JPH0633138A - Manufacture of grain-oriented silicon steel sheet having excellent coating characteristic and magnetic characteristic - Google Patents

Manufacture of grain-oriented silicon steel sheet having excellent coating characteristic and magnetic characteristic

Info

Publication number
JPH0633138A
JPH0633138A JP19207492A JP19207492A JPH0633138A JP H0633138 A JPH0633138 A JP H0633138A JP 19207492 A JP19207492 A JP 19207492A JP 19207492 A JP19207492 A JP 19207492A JP H0633138 A JPH0633138 A JP H0633138A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
mgo
steel sheet
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19207492A
Other languages
Japanese (ja)
Other versions
JP2650817B2 (en
Inventor
Hirotake Ishitobi
宏威 石飛
Katsuro Yamaguchi
勝郎 山口
Tsutomu Kami
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19207492A priority Critical patent/JP2650817B2/en
Publication of JPH0633138A publication Critical patent/JPH0633138A/en
Application granted granted Critical
Publication of JP2650817B2 publication Critical patent/JP2650817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet having excellent coating charac teristic and magnetic characteristic by using MgO as annealing separating agent compo nent whose activity against citric acid, water content in hydrate and grain size distribu tion are specified, in the manufacture of the grain-oriented silicon steel sheet having a specific composition. CONSTITUTION:A silicon steel slab containing 2.5-4.0wt.% Si, 0.01-0.05wt.% acid-soluble Al and 0.01-0.20wt.% Sb is hot-rolled and made to be the finish sheet thickness by annealing of the hot-rolled sheet and one time of cold rolling or two times of cold rolling before and after an intermediate annealing. After applying the decarburizing and the primary recrystallizing annealing, the finish annealing by coating the annealing separating agent containing MgO as the main component is executed to produce the grain-oriented silicon steel sheet. The MgO used in the annealing separating agent has the activity against citric acid of 100-400sec in the condition of the finish reaction ratio of 40% and 1000-4000sec in the condition of the finish reaction ratio of 80% and, the water content in the hydrate of <=2.5% in the condition of 20 deg.C for 60min, the average grain diameter of <=2.5mum and the non-passing-through ratio of 325 mesh of <=5%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トランス等の鉄心に
用いて好適な、(110)<001>方位を主方位とする、磁束密
度の高い一方向性けい素鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional silicon steel sheet having a high magnetic flux density, which has a (110) <001> orientation as a main orientation and is suitable for an iron core of a transformer or the like. is there.

【0002】[0002]

【従来の技術】AlN を主要なインヒビターとし、最終冷
間圧延を80%以上の圧下率で行う一方向性けい素鋼板の
製造方法については、特公昭40-15644号公報に代表され
る、多くの技術が開示されている。このAlN を主要イン
ヒビターとする一方向性けい素鋼板の特徴は、高磁束密
度が得られるところにあるが、一方で2次再結晶粒径が
大きいために、渦電流損が高くなって低鉄損が得られ
ず、また2次再結晶が安定せず磁束密度のばらつきが大
きいという欠点があった。
2. Description of the Related Art A method for producing unidirectional silicon steel sheet in which AlN is used as a main inhibitor and final cold rolling is performed at a reduction rate of 80% or more is typified by Japanese Patent Publication No. 40-15644. Is disclosed. The characteristic of the unidirectional silicon steel sheet with AlN as the main inhibitor is that a high magnetic flux density can be obtained. On the other hand, since the secondary recrystallized grain size is large, the eddy current loss becomes high and the low iron content decreases. There are drawbacks that no loss is obtained, the secondary recrystallization is not stable, and the magnetic flux density varies widely.

【0003】これらの欠点のうち、渦電流損の低減につ
いては、特公昭57-2252 号公報に開示されたレーザービ
ームを鋼板に照射する方法、また特公昭61-39395号公報
に開示された熱膨張係数の異なる領域を形成する方法等
の、人工的に磁区を細分化する技術により改善されつつ
ある。一方、2次再結晶は同一条件で製造を行っても変
動する、いわば確率現象であるため、その安定化のため
の制御は困難を伴い、特に0.23mm厚以下の薄板の場合で
は、AlN 等のインヒビターは仕上焼鈍中に分解し勝ち
で、その抑制力が不安定になりやすく、したがって2次
再結晶はますます不安定になる。ここに2次再結晶を安
定化させる技術として、特公昭57-9419 号公報及び特開
昭58-217630 号公報には、Sn及び/又はCuを添加する方
法が、また特開昭61-157632 号公報には、SbとCuとを添
加する方法がそれぞれ開示されている。
Among these drawbacks, the reduction of eddy current loss is described in Japanese Patent Publication No. 57-2252, in which a steel plate is irradiated with a laser beam, and in Japanese Patent Publication No. 61-39395. It is being improved by a technique of artificially subdividing a magnetic domain, such as a method of forming regions having different expansion coefficients. On the other hand, secondary recrystallization is a so-called stochastic phenomenon that varies even when manufactured under the same conditions, so it is difficult to control it for stabilization, especially in the case of thin plates with a thickness of 0.23 mm or less, such as AlN. Inhibitors tend to decompose during finish annealing, and their inhibitory power tends to become unstable, so secondary recrystallization becomes more and more unstable. As a technique for stabilizing the secondary recrystallization, a method of adding Sn and / or Cu is disclosed in JP-B-57-9419 and JP-A-58-217630, and JP-A-61-157632. The publications disclose respective methods of adding Sb and Cu.

【0004】[0004]

【発明が解決しようとする課題】しかし、AlN を主要イ
ンヒビターとし、さらにSbを含有する成分系において
は、sol.AlとSbの両者が脱炭焼鈍において表面濃化し、
表面の酸化を抑制することから、引き続いて行われる最
終仕上焼鈍過程における表面のフォルステライト被膜形
成が不均一になって、密着性の脆弱な被膜となりやすい
傾向があった。
However, in the component system in which AlN is the main inhibitor and Sb is further contained, both sol.Al and Sb are surface-concentrated during decarburization annealing,
Since the surface oxidation is suppressed, the forsterite film formation on the surface in the subsequent final annealing process tends to be non-uniform, and the film tends to have poor adhesion.

【0005】このように被膜が劣悪であると、表面の絶
縁抵抗が劣化するばかりでなく、せん断加工や巻トラン
スの製造時に被膜がはく離し、実機特性を大きく損なう
ことになる。また被膜の引張応力が低下することから、
鉄損(渦電流損)特性が劣化するとともに、磁気歪みも
増大して、トランス騒音が大きくなるなど、製品品質に
多大な悪影響を及ぼす。さらに、被膜形成が正常に行わ
れない場合は、表層のインヒビターの挙動に悪影響を及
ぼし、2次再結晶も正常に行われなくなる確率が増え
る。
If the coating is poor in this way, not only the insulation resistance of the surface is deteriorated, but also the coating is peeled off during shearing or manufacturing of the winding transformer, and the actual machine characteristics are greatly impaired. Also, since the tensile stress of the coating decreases,
The iron loss (eddy current loss) characteristics are deteriorated, the magnetic distortion is increased, and the transformer noise is increased. Furthermore, if the film formation is not normally performed, the behavior of the inhibitor on the surface layer is adversely affected, and the probability that secondary recrystallization is not normally performed increases.

【0006】この発明は、特にAl−Sbを含有する成分系
の一方向性けい素鋼板の製造において憂慮されていた上
記の問題を有利に解決し、安定して被膜特性及び磁気特
性に優れた製品を得ることのできる製造方法を提案する
ことを目的とする。
The present invention advantageously solves the above-mentioned problems, which have been a concern in the production of a component-based unidirectional silicon steel sheet containing Al-Sb, and provides stable and excellent coating properties and magnetic properties. The purpose is to propose a manufacturing method by which a product can be obtained.

【0007】[0007]

【課題を解決するための手段】発明者らは、AlN とSbを
インヒビターの必須成分として含有する一方向性けい素
鋼板の製造方法に関し、フォルステライト被膜特性を向
上し、ひいては磁気特性の向上及び安定化を図るべく種
々の検討を行ったところ、特定の性状を有するMgO を、
焼鈍分離剤の主成分として用いることにより前記目的を
達成できることを見出した。この発明は、上記の知見に
由来するものである。
[Means for Solving the Problems] The inventors of the present invention relates to a method for producing a unidirectional silicon steel sheet containing AlN and Sb as essential components of an inhibitor, which improves forsterite coating properties, and thus improves magnetic properties. As a result of various studies aimed at stabilization, MgO with specific properties was
It has been found that the above object can be achieved by using it as the main component of the annealing separator. The present invention is derived from the above findings.

【0008】すなわちこの発明は、Si:2.5 〜4.0 wt
%、酸可溶性Al:0.01〜0.05wt%及びSb:0.01〜0.20wt
%を含有するけい素鋼スラブを熱間圧延し、次いで熱延
板焼鈍及び1回又は中間焼鈍を挟む2回の冷間圧延を施
して最終板厚とした後、脱炭・1次再結晶焼鈍を施し、
次いでMgO を主成分とする焼鈍分離剤を塗布した後、仕
上焼鈍を施す一連の製造工程からなる一方向性けい素鋼
板の製造方法において、焼鈍分離剤成分のMgO は、くえ
ん酸活性度が、最終反応率40%の条件で100 〜400 秒、
最終反応率80%の条件で1000〜4000秒であり、しかも水
和水分量が、20℃,60分間の条件で2.5 %以下であり、
さらに平均粒子径が2.5 μm 以下でかつ325 メッシュの
不通過分が5%以下であることを特徴とする被膜特性及
び磁気特性に優れた一方向性けい素鋼板の製造方法であ
る。
That is, the present invention provides Si: 2.5 to 4.0 wt.
%, Acid-soluble Al: 0.01 to 0.05 wt% and Sb: 0.01 to 0.20 wt
% Of silicon steel slab is hot-rolled, and then hot-rolled sheet is annealed and cold-rolled once or twice with intermediate annealing to obtain a final sheet thickness, followed by decarburization and primary recrystallization. Annealed,
Then, after applying an annealing separator containing MgO as a main component, in the method for producing a unidirectional silicon steel sheet consisting of a series of manufacturing steps in which finish annealing is performed, MgO as an annealing separator is a citric acid activity, 100 to 400 seconds under the condition of final reaction rate of 40%,
The final reaction rate is 80%, 1000 to 4000 seconds, and the water content of hydration is 2.5% or less under the conditions of 20 ° C and 60 minutes.
Further, it is a method for producing a unidirectional silicon steel sheet having excellent coating properties and magnetic properties, characterized in that the average particle size is 2.5 μm or less and the non-passage of 325 mesh is 5% or less.

【0009】[0009]

【作用】一方向性けい素鋼板の焼鈍分離剤として用いら
れるMgO に関しては、これまでにも種々の物性のものが
提案されている。例えば、特公昭49-29409号公報には、
かさ重量0.18〜0.30g/ccの重質低活性MgO を、水和量が
1〜4%のスラリーとして塗布することが示されてい
る。また、特公昭52-31296号公報には、SO3 が0.2%以
下、Clが0.04%以下で、かさ重量が0.18〜0.30g/cc、粒
度分布が特定範囲であるMgO について示されている。ま
た、特公昭54-14566号公報には、不純物が特定範囲にあ
りかつ20℃、30分の水和量が8%以下で100 メッシュ通
過325 メッシュ不通過分が1〜20%であるMgO について
示されている。さらに特公昭57-45472号公報には、くえ
ん酸との反応時間で示される、くえん酸活性度が特定範
囲のMgO が提示されている。
[Function] Regarding MgO used as an annealing separator for unidirectional silicon steel sheets, various physical properties have been proposed so far. For example, in Japanese Patent Publication No. 49-29409,
Heavy low activity MgO with a bulk weight of 0.18-0.30 g / cc has been shown to be applied as a slurry with a hydration level of 1-4%. Further, Japanese Patent Publication No. 52-31296 discloses MgO having SO 3 of 0.2% or less, Cl of 0.04% or less, a bulk weight of 0.18 to 0.30 g / cc and a particle size distribution in a specific range. Further, JP-B-54-14566 discloses MgO having impurities in a specific range, hydration amount at 20 ° C. for 30 minutes of 8% or less, 100 mesh passing 325 mesh non-passing 1 to 20%. It is shown. Further, Japanese Examined Patent Publication (Kokoku) No. 57-45472 discloses MgO having a citric acid activity in a specific range, which is represented by a reaction time with citric acid.

【0010】ところで、最終仕上焼鈍によって形成する
フォルステライト被膜は、脱炭・1次再結晶焼鈍の際
に、鋼板表層に生成する酸化物(SiO2、Fe2SiO4 等)
と、焼鈍分離剤として塗布されたMgO との固相反応によ
って生成するものであるから、MgO の物性のみならず、
この鋼板表層の酸化物層の性状の影響を強く受ける。す
なわち、酸化物の量が不足すると、不均一で密着性の悪
い被膜しか生成しない。また、酸化物のうち、鉄酸化物
の量が多すぎると、ピンホール状に地鉄の露出した、極
めて品質の悪い被膜ができてしまう。
By the way, the forsterite film formed by the final finish annealing is an oxide (SiO 2 , Fe 2 SiO 4, etc.) formed on the surface layer of the steel sheet during decarburization and primary recrystallization annealing.
And the solid phase reaction with MgO applied as an annealing separator, not only the physical properties of MgO
It is strongly influenced by the properties of the oxide layer on the surface of the steel sheet. That is, if the amount of oxide is insufficient, only a non-uniform and poorly adherent coating is produced. Further, if the amount of iron oxide is too large among oxides, a very poor-quality coating film in which base iron is exposed in a pinhole shape is formed.

【0011】ここにおいて、AlN を主要インヒビターと
し、かつSbを含有する成分系の一方向性けい素鋼の製造
にあたって、前述のようなこれまでに提案されたMgO
は、活性すぎて、安定して良好な被膜を形成することが
困難であった。その理由は、前述したようにAlN を主要
インヒビターとし、かつSbを含有する成分系のけい素鋼
が、脱炭・1次再結晶焼鈍において酸化されにくいこと
に起因する。そこで、酸化量を増加させるべく脱炭焼鈍
の温度や雰囲気の露点を高めると、酸化層中の鉄酸化物
が増加するから、最終仕上焼鈍で形成するフォルステラ
イト被膜は、劣悪にならざるを得なかった。
Here, in the production of the unidirectional silicon steel containing Al as the main inhibitor and containing Sb, the MgO previously proposed as described above.
Was too active to form a stable and good coating. The reason is that, as described above, the component type silicon steel containing AlN 3 as the main inhibitor and containing Sb is not easily oxidized during decarburization and primary recrystallization annealing. Therefore, if the temperature of decarburization annealing and the dew point of the atmosphere are increased in order to increase the amount of oxidation, the iron oxide in the oxide layer increases, so the forsterite coating formed by final finishing annealing must be inferior. There wasn't.

【0012】これらのことから、発明者らはAl−Sbを含
有する成分系の一方向性けい素鋼板の焼鈍分離剤に供す
るMgO の好適な物性について種々の検討を行い、その結
果、従来知られているものよりも、さらに低活性である
MgO が好適なことを見出した。
From the above, the inventors conducted various studies on suitable physical properties of MgO to be used as an annealing separator for a component type unidirectional silicon steel sheet containing Al--Sb, and as a result, as a result, Much less active than what is used
We have found that MgO is suitable.

【0013】脱炭・1次再結晶焼鈍において酸化し難い
素材に対し、より低活性なMgO が被膜形成に関して好適
であることは、一見、矛盾した現象のようにみえる。し
かしながら、その理由は、以下のとおりと考えられる。
焼鈍分離剤を塗布され、コイル状に巻かれたけい素鋼板
が仕上焼鈍される際、昇温過程の800 ℃付近まではMgO
の水和水分が徐々に放出されるため、コイル層間がウェ
ットな状態に保たれる。このとき、鋼板表面は、H2O に
より、いわゆる追加酸化を受けるわけであるが、その酸
化量は、脱炭・1次再結晶焼鈍により生成した酸化層の
性状に左右される。Al−Sbを含有する成分系の一方向性
けい素鋼では、表層に生成している酸化量が少ないため
に、この追加酸化の際は鉄酸化物を多く生成する。ここ
に生成した鉄酸化物のうち、FeO は、MgO と固溶してx
FeO ・yMgO をつくり、高温でのフォルステライト被膜
形成に悪影響を及ぼす。またFe2SiO4 もMgO と固溶して
フォルステライト(Mg2SiO4 )に移行しつつ、FeOを遊
離するため、同様な悪影響をもたらす。また、脱炭・1
次再結晶焼鈍のときから表層へのAlやSbの濃化が不均一
に起こること、コイル層間のH2O 分圧も不均一であるこ
と等の理由のため、この追加酸化自体も不均一になる傾
向があり、この点でも被膜の均一性に悪影響があった。
At first glance, it seems as an inconsistent phenomenon that MgO having a lower activity is suitable for forming a film on a material which is difficult to oxidize in decarburization and primary recrystallization annealing. However, the reason is considered as follows.
When a coiled silicon steel sheet coated with an annealing separator is finish-annealed, MgO is kept up to around 800 ° C during the heating process.
Since the hydrated water is gradually released, the coil layers are kept in a wet state. At this time, the surface of the steel sheet is subjected to so-called additional oxidation by H 2 O, and the amount of the oxidation depends on the properties of the oxide layer formed by decarburization and primary recrystallization annealing. In the component type unidirectional silicon steel containing Al-Sb, the amount of oxidation generated in the surface layer is small, and therefore, a large amount of iron oxide is generated during this additional oxidation. Of the iron oxides generated here, FeO forms a solid solution with MgO and x
Creates FeO · yMgO and adversely affects the formation of forsterite film at high temperature. Further, Fe 2 SiO 4 also forms a solid solution with MgO and transfers to forsterite (Mg 2 SiO 4 ), and releases FeO. Also, decarburization / 1
The enrichment of Al and Sb to the surface from the time of the next recrystallization annealing takes place in uneven, for reasons such that the partial pressure of H 2 O coil layer is also uneven, the additional oxide itself heterogeneous This also had a bad influence on the uniformity of the coating film.

【0014】このように、フォルステライト被膜へ悪影
響を及ぼす原因は、MgO の水和水分に由来する追加酸化
とその不均一さである。そこで、この発明に従い、より
低活性のMgO を用いることにより、この追加酸化を抑制
することが可能になるから、Al−Sbを含有する成分系の
一方向性けい素鋼でも均一、良好な被膜を形成し得るも
のと考えられる。
As described above, the cause of adversely affecting the forsterite coating film is the additional oxidation derived from the hydrated water of MgO and its nonuniformity. Therefore, according to the present invention, by using a lower activity MgO, it becomes possible to suppress this additional oxidation, so that even in a unidirectional silicon steel containing Al-Sb, a uniform and good coating film can be obtained. Is considered to be formed.

【0015】またAlN を主要インヒビターとする一方向
性けい素鋼の2次再結晶温度は、インヒビターの抑制力
が強いために900 〜1000℃付近であり、MnS やMnSeを主
要インヒビターとするけい素鋼の2次再結晶温度800 〜
900 ℃に比べて高い。このため、仕上焼鈍中の表面酸化
は、インヒビターの分解や粗大化を左右し、2次再結晶
挙動にも強く影響する。したがって、追加酸化が多い
と、表面被膜のみならず、磁気特性も著しく劣化させる
ことが多い。それ故に、Al−Sbを含有する成分系の一方
向性けい素鋼の製造においては、低活性MgO の使用が磁
気特性の安定化の観点からも重要である。
Further, the secondary recrystallization temperature of the unidirectional silicon steel containing AlN as the main inhibitor is around 900 to 1000 ° C. due to the strong inhibitory effect of the inhibitor, and the silicon containing MnS or MnSe as the main inhibitor is the secondary recrystallization temperature. Secondary recrystallization temperature of steel 800 ~
High compared to 900 ℃. For this reason, the surface oxidation during finish annealing influences the decomposition and coarsening of the inhibitor and also strongly affects the secondary recrystallization behavior. Therefore, a large amount of additional oxidation often significantly deteriorates not only the surface coating but also the magnetic properties. Therefore, the use of low activity MgO is important from the viewpoint of stabilizing the magnetic properties in the production of the unidirectional silicon steel containing Al-Sb.

【0016】以上の知見をもとに、種々の実験を行った
ところ、MgO の好適な活性度は、くえん酸活性度及び水
和水分量によって示し得ることが分かった。まずくえん
酸活性度の評価法について述べる。 1) 0.4規定のくえん酸水溶液100cm3をビーカーにとり、
30℃に保つ。ビーカ内には磁気回転子を入れておく。 2) 秤量したMgO をビーカー内に投入する。MgO の投入
量は、所望の最終反応率によって変え、最終反応率が40
%の場合は、2.00 g、80%の場合は1.00 gとする。(
0.4規定のくえん酸水溶液100cm3は、0.8 g のMgO と反
応する。) 3)MgO をビーカー内に投入した時から正確に10秒後にス
ターラーのスイッチを入れ、磁気回転子を回転させる。
この間、液温は30℃±1℃に保つ。 4)スラリーのpHが8.0 になった時点を反応終了とし、Mg
O を投入した時からの時間を計り、その秒数をくえん酸
活性度とする。
Various experiments were carried out based on the above findings, and it was found that the suitable activity of MgO can be shown by the citric acid activity and the hydrated water content. First, the evaluation method of citric acid activity is described. 1) 0.4 takes define the aqueous acid solution 100 cm 3 citric beaker,
Keep at 30 ° C. Put a magnetic rotor in the beaker. 2) Add the weighed MgO into the beaker. The input amount of MgO varies depending on the desired final reaction rate, and the final reaction rate is 40%.
% For 2.00 g and 80% for 1.00 g. (
100 cm 3 of 0.4 N citric acid aqueous solution reacts with 0.8 g of MgO. ) 3) Turn on the stirrer exactly 10 seconds after the MgO was put into the beaker and rotate the magnetic rotor.
During this time, keep the liquid temperature at 30 ° C ± 1 ° C. 4) The reaction was terminated when the pH of the slurry reached 8.0, and Mg
Measure the time from the time of adding O 2 and take the number of seconds as the citric acid activity.

【0017】このようにして評価するくえん酸活性度に
おいて、従来、一方向性けい素鋼の焼鈍分離剤として用
いられていたMgO は、例えば前掲特公昭57-45472号公報
に示されたMgO では、低活性と雖もくえん酸活性度が最
終反応率40%の場合に約40〜80秒であって、この発明の
MgO よりも活性度が高いものであった。なお、特公平4
-25349号公報には、焼鈍分離剤として、MgO にCaO とB
とを添加し、くえん酸活性度が60〜250 秒であるもの
が、一方向性電磁鋼板の優れたグラス被膜や磁気特性に
有効である旨、述べられているが、この発明のMgO は、
最終反応率40%でのくえん酸活性度だけでなく、80%で
のくえん酸活性度も考慮する点が特徴である。すなわ
ち、MgO の調製条件次第で活性度分布は変化し、くえん
酸最終反応率40%での活性度が同一であっても、活性度
分布が狭いものは80%でのくえん酸活性度の値の増加割
合が小さいことは、前掲特公昭57-45472号公報に記載さ
れたとおりであり、ここにおいて、この発明で用いるMg
O は、最終反応率80%におけるくえん酸活性度が1000〜
4000秒と広い活性度分布を有するものである。
In the citric acid activity evaluated in this way, MgO conventionally used as an annealing separator for unidirectional silicon steel is, for example, MgO disclosed in Japanese Patent Publication No. 57-45472. , Low activity and citrus citric acid activity of about 40-80 seconds when the final reaction rate of 40%,
It was more active than MgO. In addition, special fair 4
-25349 discloses that as an annealing separator, MgO contains CaO and B.
It is stated that the addition of, and the citric acid activity of 60 to 250 seconds is effective for the excellent glass coating and magnetic properties of the grain-oriented electrical steel sheet, but MgO of the present invention is
The feature is that not only citric acid activity at the final reaction rate of 40% but also citric acid activity at 80% is considered. That is, the activity distribution changes depending on the MgO preparation conditions, and even if the activity at the final citric acid reaction rate of 40% is the same, the activity distribution is narrow at 80% and the citrate activity value at 80% is the same. That the increase rate of the Mg is small is as described in Japanese Patent Publication No. 57-45472, and the Mg used in the present invention is
O has a citric acid activity of 1000-800 at the final reaction rate of 80%.
It has a wide activity distribution of 4000 seconds.

【0018】以上のようなくえん酸活性度が、最終反応
率40%の条件で100 秒未満、最終反応率80%の条件で10
00秒未満の活性度分布の場合には、活性すぎて不均一で
欠陥の多い被膜しか生成しない。また、最終反応率40%
の条件で400 秒を超え、最終反応率80%の条件で4000秒
を超える活性度分布の場合には、MgO の反応性が低すぎ
て、薄く、粗雑な、密着性の悪い被膜しか生成しない。
より好適な活性度分布は、最終反応率40%の条件で150
〜350 秒、最終反応率80%の条件で1500〜3500秒であ
る。
As described above, the citric acid activity was less than 100 seconds under the condition of the final reaction rate of 40% and 10 under the condition of the final reaction rate of 80%.
Activity distributions of less than 00 seconds are too active and produce only non-uniform and defective coatings. Also, the final reaction rate is 40%
In the case of the activity distribution of more than 400 seconds under the conditions of above and more than 4000 seconds under the condition of the final reaction rate of 80%, the reactivity of MgO is too low, and only thin, rough, and poorly adherent films are formed. .
A more suitable activity distribution is 150 at the final reaction rate of 40%.
~ 350 seconds, 1500 ~ 3500 seconds at the final reaction rate of 80%.

【0019】この発明に従うくえん酸活性度のMgO の製
造にあたっては、原料物質(例えば水酸化マグネシウ
ム、炭酸マグネシウム、塩基性炭酸マグネシウム等)の
焼成において、950 ℃以上の高温で焼成した、異なる活
性度のものを混合する方法や、バッチ炉焼成によって、
焼成炉内の温度分布を調整することにより、目的とする
活性度分布のMgO を得ることができる。
In the production of citric acid-active MgO according to the present invention, the raw materials (eg magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, etc.) are fired at a high temperature of 950 ° C. or higher, and the different activities are obtained. By the method of mixing the things and the batch furnace firing,
By adjusting the temperature distribution in the firing furnace, MgO having the desired activity distribution can be obtained.

【0020】さらにMgO の活性度に関しては、20℃、60
分間の条件における水和水分量が2.5 %以下である必要
がある。2.5 %を超える水和水分量では、最終仕上焼鈍
中の追加酸化が多くなって、被膜、磁気特性ともに不良
となる。
Further, regarding the activity of MgO, at 20 ° C. and 60
The water content of hydration under the condition of minute must be 2.5% or less. When the hydrated water content exceeds 2.5%, additional oxidation during the final finish annealing increases, resulting in poor coating and magnetic properties.

【0021】さらに均一な被膜を得るために、MgO 粒
は、平均粒子径が2.5 μm 以下であることを必要とす
る。フォルステライト被膜形成反応は、鋼板表面の酸化
物(SiO2、Fe2SiO4 )とMgO との固相反応であるため、
MgO の粒子径の影響を強く受ける。平均粒子径が2.5 μ
m を超えると、この固相反応が不均一となって良好な被
膜が得られない。また同様な理由から、MgO の粒度分布
に関し、325 メッシュの不通過分が5%以下であること
が、所期した製品品質を得るために必要であり、不通過
分が5%を超えると、被膜が不均一となる。
In order to obtain a more uniform coating, the MgO grains must have an average grain size of 2.5 μm or less. The forsterite film formation reaction is a solid-state reaction between the oxides (SiO 2 , Fe 2 SiO 4 ) on the surface of the steel sheet and MgO,
It is strongly affected by the particle size of MgO. Average particle size 2.5 μ
If it exceeds m 2, the solid phase reaction becomes nonuniform and a good coating cannot be obtained. For the same reason, regarding the particle size distribution of MgO, it is necessary for the non-passage of 325 mesh to be 5% or less to obtain the desired product quality, and when the non-passage exceeds 5%, The coating becomes non-uniform.

【0022】この発明の焼鈍分離剤としては、分離剤に
通常添加される成分、例えば、TiO2やチタン酸塩、ほう
酸又はほう酸塩、Sr化合物、Mn化合物等を添加すること
は何ら差し支えない。
As the annealing separating agent of the present invention, it is possible to add components usually added to the separating agent, for example, TiO 2 , titanate, boric acid or borate, Sr compound, Mn compound and the like.

【0023】次にこの発明の製造方法を適用するけい素
鋼素材の成分組成範囲を限定理由は次のとおりである。 Si:2.5 〜4.0 wt% Si量が2.5 wt%に満たないと、良好な鉄損が得られず、
一方4.0 wt%を超えると冷間圧延性が著しく劣化するた
め、2.5 〜4.0 wt%の範囲とした。 酸可溶性Al:0.01〜0.05wt% 酸可溶性Alは、インヒビターとしてのAlN を形成するた
めに必要であり、含有量を0.01〜0.05wt%の範囲とす
る。酸可溶性Alの含有量が、0.01wt%に満たないと、イ
ンヒビターとしての作用が低下して、製品の磁束密度の
低下を招き、一方0.05wt%を超えると、2次再結晶が不
安定になる。 Sb:0.01〜0.20wt% Sbは、1次再結晶集合組織を改善し、(110)<001>方位結
晶粒の成長性を良好にし、磁気特性を安定して向上させ
るために必要であり、Sb量が0.01wt%未満では、その効
果が乏しく、一方0.20wt%を超えると、脱炭性やフォル
ステライト被膜形成性を損なうため、0.01〜0.20wt%の
範囲とする。
Next, the reasons for limiting the composition range of the silicon steel material to which the manufacturing method of the present invention is applied are as follows. Si: 2.5-4.0 wt% If the Si content is less than 2.5 wt%, good iron loss cannot be obtained.
On the other hand, if it exceeds 4.0 wt%, the cold rolling property deteriorates significantly, so the range was set to 2.5 to 4.0 wt%. Acid-soluble Al: 0.01 to 0.05 wt% Acid-soluble Al is necessary for forming AlN 3 as an inhibitor, and the content is 0.01 to 0.05 wt%. If the content of acid-soluble Al is less than 0.01 wt%, the action as an inhibitor will be reduced, leading to a decrease in the magnetic flux density of the product. On the other hand, if it exceeds 0.05 wt%, the secondary recrystallization will be unstable. Become. Sb: 0.01 to 0.20 wt% Sb is necessary for improving the primary recrystallization texture, improving the growth of (110) <001> oriented crystal grains, and stably improving the magnetic properties. If the Sb content is less than 0.01 wt%, the effect is poor, while if it exceeds 0.20 wt%, the decarburizing property and the forsterite film forming property are impaired, so the content is made 0.01 to 0.20 wt%.

【0024】鋼成分としては、この他、Cを0.02〜0.12
wt%程度と、インヒビター構成成分としてNを通常の範
囲(0.004 〜0.01wt%程度)で含有するものであり、さ
らに必要に応じて、Mn、S、Se等を含有してもよい。そ
の含有量は、それぞれ、Mn:0.03〜0.15wt%程度、Sお
よび/又はSeを合計で0.01〜0.05wt%程度ある。さら
に、2次再結晶を、磁気特性上、より有利なものとする
ために、CuやSnなどを、それぞれ0.02〜0.20 wt%程
度、0.02〜0.20wt%程度含有させることも可能である。
As a steel component, in addition to this, C is 0.02 to 0.12.
wt% and N as an inhibitor constituent in a normal range (about 0.004 to 0.01 wt%), and may further contain Mn, S, Se and the like, if necessary. The contents are about 0.03 to 0.15 wt% of Mn and about 0.01 to 0.05 wt% of S and / or Se in total. Further, in order to make the secondary recrystallization more advantageous in terms of magnetic characteristics, it is possible to add Cu, Sn or the like to about 0.02 to 0.20 wt% and about 0.02 to 0.20 wt%, respectively.

【0025】次に製造工程については、上記の成分組成
に調整したけい素鋼素材を、通常1400℃以上の高温に加
熱したのち、公知の方法によって、板厚2〜3mm程度の
熱延母板とする。次いで900 〜1200℃の温度範囲で熱延
板焼鈍を施し、酸洗したのち、1回の冷間圧延、または
900 〜1200℃の温度範囲で焼鈍を挟む2回以上の冷間圧
延によって、最終板厚0.15〜0.35mm程度の冷延板に仕上
げるが、この冷間圧延で最終板厚に仕上げる際の冷延率
は80〜95%の範囲が望ましい。この最終冷延板は脱脂し
たのち、湿水素雰囲気中で800 〜900 ℃の温度範囲で脱
炭焼鈍してC量を0.003 wt%以下にする。その後MgO を
主成分とする焼鈍分離剤を塗布した後、ドライH2雰囲気
1100〜1250℃の高温で、仕上焼鈍を行う。そして最後に
絶縁コーティングを施して一方向性けい素鋼板製品とす
る。
Next, regarding the manufacturing process, the silicon steel material adjusted to the above composition is heated to a high temperature of usually 1400 ° C. or higher, and then, by a known method, a hot-rolled mother plate having a plate thickness of about 2 to 3 mm. And Then hot-rolled sheet is annealed in the temperature range of 900-1200 ℃, pickled, and then cold-rolled once, or
By cold rolling more than two times with annealing sandwiched in the temperature range of 900 to 1200 ° C, a cold rolled sheet with a final sheet thickness of 0.15 to 0.35 mm is finished. Cold rolling when finishing to the final sheet thickness with this cold rolling is performed. The rate is preferably in the range of 80-95%. After degreasing this final cold-rolled sheet, it is decarburized and annealed in a temperature range of 800 to 900 ° C. in a wet hydrogen atmosphere to reduce the C content to 0.003 wt% or less. After applying an annealing separator containing MgO as a main component, dry H 2 atmosphere
Finish annealing is performed at a high temperature of 1100 to 1250 ° C. Finally, an insulating coating is applied to obtain a unidirectional silicon steel sheet product.

【0026】[0026]

【実施例】【Example】

実施例1 C:0.060 wt%、Si:3.12wt%、Mn:0.075 wt%、Se:
0.023 wt%、酸可溶性Al:0.024 wt%、N:0.0084wt
%、Sb:0.032 wt%を含有し、残部は実質的にFeの組成
からなるけい素鋼スラブを1420℃で20分間加熱後、熱間
圧延により2.3 mm厚の熱延板とした。この熱延板を、10
50℃で2分間加熱したあと、ミスト噴射により急冷し、
次いで冷間圧延を施して0.30mmに仕上げた。この冷間圧
延後は、H245%−N255%,露点63℃の雰囲気中で840
℃、4分間の脱炭・1次再結晶焼鈍を行った。この板か
ら、多数のテストピースを切り出し、焼鈍分離剤をスラ
リー状態で塗布後乾燥させた。この時の焼鈍分離剤とし
て、MgO は表1に示す種々の特性を有するものを用い、
さらに添加物としてTiO22%をそれぞれに添加した。な
お、MgO の物性は、MgO 製造時の焼成条件と粉砕条件と
を変更して変化させた。焼鈍分離剤を塗布した鋼板は、
H2雰囲気で1200℃、20時間の仕上焼鈍に供した。
Example 1 C: 0.060 wt%, Si: 3.12 wt%, Mn: 0.075 wt%, Se:
0.023 wt%, acid soluble Al: 0.024 wt%, N: 0.0084 wt%
%, Sb: 0.032 wt%, and the balance being substantially composed of Fe, a silicon steel slab was heated at 1420 ° C. for 20 minutes and then hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm. This hot rolled sheet, 10
After heating at 50 ° C for 2 minutes, quench with mist jet,
Then, it was cold-rolled and finished to 0.30 mm. After this cold rolling, 840 in an atmosphere of H 2 45% -N 2 55% and dew point 63 ° C.
Decarburization and primary recrystallization annealing were performed at 4 ° C. for 4 minutes. A large number of test pieces were cut out from this plate, and the annealing separator was applied in a slurry state and then dried. As the annealing separator at this time, MgO having various characteristics shown in Table 1 was used.
Furthermore, 2% of TiO 2 was added as an additive to each. The physical properties of MgO were changed by changing the firing conditions and the crushing conditions during the production of MgO. The steel sheet coated with the annealing separator is
It was subjected to finish annealing at 1200 ° C. for 20 hours in an H 2 atmosphere.

【0027】[0027]

【表1】 [Table 1]

【0028】かくして得られた製品の被膜外観、被膜密
着性及び磁気特性を表1に併記する。ここに平均粒子径
は、光透過法により測定したものであり、また被膜密着
性は、被膜がはく離しない最小曲げ直径で示す。表1か
ら明らかなように、適合例においては、外観、密着性と
も良好で、磁気特性も優れた製品が得られている。
The coating appearance, coating adhesion and magnetic properties of the products thus obtained are also shown in Table 1. Here, the average particle diameter is measured by a light transmission method, and the coating adhesion is represented by the minimum bending diameter at which the coating does not peel. As is clear from Table 1, in the conforming example, a product having good appearance and adhesion and excellent magnetic properties was obtained.

【0029】実施例2 C:0.062 wt%、Si:3.09wt%、Mn:0.076 wt%、Se:
0.021 wt%、S:0.004 wt%、酸可溶性Al:0.025 wt
%、N:0.0080wt%、Sb:0.030 wt%、Mo:0.02wt%、
Cu:0.01wt%、Sn:0.10wt%を含有し、残部は実質的に
Feの組成からなるけい素鋼スラブを1420℃で20分間加熱
後、熱間圧延により2.0 mm厚の熱延板とした。この熱延
板を、1050℃で2分間加熱したあと、ミスト噴射により
急冷し、次いで冷間圧延を施して0.23mmに仕上げた。こ
の冷間圧延後は、H255%−N245%,露点65℃の雰囲気中
で830 ℃、3分間の脱炭・1次再結晶焼鈍を行った。こ
の板から、多数のテストピースを切り出し、焼鈍分離剤
をスラリー状態で塗布後乾燥させた。この時の焼鈍分離
剤として、MgO は表2に示す種々の特性を有するものを
用い、さらに添加物としてSrSO4 :1%、MnO2:1.5 %
を、それぞれに添加した。焼鈍分離剤を塗布した鋼板
は、H2雰囲気で1200℃、10時間の仕上焼鈍に供した。
Example 2 C: 0.062 wt%, Si: 3.09 wt%, Mn: 0.076 wt%, Se:
0.021 wt%, S: 0.004 wt%, acid-soluble Al: 0.025 wt%
%, N: 0.0080 wt%, Sb: 0.030 wt%, Mo: 0.02 wt%,
Cu: 0.01 wt%, Sn: 0.10 wt%, the balance is substantially
A silicon steel slab having a composition of Fe was heated at 1420 ° C. for 20 minutes and then hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm. This hot-rolled sheet was heated at 1050 ° C. for 2 minutes, then rapidly cooled by mist injection, and then cold-rolled to a finish of 0.23 mm. After this cold rolling, decarburization and primary recrystallization annealing were performed at 830 ° C for 3 minutes in an atmosphere of H 2 55% -N 2 45% and a dew point of 65 ° C. A large number of test pieces were cut out from this plate, and the annealing separator was applied in a slurry state and then dried. As the annealing separator at this time, MgO having various characteristics shown in Table 2 was used, and as additives, SrSO 4 : 1%, MnO 2 : 1.5%
Was added to each. The steel sheet coated with the annealing separator was subjected to finish annealing at 1200 ° C. for 10 hours in an H 2 atmosphere.

【0030】[0030]

【表2】 [Table 2]

【0031】かくして得られた製品の被膜外観、被膜密
着性及び磁気特性を表2に併記する。平均粒子径及び被
膜密着性の測定は、実施例1と同様である。表2から明
らかなように、適合例においては、外観、密着性とも良
好で、磁気特性も優れた製品が得られている。
The coating appearance, coating adhesion and magnetic properties of the products thus obtained are also shown in Table 2. The average particle size and the coating adhesion are measured as in Example 1. As is clear from Table 2, in the conforming examples, products having good appearance and adhesion and excellent magnetic properties were obtained.

【0032】[0032]

【発明の効果】この発明の一方向性けい素鋼板の製造方
法は、焼鈍分離剤の成分としてのMgOとして、くえん酸
活性度が、最終反応率40%の条件で100 〜400 秒、最終
反応率80%の条件で1000〜4000秒であり、しかも水和水
分量が、20℃,60分間の条件で2.5 %以下であり、さら
に平均粒子径が2.5 μm 以下でかつ325 メッシュの不通
過分が5%以下であるものを用いることにより、Al及び
Sbを含有する成分系の鋼板の製造において均一で密着性
の優れた被膜を有し、かつ磁気特性の優れた製品を安定
して得ることができる。
Industrial Applicability The method for producing a unidirectional silicon steel sheet according to the present invention has a final reaction rate of 100 to 400 seconds under the condition that the citric acid activity is 40% as the final reaction rate as MgO as a component of the annealing separator. The rate is 1000 to 4000 seconds under the condition of 80%, the hydrated water content is 2.5% or less under the condition of 20 ° C. for 60 minutes, and the average particle size is 2.5 μm or less and the non-passage of 325 mesh. Is less than 5%, Al and
In the production of a component-based steel sheet containing Sb, it is possible to stably obtain a product having a uniform and excellent adhesion coating and excellent magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C22C 38/00 303 U 38/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C22C 38/00 303 U 38/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si:2.5 〜4.0 wt%、酸可溶性Al:0.01
〜0.05wt%及びSb:0.01〜0.20wt%を含有するけい素鋼
スラブを熱間圧延し、次いで熱延板焼鈍及び1回又は中
間焼鈍を挟む2回の冷間圧延を施して最終板厚とした
後、脱炭・1次再結晶焼鈍を施し、次いでMgO を主成分
とする焼鈍分離剤を塗布した後、仕上焼鈍を施す一連の
製造工程からなる一方向性けい素鋼板の製造方法におい
て、 焼鈍分離剤成分のMgO は、くえん酸活性度が、最終反応
率40%の条件で100 〜400 秒、最終反応率80%の条件で
1000〜4000秒であり、しかも水和水分量が、20℃,60分
間の条件で2.5 %以下であり、さらに平均粒子径が2.5
μm 以下でかつ325 メッシュの不通過分が5%以下であ
ることを特徴とする被膜特性及び磁気特性に優れた一方
向性けい素鋼板の製造方法。
1. Si: 2.5-4.0 wt%, acid-soluble Al: 0.01
~ 0.05wt% and Sb: 0.01 ~ 0.20wt%, hot rolled a silicon steel slab, followed by hot-rolled sheet annealing and cold rolling once or twice with intermediate annealing to give final sheet thickness. In the method for producing a unidirectional silicon steel sheet, which comprises a series of production steps in which decarburization / primary recrystallization annealing is performed, then an annealing separator containing MgO as a main component is applied, and then finish annealing is performed. The annealing separator, MgO, has a citric acid activity of 100 to 400 seconds at a final reaction rate of 40% and a final reaction rate of 80%.
1000 to 4000 seconds, the hydrated water content is 2.5% or less at 20 ° C for 60 minutes, and the average particle size is 2.5.
A method for producing a unidirectional silicon steel sheet having excellent coating properties and magnetic properties, which is characterized in that the non-passage of 325 mesh is 5% or less.
JP19207492A 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties Expired - Lifetime JP2650817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19207492A JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19207492A JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Publications (2)

Publication Number Publication Date
JPH0633138A true JPH0633138A (en) 1994-02-08
JP2650817B2 JP2650817B2 (en) 1997-09-10

Family

ID=16285205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19207492A Expired - Lifetime JP2650817B2 (en) 1992-07-20 1992-07-20 Method for producing unidirectional silicon steel sheet with excellent coating and magnetic properties

Country Status (1)

Country Link
JP (1) JP2650817B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088241A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in film characteristic
JP2007246290A (en) * 2006-03-13 2007-09-27 Nippon Steel Corp Magnesium oxide for grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet excellent in magnetic properties and glass coating properties using the same
KR100762436B1 (en) * 2006-10-18 2007-10-02 주식회사 포스코 Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
CN108884509A (en) * 2016-03-30 2018-11-23 达泰豪化学工业株式会社 Annealing separation agent magnesia and orientation electrical sheet
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
KR20230163429A (en) 2021-03-31 2023-11-30 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide and grain-oriented electrical steel for annealing separator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438291B1 (en) 2016-03-30 2020-06-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
JP6494554B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP6472767B2 (en) 2016-03-30 2019-02-20 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088241A (en) * 1996-09-11 1998-04-07 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in film characteristic
KR100946069B1 (en) * 2002-11-27 2010-03-10 주식회사 포스코 Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
JP2007246290A (en) * 2006-03-13 2007-09-27 Nippon Steel Corp Magnesium oxide for grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet excellent in magnetic properties and glass coating properties using the same
JP4698448B2 (en) * 2006-03-13 2011-06-08 新日本製鐵株式会社 MgO for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties and glass coating properties using the same
KR100762436B1 (en) * 2006-10-18 2007-10-02 주식회사 포스코 Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
US11505843B2 (en) 2015-12-18 2022-11-22 Posco Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet
CN108884509A (en) * 2016-03-30 2018-11-23 达泰豪化学工业株式会社 Annealing separation agent magnesia and orientation electrical sheet
KR20230163429A (en) 2021-03-31 2023-11-30 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide and grain-oriented electrical steel for annealing separator

Also Published As

Publication number Publication date
JP2650817B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
KR20000023267A (en) Grain-oriented silicon steel sheet having excellent coating film properties and magnetic properties and method for making the same
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH0633138A (en) Manufacture of grain-oriented silicon steel sheet having excellent coating characteristic and magnetic characteristic
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2019163518A (en) Method of producing unidirectional magnetic steel sheet
JP2005290446A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and in characteristics of coating
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
JP2579717B2 (en) Decarburization annealing method for grain-oriented electrical steel sheets with excellent magnetic flux density and film adhesion
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
US5318639A (en) Method of manufacturing grain oriented silicon steel sheets
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss