn0.10%、Cr0.15%を含有する含Cu珪素鋼スラ
ブを1350℃に加熱し、2.3mm厚まで熱延し、1120
℃×2minの焼鈍をし、急冷し、0.30mm厚まで冷
延し、840℃で脱炭焼鈍し、焼鈍分離剤として
MgOを塗布し、1200℃×20hrの仕上高温焼鈍を
行なつて得た成品の表面皮膜の張力、及び鉄損に
対するCuの影響を示したものである。 ここで皮膜の張力は仕上高温焼鈍後の板にリン
酸、無水クロム酸、リン酸アルミニウムを主成分
とするコーテイング液を塗布し平板化焼鈍を行な
つた後の鋼板の片面の皮膜を酸により除去するこ
とによつて生じる彎曲量から計算で求めたもので
ある。この図から皮膜張力が安定して大きいCu
量の範囲は0.02〜0.30%であり、鉄損も安定して
良好である。 Cuが成品表面に良質な皮膜を形成させる効果
を持つ理由については明らかではないが、次のよ
うに推察している。成品表面に良質な皮膜を形成
させるには、その下地となる脱炭焼鈍後の酸化層
が適切でなければならない。実験結果から見ると
Cuを添加したものはCr単独添加したものに比べ
て、切れ目のない均一な厚みの酸化層が形成され
ている。この酸化層はFe、Si、Alの酸化物を主
成分とし、さらにCr、Cuが混在していると考え
られるが、Cuの存在がこの酸化層を成品表面の
絶縁皮膜の形成に適切な状態にしていると考えら
れる。 上記の如き成分を有する珪素含有溶鋼は如何な
る溶解法を用いても良く、又鋳造法についても方
法を問わない。次いでこの珪素鋼スラブを熱延に
より熱延板とし、引き続いて1回の冷延、あるい
は中間焼鈍を含む複数回の冷延により最終板厚と
する。本発明では高磁束密度一方向性電磁鋼板を
得ることを目的としておるので、最終冷延時の圧
下率として80%以上の強圧下が必要である。そし
てこの強圧下冷延の前に行なわれる焼鈍としては
(1回冷延法では熱延板焼鈍、複数回冷延法では
中間焼鈍に対応する)950〜1200℃で30sec〜
30minの焼鈍を行ない急冷によりAlNの析出状態
を制御する。 かくして最終板厚に冷延した板に脱炭焼鈍を施
す。脱炭焼鈍は脱炭及び一次再結晶を行なわせる
と同時に成品表面の絶縁皮膜の形成に必要な酸化
層を生成させる役割を持つている。脱炭焼鈍後の
鋼板表面には仕上高温焼鈍時における焼付防止及
び成品表面の絶縁皮膜形成のために焼鈍分離剤を
塗布する。焼鈍分離剤としてはMgOを主成分と
し、その他目的に応じてTiO2、Al2O3、CaO、B
化合物、S化合物、N化合物を添加したものを用
いることが出来る。この脱炭焼鈍に引き続いて仕
上高温焼鈍を行なう。この焼鈍は、二次再結晶、
純化および成品表面にMgOとSiO2の混合物であ
るフオルステライトを主成分とする(鋼中の
Cr、Al、Cu、あるいは焼鈍分離剤に添加した
Ti、B、等の元素を混入している)絶縁皮膜を
形成させることを目的としており、通常1100℃以
上で5時間以上水素又は水素を含んだ混合雰囲気
中で行なう。仕上高温焼鈍後に例えばリン酸、無
水クロム酸、リン酸アルミニウムを主成分とした
コーテイング液(張力コーテイング)を塗布し、
平坦化を目的とした連続焼鈍を行ない製品とす
る。このコーテイングで表面皮膜は一段と強固で
かつ張力の大きい皮膜として完成する。 以下、本発明を実施例にもとづいて説明する。 実施例 1 C0.070%、Si3.08%、Mn0.075%、S0.025%、
酸可溶性Al0.030%、N0.0085%、Cu0.08%を含
む溶鋼を二本の鋼塊に分注し、Cr量をそれぞれ
0.01%、0.08%とした。次いで、2.3mm厚まで熱延
し、これを1130℃×2minの焼鈍をした後、60℃
の湯の中に急冷する析出焼鈍を行なつた。次いで
酸洗し、0.30mmまで10パスで冷延した。この冷延
時の各パス間に250℃×5minの時効処理を行なつ
た。次いで脱炭焼鈍を850℃で120sec間、湿水素
中で行なつた。次いでMgOとTiO2を混合した焼
鈍分離剤を塗布し、1200℃×20hrの仕上高温焼鈍
を行なつた後、張力コーテイングを施した。この
成品の磁気特性と二次再結晶不良率は第一表の通
りである。
The present invention relates to a method for manufacturing a high magnetic flux density unidirectional silicon steel sheet with excellent iron loss. Unidirectional silicon steel sheets are soft magnetic materials that are mainly used as core materials for transformers and other electrical equipment, and must have good magnetic properties in terms of excitation properties and iron loss properties. In order to obtain a material with excellent magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction, but other factors such as crystal grain size, specific resistance, and surface coating also have a large influence. come. The degree of directionality is determined by Satoru Taguchi et al.
With the development of the one-time cold rolling method disclosed in Publication No. 15644, there has been a significant improvement, and now products with magnetic flux densities of approximately 96% of the theoretical value are being manufactured. Along with this, the iron loss characteristics have also improved significantly, but further improvements in the future cannot be solved by improving this direction alone, increasing the specific resistance and making the secondary recrystallized grains of the product finer. There is a growing need for manufacturing technology to achieve this. In particular, in the case of high magnetic flux density unidirectional silicon steel sheets, which are characterized by strong reduction during final cold rolling, the secondary recrystallized grains of the product tend to become larger as the magnetic flux density increases, and the directionality is The improvement in iron loss due to the improvement in iron loss is canceled out. Therefore, the development of technology to reduce the crystal grain size has been awaited. However, in the manufacturing method of high magnetic flux density unidirectional silicon steel sheet, which uses AlN as a precipitate necessary for the occurrence of secondary recrystallization and is characterized by strong reduction during final cold rolling, a manufacturing process that reduces the grain size of the product is difficult. If these conditions were adopted, secondary recrystallization failures frequently occurred, making stable industrial production impossible. For example, acid solubility in the material
Increasing the amount of Al, lowering the hot-rolling temperature, and increasing the cooling rate during cooling after hot-rolled sheet annealing are particularly effective in refining the grains of the product, but in any case, secondary The frequency of occurrence of recrystallization defects increases. In the present invention, secondary recrystallization defects that occur under manufacturing process conditions that aim to refine the crystal grain size of the product are solved by Cr in the molten steel.
It was discovered that the problem could be solved by adding . However, the problem with the addition of Cr is the deterioration of the surface film of the product. As is well known, on the surface of a unidirectional silicon steel sheet, it is common practice to provide a fulterite-based film whose main components are MgO applied as an annealing separator and Si in the steel sheet. This surface film not only plays an important role as an insulating film when silicon steel sheets are laminated in transformers, etc., but also applies tension to the steel sheet due to the difference in expansion coefficient between the steel sheet and the film, reducing iron loss. This effect is greater for materials with better directionality. Therefore, even if manufacturing process conditions are adopted that aim at refining the crystal grains of the finished product by adding Cr, if this results in deterioration of the film properties, it may be difficult to make full use of the refining effect on iron loss. I can't say that. In order to solve these problems, the present inventors conducted various studies and found that an excellent surface film can be formed by adding Cu to molten silicon steel. Thus, one feature of the present invention is that
The purpose is to add elements effective for film formation to molten steel. Conventional methods for improving coatings have mainly involved improving the properties of the annealing separator applied before final high-temperature annealing, or adding elements to the annealing separator. However, in the case of materials containing Cr, the formation of an oxidized layer on the surface of the steel sheet formed during the decarburization annealing process performed before applying the annealing separator is affected, so this method alone is not a drastic solution. Thinking that this would not lead to improvement, they attempted a method of adding elements to molten steel and utilizing this effect. This method of adding elements to molten steel has generally been rarely used because it has a large effect on secondary recrystallization, but in the present invention, the characteristics of each element can be adjusted by adding Cr and Cu in combination. As a result, it has become possible to stably manufacture products with small crystal grains, and to manufacture grain-oriented silicon steel sheets with good film properties and good iron loss. The present invention will be described in detail below. The ingredients of the silicon steel material used in the present invention are as follows. i.e. C0.025~0.100%, Si2.5
~4.0%, Mn0.03~0.15%, S0.010~0.050%, acid-soluble Al0.010~0.050%, N0.0030~0.0100% as basic components, and Cr, which is a feature of the present invention.
It contains 0.03 to 0.30% Cu, 0.02 to 0.30% Sn, and 0.02 to 0.30% Sn as necessary. If C is less than 0.025%, secondary recrystallization becomes unstable, and if it exceeds 0.100%, the annealing time in the decarburization annealing step becomes longer, which is not preferable. If Si is less than 2.5%, the low core loss that is the object of the present invention cannot be obtained. On the other hand, if it exceeds 4.0%, the occurrence of cracking during cold rolling becomes significant, which is not preferable. Acid-soluble Al and N are used in the present invention, which uses strong reduction cold rolling with a final cold rolling reduction of 80% or more as the basic process condition.
It is necessary to form AlN, which is essential for secondary recrystallization, and the lower limit is 0.010% acid-soluble Al.
N0.0030%. When acid-soluble Al exceeds 0.050%, secondary recrystallization defects increase. N is 0.0100
If it exceeds %, bulge-like defects called blisters will occur on the surface of the finished steel sheet, which is undesirable. Mn and S are elements necessary to form MnS, which is necessary to further stabilize secondary recrystallization.
If the amount of MnS is less than 0.03% or S is less than 0.010%, the amount of MnS is insufficient, and if the amount of Mn exceeds 0.15% or S is 0.050.
If it exceeds %, the dispersion state of MnS becomes inappropriate,
In either case, secondary recrystallization defects increase. The amount of Cr added, which is one of the features of the present invention, is 0.03~
0.30%, and Cu needs to be added in a combined amount in the range of 0.02 to 0.30%. As mentioned above, Cr suppresses secondary recrystallization defects that occur when manufacturing process conditions that aim to refine product crystal grains, and as a result, achieves refinement of product crystal grains, and is less than 0.03%. On the other hand, if it exceeds 0.30%, decarburization performance deteriorates in the decarburization annealing process, making it impossible to lower C sufficiently. Figure 1 shows C0.060%, Si3.10%, Mn0.07%,
S0.025%, acid soluble Al0.032%, N0.0085%,
A Cr-containing silicon steel slab containing 0.10% Cu was heated to 1380℃, hot-rolled to a thickness of 2.3mm, annealed at 1120℃×2min, rapidly cooled, cold-rolled to a thickness of 0.30mm, and debonded at 840℃. Charcoal annealing, applying MgO as an annealing separator,
Influence of secondary recrystallization defects and iron loss in molten steel of products obtained by final high-temperature annealing at 1200°C x 20 hours
FIG. 3 is a diagram showing the influence of Cr. The higher the Cr content, the less secondary recrystallization defects occur, and there are no secondary recrystallization defects at 0.03% or more. The iron loss at this time is approximately W 17/50
It was 1.01w/Kg. This value is the highest grade 1.05w/Kg specified by the Japanese Industrial Standards (JIS).
(G6H) is in the following range, indicating that the highest grade of iron loss can be stably obtained under the conditions of the present invention. Figure 2 shows C0.060%, Si3.10%, Mn0.07%,
S0.025%, acid soluble Al0.023%, N0.0085%,
A silicon steel slab containing 0.10% Cu was heated to 1380℃, hot rolled to a thickness of 2.3mm, annealed at 1120℃×2min, rapidly cooled, cold rolled to a thickness of 0.30mm, and decarburized at 840℃. Annealed, coated with MgO as an annealing separator,
Influence of secondary recrystallization defects and iron loss in molten steel of products obtained by final high-temperature annealing at 1200°C x 20 hours
FIG. 3 is a diagram showing the influence of Cr. In the case of Figure 1, the acid-soluble Al in the molten steel is 0.032%, while in the case of Figure 2 it is as low as 0.023%, so secondary recrystallization failure does not occur even when the Cr content is low, but iron loss is around 1.06w/Kg at W 17/50 , which is a problem in stably obtaining the highest quality iron loss.
By increasing the amount of acid-soluble Al, the crystal grains of the product become smaller and the magnetic flux density improves, but since the occurrence of secondary recrystallization defects increases, acid-soluble Al is not suitable for stable industrial production. I couldn't do much. Therefore, as shown in Figure 2, it has been difficult to obtain a product with the highest quality iron loss. However, as shown in FIG. 1, when Cr is contained, secondary recrystallization is stable even if the acid-soluble Al content is high, so it is possible to industrially stably produce top-grade products. A phenomenon similar to that of increasing the amount of acid-soluble Al (product crystal grains become finer,
Alternatively, the phenomenon in which the magnetic flux density improves, but if the limit is exceeded, the occurrence of secondary recrystallization defects increases) can be solved by lowering the hot rolling temperature, increasing the cooling rate after annealing the hot rolled sheet, or increasing the cooling rate during the cold rolling process. This occurs when the conditions of increasing the aging temperature between multiple passes and increasing the heating rate during decarburization annealing are adopted. Incidentally, although it is possible to reduce grain growth by employing these conditions alone, the same effect can be achieved by appropriately combining each condition. Therefore, even if the amount of acid-soluble Al added is such that it is impossible to achieve refinement of crystal grains in the product, grain growth can be reduced by adopting the above conditions. It also helps eliminate secondary recrystallization defects that occur when these conditions are adopted.
Cr addition is effective. Recently, attempts have been made to improve core loss by making the product plate thinner than 0.30 mm, for example 0.23 or 0.15 mm, but thinning increases secondary recrystallization defects and reduces product crystal grains. There are problems that come with growing up. The technique of the present invention is particularly effective as a countermeasure against this problem. By the way, in addition to selecting the manufacturing process conditions in a direction that makes the crystal grains of the product finer, an effective method for refining the crystal grains of the product is to add Sn to the molten steel, as shown in Japanese Patent Application Laid-Open No. 134722/1983. Add only the appropriate amount. Therefore, with materials added with Sn,
Furthermore, the iron loss obtained is extremely good when the manufacturing process conditions are selected so that the crystal grains of the product become fine and Cr is added to eliminate secondary recrystallization defects that occur at that time. At this time, if Sn is less than 0.03%, the effect of refining the crystal grains of the product will be small;
If it exceeds 0.03, cracking during cold rolling will become significant.
It needs to be ~0.30%. Cu is an excellent element for forming an insulating film on the surface of a product (an oxide mainly composed of MgO as an annealing separator and Si in steel), and can provide a film with good adhesion and insulation. Because of its good adhesion, the difference in expansion coefficients between the steel plate and the coating increases the tension applied to the steel plate, which has the effect of reducing iron loss. However, when Cu is added alone, the crystal grains of the product become coarse and the iron loss deteriorates. The present invention makes it possible to manufacture a product with extremely good iron loss by adding the film-improving effect of Cu to the above-mentioned Cr additive. In other words, the manufacturing process conditions adopt the direction of making the crystal grains of the product finer, the secondary recrystallization defects that occur at that time are resolved by adding Cr, the film deterioration caused by the addition of Cr is improved by the addition of Cu, and the product is improved by adding Cu. We have found an organic combination in which coarsening of crystal grains can be eliminated by optimizing the manufacturing process conditions. Figure 3 shows C0.060%, Si3.15%, Mn0.07%,
S0.025%, acid soluble Al0.031%, N0.0085%,
A Cu-containing silicon steel slab containing 0.10% Sn and 0.15% Cr was heated to 1350°C and hot rolled to a thickness of 2.3mm.
Annealed at ℃×2min, rapidly cooled, cold rolled to 0.30mm thickness, decarburized annealed at 840℃, used as an annealing separator.
This figure shows the influence of Cu on the tension and iron loss of the surface film of a product obtained by applying MgO and finishing high-temperature annealing at 1200°C for 20 hours. Here, the tension of the coating is determined by applying a coating liquid containing phosphoric acid, chromic anhydride, and aluminum phosphate as main components to the plate after finishing high-temperature annealing, and applying acid to the coating on one side of the steel plate after flattening annealing. This is calculated from the amount of curvature caused by removal. This figure shows that Cu has a stable and large film tension.
The amount ranges from 0.02 to 0.30%, and the iron loss is stable and good. Although it is not clear why Cu has the effect of forming a high-quality film on the surface of a product, it is speculated as follows. In order to form a high-quality film on the surface of a product, the underlying oxide layer after decarburization annealing must be appropriate. From the experimental results
When Cu is added, an oxide layer with a uniform thickness and no breaks is formed compared to when Cr is added alone. This oxide layer is mainly composed of oxides of Fe, Si, and Al, and is thought to contain Cr and Cu, but the presence of Cu puts this oxide layer in an appropriate state for forming an insulating film on the surface of the product. It is thought that the Any melting method may be used for silicon-containing molten steel having the above-mentioned components, and any casting method may be used. Next, this silicon steel slab is hot-rolled into a hot-rolled plate, and subsequently cold-rolled once or multiple times including intermediate annealing to obtain the final thickness. Since the present invention aims to obtain a high magnetic flux density unidirectional electrical steel sheet, a strong rolling reduction of 80% or more is required during final cold rolling. The annealing performed before this strong reduction cold rolling (corresponds to hot rolled plate annealing in the single cold rolling method and intermediate annealing in the multiple cold rolling method) at 950 to 1200°C for 30 seconds to
The AlN precipitation state is controlled by annealing for 30 min and rapid cooling. The plate thus cold-rolled to the final thickness is subjected to decarburization annealing. Decarburization annealing has the role of decarburizing and primary recrystallization and at the same time generating an oxide layer necessary for forming an insulating film on the surface of the product. An annealing separator is applied to the surface of the steel sheet after decarburization annealing to prevent seizure during final high-temperature annealing and to form an insulating film on the surface of the product. The main component of the annealing separator is MgO, and other substances such as TiO 2 , Al 2 O 3 , CaO, and B are also used depending on the purpose.
A compound to which a compound, an S compound, or an N compound is added can be used. Following this decarburization annealing, finish high-temperature annealing is performed. This annealing involves secondary recrystallization,
The main component of purification and product surface is forsterite, which is a mixture of MgO and SiO 2 (in steel).
Cr, Al, Cu, or added to annealing separator
The purpose is to form an insulating film (containing elements such as Ti, B, etc.), and it is usually carried out at 1100° C. or higher for 5 hours or more in hydrogen or a mixed atmosphere containing hydrogen. After finishing high-temperature annealing, a coating liquid (tension coating) containing, for example, phosphoric acid, chromic anhydride, or aluminum phosphate as the main components is applied.
The product is made by continuous annealing for the purpose of flattening. This coating completes the surface film as a film that is even stronger and has greater tension. Hereinafter, the present invention will be explained based on examples. Example 1 C0.070%, Si3.08%, Mn0.075%, S0.025%,
Molten steel containing acid-soluble Al 0.030%, N 0.0085%, and Cu 0.08% was poured into two steel ingots, and the amount of Cr was determined in each ingot.
0.01% and 0.08%. Next, it was hot rolled to a thickness of 2.3 mm, annealed at 1130°C for 2 minutes, and then heated at 60°C.
Precipitation annealing was performed by rapid cooling in hot water. It was then pickled and cold rolled to 0.30 mm in 10 passes. Aging treatment was performed at 250°C for 5 minutes between each pass during this cold rolling. Decarburization annealing was then performed at 850°C for 120 seconds in wet hydrogen. Next, an annealing separator containing a mixture of MgO and TiO 2 was applied, and after finishing high temperature annealing at 1200°C for 20 hours, tension coating was applied. The magnetic properties and secondary recrystallization failure rate of this product are shown in Table 1.

【表】 実施例 2 C0.065%、Si3.10%、Mn0.075%、S0.025%、
酸可溶性Al0.031%、N0.085%、Cr0.11%を含む
溶鋼を二本の鋼塊に分注し、Cu量をそれぞれ
0.01%、0.10%とした。次いで2.3mm厚まで熱延
し、これを1130℃×2minの焼鈍をした後、60℃
の湯の中に急冷する析出焼鈍を行なつた。次いで
酸洗し、0.30mmまで10パスで冷延した。この冷延
時の各パス間に250℃×5minの時効処理を行なつ
た。次いで脱炭焼鈍を850℃で120sec間、湿水素
中で行なつた。次いでMgOとTiO2を混合した焼
鈍分離剤を塗布し、1200℃×20hrの仕上高温焼鈍
を行なつた後、張力コーテイングを施した。この
成品の磁気特性と皮膜張力は第二表の通りであ
る。
[Table] Example 2 C0.065%, Si3.10%, Mn0.075%, S0.025%,
Molten steel containing acid-soluble Al 0.031%, N 0.085%, and Cr 0.11% was poured into two steel ingots, and the amount of Cu was determined in each.
0.01% and 0.10%. It was then hot rolled to a thickness of 2.3mm, annealed at 1130°C for 2 minutes, and then heated at 60°C.
Precipitation annealing was performed by rapid cooling in hot water. It was then pickled and cold rolled to 0.30 mm in 10 passes. Aging treatment was performed at 250°C for 5 minutes between each pass during this cold rolling. Decarburization annealing was then performed at 850°C for 120 seconds in wet hydrogen. Next, an annealing separator containing a mixture of MgO and TiO 2 was applied, and after finishing high temperature annealing at 1200°C for 20 hours, tension coating was applied. The magnetic properties and film tension of this product are shown in Table 2.

【表】 実施例 3 C0.080%、Si3.25%、Mn0.075%、S0.025%、
酸可溶性Al0.028%、N0.0085%、Cr0.100%、
Cu0.08%、Sn0.04%を含んだ鋼塊を熱延し、2.0
mmの熱延板を得た。これに1130℃×7minの焼鈍
を施した後、100℃の湯の中に急冷する析出焼鈍
を行なつた。次いで酸洗し、次いで250℃×5min
の時効処理を施しながら0.22mmまで冷間圧延し
た。 次いで脱炭焼鈍を850℃で、120sec間湿水素雰
囲気中で行なつた。続いてMgOとTiO2を混合し
た焼鈍分離剤を塗布し、1200℃×20hrの仕上高温
焼鈍を行なつた後、張力コーテイングを施した。
この成品の磁気特性と結晶粒度は次の通りであ
る。
[Table] Example 3 C0.080%, Si3.25%, Mn0.075%, S0.025%,
Acid soluble Al0.028%, N0.0085%, Cr0.100%,
Hot-rolled steel ingot containing 0.08% Cu and 0.04% Sn.
A hot rolled sheet of mm was obtained. After annealing at 1130°C for 7 minutes, precipitation annealing was performed by rapidly cooling in hot water at 100°C. Then pickled, then 250℃×5min
It was cold rolled to a thickness of 0.22 mm while undergoing aging treatment. Then, decarburization annealing was performed at 850°C for 120 seconds in a wet hydrogen atmosphere. Subsequently, an annealing separator containing a mixture of MgO and TiO 2 was applied, and after finishing high temperature annealing at 1200°C for 20 hours, tension coating was applied.
The magnetic properties and crystal grain size of this product are as follows.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC0.060%、Si3.10%、Mn0.07%、
S0.025%、SolAl0.032%、N0.0085%、Cu0.10%
を含有する含Cr珪素鋼スラブからの成品の二次
再結晶不良の発生率と鉄損に及ぼす溶鋼中Crの
影響を示す図、第2図はSolAl0.032%で他の化学
成分は第1図の場合と同一である含Cr珪素鋼ス
ラブからの成品の二次再結晶不良の発生率と鉄損
に及ぼす溶鋼中Crの影響を示す図、第3図は
C0.060%、Si3.15%、Mn0.07%、S0.025%、
SolAl0.031%、N0.0085%、Sn0.10%、Cr0.15%
を含有する含Cu珪素鋼スラブからの成品の表面
皮膜の張力および鉄損に対するCuの影響を示す
図である。
Figure 1 shows C0.060%, Si3.10%, Mn0.07%,
S0.025%, SolAl0.032%, N0.0085%, Cu0.10%
Figure 2 shows the influence of Cr in molten steel on the incidence of secondary recrystallization defects and iron loss of products from Cr-containing silicon steel slabs containing SolAl 0.032% and other chemical components as 1. Figure 3 is a diagram showing the influence of Cr in molten steel on the incidence of secondary recrystallization defects and iron loss of products made from Cr-containing silicon steel slabs, which is the same as in the case shown in the figure.
C0.060%, Si3.15%, Mn0.07%, S0.025%,
SolAl0.031%, N0.0085%, Sn0.10%, Cr0.15%
FIG. 2 is a diagram showing the influence of Cu on the tension and core loss of the surface film of a product made from a Cu-containing silicon steel slab containing Cu.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.025〜0.100%、Si:2.5〜
4.0%、Mn:0.03〜0.15%、酸可溶性Al:0.010〜
0.050%、N:0.0030〜0.0100%を含み、更に
Cr:0.03〜0.30%とCu:0.02〜0.30%を複合添加
し、残部Feおよび不可避的不純物からなる珪素
鋼素材を熱間圧延し、次いで析出焼鈍し、最終冷
延率80%以上の冷間圧延を行つて最終板厚とした
後、湿潤含水素雰囲気下に、800〜900℃の温度域
で脱炭焼鈍し、次いで焼鈍分離剤を塗布し、更に
1100℃以上の高温仕上焼鈍を行うことを特徴とす
る一方向性珪素鋼板の製造方法。 2 重量%で、C:0.025〜0.100%、Si:2.5〜
4.0%、Mn:0.03〜0.15%、酸可溶性Al:0.010〜
0.050%、N:0.0030〜0.0100%、Sn:0.02〜0.30
%を含み、更にCr:0.03〜0.30%とCu:0.02〜
0.30%を複合添加し、残部Feおよび不可避的不
純物からなる珪素鋼素材を熱間圧延し、次いで析
出焼鈍し、最終冷延率80%以上の冷間圧延を行つ
て最終板厚とした後、湿潤含水素雰囲気下に、
800〜900℃の温度域で脱炭焼鈍し、次いで焼鈍分
離剤を塗布し、更に1100℃以上の高温仕上焼鈍を
行うことを特徴とする一方向性珪素鋼板の製造方
法。
[Claims] 1% by weight, C: 0.025~0.100%, Si: 2.5~
4.0%, Mn: 0.03~0.15%, acid soluble Al: 0.010~
0.050%, N: 0.0030-0.0100%, and further
A silicon steel material with a composite addition of Cr: 0.03 to 0.30% and Cu: 0.02 to 0.30%, the balance consisting of Fe and unavoidable impurities, is hot rolled, then precipitation annealed, and cold rolled with a final cold rolling ratio of 80% or more. After rolling to the final thickness, decarburization annealing is performed in a moist hydrogen-containing atmosphere at a temperature range of 800 to 900℃, then an annealing separator is applied, and then
A method for producing a grain-oriented silicon steel sheet, characterized by performing high-temperature finish annealing at 1100°C or higher. 2 Weight%: C: 0.025~0.100%, Si: 2.5~
4.0%, Mn: 0.03~0.15%, acid soluble Al: 0.010~
0.050%, N: 0.0030~0.0100%, Sn: 0.02~0.30
%, further Cr: 0.03~0.30% and Cu: 0.02~
A silicon steel material with a composite addition of 0.30% and the balance consisting of Fe and unavoidable impurities is hot rolled, then precipitation annealed, and cold rolled at a final cold rolling rate of 80% or more to obtain the final plate thickness. Under a humid hydrogen-containing atmosphere,
A method for producing a grain-oriented silicon steel sheet, which comprises decarburizing annealing in a temperature range of 800 to 900°C, then applying an annealing separator, and further performing high-temperature finishing annealing at 1100°C or higher.
JP57135128A 1982-08-04 1982-08-04 Unidirectional silicon steel plate and its manufacture Granted JPS5925958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135128A JPS5925958A (en) 1982-08-04 1982-08-04 Unidirectional silicon steel plate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135128A JPS5925958A (en) 1982-08-04 1982-08-04 Unidirectional silicon steel plate and its manufacture

Publications (2)

Publication Number Publication Date
JPS5925958A JPS5925958A (en) 1984-02-10
JPS6254846B2 true JPS6254846B2 (en) 1987-11-17

Family

ID=15144462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135128A Granted JPS5925958A (en) 1982-08-04 1982-08-04 Unidirectional silicon steel plate and its manufacture

Country Status (1)

Country Link
JP (1) JPS5925958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545559Y2 (en) * 1987-12-26 1993-11-22
WO1995013401A1 (en) * 1993-11-09 1995-05-18 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951588B2 (en) * 2008-06-17 2012-06-13 日立アプライアンス株式会社 Electric blower and vacuum cleaner equipped with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015727A (en) * 1973-05-07 1975-02-19
JPS5021928A (en) * 1973-06-28 1975-03-08
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS53134722A (en) * 1977-04-28 1978-11-24 Nippon Steel Corp Material for high magnetic flux and uni-directional magnetic steel plate
JPS5745818A (en) * 1980-07-25 1982-03-16 Bush Sydney J Infant loading apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015727A (en) * 1973-05-07 1975-02-19
JPS5021928A (en) * 1973-06-28 1975-03-08
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS53134722A (en) * 1977-04-28 1978-11-24 Nippon Steel Corp Material for high magnetic flux and uni-directional magnetic steel plate
JPS5745818A (en) * 1980-07-25 1982-03-16 Bush Sydney J Infant loading apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545559Y2 (en) * 1987-12-26 1993-11-22
WO1995013401A1 (en) * 1993-11-09 1995-05-18 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system

Also Published As

Publication number Publication date
JPS5925958A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
KR19990088437A (en) Grain oriented electromagnetic steel sheet and manufacturing method thereof
JPS6048886B2 (en) High magnetic flux density unidirectional electrical steel sheet with excellent iron loss and method for manufacturing the same
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
KR20140084893A (en) Oriented electrical steel steet and method for the same
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JPS6311406B2 (en)
JPS6254846B2 (en)
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
KR20220089074A (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR100237158B1 (en) The manufacturing method for oriented electric steel sheet with excellent magnetic property
JPH05295441A (en) Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JPH0317892B2 (en)
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness