JPS615345A - Serial multiplication method - Google Patents

Serial multiplication method

Info

Publication number
JPS615345A
JPS615345A JP12128184A JP12128184A JPS615345A JP S615345 A JPS615345 A JP S615345A JP 12128184 A JP12128184 A JP 12128184A JP 12128184 A JP12128184 A JP 12128184A JP S615345 A JPS615345 A JP S615345A
Authority
JP
Japan
Prior art keywords
bit
circuit
multiplier
output
multiplicand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12128184A
Other languages
Japanese (ja)
Inventor
Hirohisa Karibe
雁部 洋久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12128184A priority Critical patent/JPS615345A/en
Publication of JPS615345A publication Critical patent/JPS615345A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/525Multiplying only in serial-serial fashion, i.e. both operands being entered serially

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce the scale of circuits by adding the serial data on the multiplicand every bit in response to each digit bit of the multiplier. CONSTITUTION:A multiplicand A is supplied to a parallel/serial conversion (P/S) circuit 1; while a multiplier B is stored in a register 2 in the form of the parallel data. The least significant bit of the multiplier B given from the register 2 is supplied to a gate G1 together with the output (a) of the P/S circuit 1. When the least significant bit of the multiplier B is equal to 1, the value of the multiplicand A is delivered as it is and supplied to a 1-bit adder circuit 3. While the output of the gate G1 is equal to 0 when the least significant bit of the B is set at 0. Then the serial data (b) on the A which is delayed by a bit from the timing of the output (a) of the circuit 1 is supplied to a gate G2 together with the 2nd bit data from the least significant bit of the B. The output of the gate G2 is supplied to the circuit 3. The result of addition obtained from low-order 2 bits of the B is outputted serially from the circuit 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、乗算方法に係り、特にディジタル信号の乗算
を直列の1ビット加算により実現する直列乗算方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multiplication method, and particularly to a serial multiplication method in which multiplication of digital signals is realized by serial 1-bit addition.

近年ディジタル信号処理(D S P : Digit
al Signal Processing )が盛ん
に行なわれており、また、このDSPに於てディジタル
信号の乗算は、欠く事のできない重要な演算処理の1つ
である。
In recent years, digital signal processing (DSP: Digit)
In addition, multiplication of digital signals is one of the indispensable and important arithmetic processes in this DSP.

例えば、音声信号処理におけるディジタルフィルタの計
算等に斯かる乗算処理が必要となる。
For example, such multiplication processing is necessary for calculating digital filters in audio signal processing.

本発明は、この様なりSPに於ける乗算回路を極めて小
規模な回路で実現できる乗算方法を提案するものである
The present invention proposes a multiplication method that allows the multiplication circuit in the SP to be realized with an extremely small-scale circuit.

〔従来の技術〕[Conventional technology]

第2図を参照して従来の乗算回路の動作を説明する。 The operation of the conventional multiplication circuit will be explained with reference to FIG.

ここでは、レジスタ7に蓄えられた被乗数Aの並列デー
タを加算回路10で順次加算することにより乗算処理を
行う。即ち、まずパラレル/シリアル変換回路8で変換
された乗数Bの各ビットの値に従って、被乗数Aの値を
セレクタ9で選別し、次いで乗数Bの各桁のビットに対
応するこのセレクタ9の出力を加算回路10で順次足し
込んで行く。
Here, the multiplication process is performed by sequentially adding the parallel data of the multiplicand A stored in the register 7 in the adding circuit 10. That is, first, the value of the multiplicand A is selected by the selector 9 according to the value of each bit of the multiplier B converted by the parallel/serial conversion circuit 8, and then the output of this selector 9 corresponding to the bit of each digit of the multiplier B is selected. The addition circuit 10 sequentially adds the values.

尚、ここに病て、セレクタ9の出力を乗数Bの各桁のビ
ットに対応させるために、被乗数Aは上記レジスタ7か
ら1ビットづつシフトされて順次加算回路10に入力さ
れている。
Incidentally, in order to make the output of the selector 9 correspond to the bits of each digit of the multiplier B, the multiplicand A is shifted one bit at a time from the register 7 and is sequentially input to the adder circuit 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の乗算回路では、加算回路10が乗算出力Cの
ビット数と同じビット数の加算回路となっているため、
加算回路10の回路構成が極めて大規模なものになって
いる。
In the conventional multiplication circuit described above, since the addition circuit 10 is an addition circuit with the same number of bits as the number of bits of the multiplication output C,
The circuit configuration of the adder circuit 10 is extremely large-scale.

本発明ではこの大規模な加算回路を不要とした、新規な
乗算方法を提案するものである。
The present invention proposes a new multiplication method that does not require this large-scale addition circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、被乗数のシリアルデータを、乗数の各桁ビ
ットに対応して順次1ビットづつ積み上げ加算すること
により、上記従来技術の問題点を解決する。
In the present invention, the problems of the prior art described above are solved by sequentially accumulating and adding the serial data of the multiplicand one bit at a time corresponding to each digit bit of the multiplier.

〔作用〕[Effect]

即ち、本発明では被乗数のビット数にほぼ等しい数の直
列接続された1ビット加算回路により、乗算処理を行な
えるよ・うにした。従って、上記の大規模な乗算回路を
不要とできる。
That is, in the present invention, multiplication processing can be performed using 1-bit adder circuits connected in series, the number of which is approximately equal to the number of bits of the multiplicand. Therefore, the above-mentioned large-scale multiplication circuit can be eliminated.

〔実施例〕〔Example〕

第1図を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to FIG.

図中、1はパラレル/シリアル変換回路、2はレジスタ
、3〜5は1ビット加算回路、G1−G5はゲート回路
である。
In the figure, 1 is a parallel/serial conversion circuit, 2 is a register, 3 to 5 are 1-bit adder circuits, and G1 to G5 are gate circuits.

まず、被乗数Aをパラレル/シリアル変換回路1に入力
し、続いて、それをシリアルに読出す。
First, the multiplicand A is input to the parallel/serial conversion circuit 1, and then it is read out serially.

一方、乗数Bはレジスタ7に並列のデータのまま一旦蓄
えられる。
On the other hand, the multiplier B is temporarily stored in the register 7 as parallel data.

レジスタ2からの乗数Bの最下位ビットと、上記パラレ
ル/シリアル変換回路1の出力(a)はゲート回路G1
に入力され、乗数Bの最下位ビットが1である場合には
、被乗数の値がそのまま出力されて1ビット加算回路3
に入力されるが、乗数Bの最下位ピントが0の場合には
、ゲート回路G1の出力は、常に0となる。
The least significant bit of the multiplier B from the register 2 and the output (a) of the parallel/serial conversion circuit 1 are connected to the gate circuit G1.
, and if the least significant bit of multiplier B is 1, the value of the multiplicand is output as is and the 1-bit addition circuit 3
However, when the lowest focus of the multiplier B is 0, the output of the gate circuit G1 is always 0.

一方、ゲート回路G2には上記パラレル/シリアル変換
回路1の出力+a)のタイミングから1ビット遅れた被
乗数のシリアルデータ(blと乗数Bの最下位から2ビ
ット目のデータが入力され、前記と同様にその出力を1
ビット加算回路3に入力する。
On the other hand, the serial data of the multiplicand (bl and the second bit from the lowest bit of the multiplier B) which is delayed by 1 bit from the timing of the output +a) of the parallel/serial conversion circuit 1 is input to the gate circuit G2, and the same as above. The output is 1
Input to bit adder circuit 3.

ここに於て、1ビット遅れたパラレル/シリアル変換回
路1の出力(b)を採用する理由は、ゲート回路G2の
出力がゲート回路G1の出力に比べて1ビットシフトし
ていなければならない為であり、従来回路の加算に於て
乗数の出力を1ビットづつシフトして加算していた事に
対応する。
Here, the reason why the output (b) of the parallel/serial conversion circuit 1 delayed by 1 bit is adopted is that the output of the gate circuit G2 must be shifted by 1 bit compared to the output of the gate circuit G1. This corresponds to the fact that in addition in conventional circuits, the output of the multiplier is shifted one bit at a time and added.

上記の処理により、1ビット加算回路3からは、乗数B
の下位2ビットにより加算すべきか、0にすべきかを判
定された被乗数Aと当該被乗数Aを1ビット遅延させた
ものの加算結果がシリアルに出力されることとなる。
Through the above processing, the 1-bit addition circuit 3 outputs the multiplier B
The result of adding the multiplicand A, for which it is determined whether to add or set it to 0 based on the lower two bits of the multiplicand A and the multiplicand A delayed by 1 bit, is serially output.

次いで、この1ビット加算回路3の出力は、1ビット加
算回路4に於て、ゲート回路G3の出力左加算される。
Next, the output of this 1-bit addition circuit 3 is added to the left of the output of gate circuit G3 in 1-bit addition circuit 4.

尚、ゲート回路G3には、前記ゲート回路Gl、G2と
同様に、2ビット遅延させたパラレル/シリアル変換回
路1の出力(C)と乗数Bの最下位から3ビット目のデ
ータとが入力されている。
Note that, like the gate circuits Gl and G2, the output (C) of the parallel/serial conversion circuit 1 delayed by 2 bits and the third bit data from the lowest bit of the multiplier B are input to the gate circuit G3. ing.

同様に、1ビット加算回路5には、1ビット加算回路4
の出力と、ゲート回路G4を介した乗数Bの最下位から
4ビット目のデータに対応したパラレル/シリアル変換
回路1の出力fdlが入力され、その出力端6からは、
例えば4ビットの乗数による直列乗算結果Cが出力され
る。
Similarly, the 1-bit adder circuit 5 includes the 1-bit adder circuit 4
and the output fdl of the parallel/serial conversion circuit 1 corresponding to the fourth bit from the lowest bit of the multiplier B via the gate circuit G4 are input, and from the output terminal 6,
For example, a serial multiplication result C using a 4-bit multiplier is output.

具体的に被乗数A=1101、乗数B=1010の場合
について、各1ビット加算回路1〜4の入出力データを
図中の参照記号イ〜トに対応させて以下に示す。
Specifically, for the case where the multiplicand A=1101 and the multiplier B=1010, the input/output data of each of the 1-bit adder circuits 1 to 4 is shown below, corresponding to reference symbols I to 4 in the figure.

被乗数(シリアルデータ):toi1 イ: (対応乗数ビット0)   0000口: (対
応乗数ビット1)    1011ハ:       
   0101に : (対応乗数ビットO)    0000ホ:   
       01011 へ: (対応乗数ビット1)      l O11ト
 :                    oto
ooooi上記具体例からも明らかであるように、本発
明によれば、1101*1010=10000010と
云う4ビット乗数の乗算処理を直列に接続された3II
Mの1ビット加算回路により行うことができる。
Multiplicand (serial data): toi1 A: (Corresponding multiplier bit 0) 0000 unit: (Corresponding multiplier bit 1) 1011 C:
to 0101: (corresponding multiplier bit O) 0000 ho:
To 01011: (corresponding multiplier bit 1) l O11 to: oto
ooooiAs is clear from the above specific example, according to the present invention, the multiplication process of the 4-bit multiplier 1101*1010=10000010 is performed using 3II connected in series.
This can be performed using M 1-bit adder circuits.

尚、上記実施例にでは4ビットの乗数による演算につい
て説明をしたが、本発明の適用はこれに限られるもので
はない。即ち、適宜乗数のビット数に応じて直列接続さ
れる1ビット加算回路等の数を変更し、演算を行うこと
が出来るものである。
Incidentally, in the above embodiment, an operation using a 4-bit multiplier was explained, but the application of the present invention is not limited to this. That is, it is possible to perform calculations by appropriately changing the number of 1-bit adder circuits connected in series according to the number of bits of the multiplier.

また、予め多数の1ビット加算回路を直列に接続し、所
定段の加算回路出力を取り出すことによっても同様に所
定の乗算処理を行わせることができる。
Further, a predetermined multiplication process can be similarly performed by connecting a large number of 1-bit adder circuits in series in advance and taking out the output of the adder circuits at a predetermined stage.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、従来必要であった大規模の加算回
路を不要とし、小規模の1ビット加算回路を直列に接続
して乗算を行うことができるため、その回路規模を極め
て小さくすることができる。
As described above, according to the present invention, the large-scale adder circuit that was conventionally required is not required, and multiplication can be performed by connecting small-scale 1-bit adder circuits in series, so that the circuit scale can be made extremely small. Can be done.

尚、本発明に於ては、被乗数のビット数及び乗数のビッ
ト数の和に対応した数の信号処理サイクルが必要となる
ため、従来の演算方式に比べて若干演算処理時間が多く
なることがある。しかしながら、特に高速演算処理を要
求されず、回路規模の縮小の要請の強い領域、例えば音
声信号処理の応用に於けるチップのLSIを製造する場
合等に本発明の適用が特に有効である。
Note that in the present invention, the number of signal processing cycles corresponding to the sum of the number of bits of the multiplicand and the number of bits of the multiplier is required, so the calculation processing time may be slightly longer than that of conventional calculation methods. be. However, the application of the present invention is particularly effective in areas where high-speed arithmetic processing is not required and there is a strong demand for circuit scale reduction, such as when manufacturing LSI chips for audio signal processing applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による直列乗算を行うための一実施例を
、第2図は従来の乗算回路を、それぞれ示す。 図中、1.8はパラレル/シリアル変換回路を、2.7
はレジスタを、3〜5は1ビット加算回路を、61〜G
4はゲート回路を、9はセレクタを、10は加算回路を
表す。
FIG. 1 shows an embodiment for performing serial multiplication according to the present invention, and FIG. 2 shows a conventional multiplication circuit. In the figure, 1.8 is the parallel/serial conversion circuit, 2.7
is a register, 3 to 5 is a 1-bit addition circuit, 61 to G
4 represents a gate circuit, 9 represents a selector, and 10 represents an adder circuit.

Claims (1)

【特許請求の範囲】[Claims] 被乗数のシリアルデータを、乗数の各桁ビットに対応し
て順次1ビットづつ積み上げ加算することを特徴とする
直列乗算方法。
A serial multiplication method characterized in that serial data of a multiplicand is sequentially accumulated and added one bit at a time corresponding to each digit bit of the multiplier.
JP12128184A 1984-06-13 1984-06-13 Serial multiplication method Pending JPS615345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12128184A JPS615345A (en) 1984-06-13 1984-06-13 Serial multiplication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12128184A JPS615345A (en) 1984-06-13 1984-06-13 Serial multiplication method

Publications (1)

Publication Number Publication Date
JPS615345A true JPS615345A (en) 1986-01-11

Family

ID=14807368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12128184A Pending JPS615345A (en) 1984-06-13 1984-06-13 Serial multiplication method

Country Status (1)

Country Link
JP (1) JPS615345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236340A (en) * 1985-04-10 1986-10-21 Matsushita Electric Ind Co Ltd Motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327337A (en) * 1976-08-26 1978-03-14 Nippon Telegr & Teleph Corp <Ntt> Pipeline multiplier
JPS5373042A (en) * 1976-12-13 1978-06-29 Nippon Telegr & Teleph Corp <Ntt> Pipeline multiplier
JPS5447539A (en) * 1977-09-22 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Digital binary multiplier circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327337A (en) * 1976-08-26 1978-03-14 Nippon Telegr & Teleph Corp <Ntt> Pipeline multiplier
JPS5373042A (en) * 1976-12-13 1978-06-29 Nippon Telegr & Teleph Corp <Ntt> Pipeline multiplier
JPS5447539A (en) * 1977-09-22 1979-04-14 Nippon Telegr & Teleph Corp <Ntt> Digital binary multiplier circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236340A (en) * 1985-04-10 1986-10-21 Matsushita Electric Ind Co Ltd Motor
JPH0510022B2 (en) * 1985-04-10 1993-02-08 Matsushita Electric Ind Co Ltd

Similar Documents

Publication Publication Date Title
JP3244506B2 (en) Small multiplier
US4556948A (en) Multiplier speed improvement by skipping carry save adders
KR100302093B1 (en) How to multiply the binary input signal with the tap coefficient in the crossover digital finite impulse response filter and design the circuit arrangement and crossover digital filter
US4142242A (en) Multiplier accumulator
US5781462A (en) Multiplier circuitry with improved storage and transfer of booth control coefficients
US5142490A (en) Multiplication circuit with storing means
JPS615345A (en) Serial multiplication method
JPS5853217A (en) Digital filter circuit
JPH02287874A (en) Product sum arithmetic unit
JP2734438B2 (en) Multiplier
KR100335252B1 (en) Fast digital filter
JP3123060B2 (en) Digital arithmetic circuit
JPS6259828B2 (en)
JP2864598B2 (en) Digital arithmetic circuit
JPH0375903B2 (en)
JP2617591B2 (en) Serial operation circuit
JP2629736B2 (en) Product-sum operation circuit
JPS63163927A (en) Multiplication circuit
JPH0795671B2 (en) Digital Filter
JPH04109756A (en) Matrix arithmetic circuit and image sensor
JPH0666638B2 (en) Digital Filter
SRAVIKA et al. Designing of Multi-Operand Decimal/Binary Adder for Filter/Fast Addition Architectures
JPS59197936A (en) Digital signal processing system
JPS6115232A (en) Multiplier
JPS61177544A (en) Serial multiplying device