JPS6146523B2 - - Google Patents

Info

Publication number
JPS6146523B2
JPS6146523B2 JP11057681A JP11057681A JPS6146523B2 JP S6146523 B2 JPS6146523 B2 JP S6146523B2 JP 11057681 A JP11057681 A JP 11057681A JP 11057681 A JP11057681 A JP 11057681A JP S6146523 B2 JPS6146523 B2 JP S6146523B2
Authority
JP
Japan
Prior art keywords
nozzle
blowing nozzle
gas
refractory
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11057681A
Other languages
Japanese (ja)
Other versions
JPS5811718A (en
Inventor
Yutaka Kino
Michitaka Kanemoto
Tatsuyuki Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11057681A priority Critical patent/JPS5811718A/en
Priority to AU85970/82A priority patent/AU541441B2/en
Priority to EP82303692A priority patent/EP0070197A1/en
Publication of JPS5811718A publication Critical patent/JPS5811718A/en
Publication of JPS6146523B2 publication Critical patent/JPS6146523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明は、容器底部から各種のガス吹込みを行
う溶融金属の精錬に用いられるガス吹込ノズル、
詳しくは耐火物製の底吹ノズルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas blowing nozzle used for refining molten metal that blows various gases from the bottom of a container;
More specifically, it relates to a bottom blowing nozzle made of refractory material.

以下本発明について酸素転炉における底部から
の二酸化炭素(以下CO2と云う)吹込ノズルを例
として説明する。
The present invention will be explained below using a nozzle for blowing carbon dioxide (hereinafter referred to as CO 2 ) from the bottom of an oxygen converter as an example.

さて、近時酸素炉において上ノズルから酸素
(以下O2と云う)を、底吹ノズルからCO2を吹込
む手段が溶湯の撹拌を良好にし、かつCO2を可燃
のCOガス化できると云う利点から試用され始め
た。
Nowadays, in oxygen furnaces, a method of blowing oxygen (hereinafter referred to as O 2 ) from the top nozzle and CO 2 from the bottom blowing nozzle improves the agitation of the molten metal and is said to be able to turn CO 2 into combustible CO gas. It began to be used for its advantages.

ところで転炉底部から底吹ノズルを介してCO2
を吹込むと、底吹ノズル1の直上には第1図に示
すようにマツシユルーム2が形成されることが判
明している。該マツシユルーム2は溶融金属(以
下単に溶湯と云う)の半凝固物の茸状構成体であ
つて、中央にガス通気孔3、周辺に細い通気孔4
があると推認されている。ところで前記マツシユ
ルーム2は底吹ノズル1や底部耐火物5を溶湯か
ら保護し、ガス吹込みを円滑にする作用があるも
のの、その構成は極めて不安定で脆弱であり、状
況によつては、たちまち消失したり、その反面凝
固体になり易く一旦凝固し始めると、忽ち肥大化
し底吹ノズル1を一気に閉塞するなど、安定に維
持することが大切であるのに、扱いにくい構成体
である。
By the way, CO 2 is released from the bottom of the converter through the bottom blowing nozzle.
It has been found that when blowing, a pine room 2 is formed directly above the bottom blowing nozzle 1 as shown in FIG. The pine room 2 is a mushroom-shaped structure made of semi-solidified molten metal (hereinafter simply referred to as molten metal), and has a gas vent 3 in the center and narrow vent holes 4 around the periphery.
It is assumed that there is. By the way, although the pine room 2 has the function of protecting the bottom blowing nozzle 1 and the bottom refractory 5 from the molten metal and smoothing the gas blowing, its structure is extremely unstable and fragile, and depending on the situation, it can easily break down. It is difficult to handle, although it is important to maintain it stably, as it easily disappears or, on the other hand, becomes a solidified body, and once it begins to solidify, it quickly enlarges and blocks the bottom blowing nozzle 1 at once.

而して前記マツシユルーム2を安定に維持し、
その肥大化を防止するためには底吹ノズル1の口
径を小さくし、炉内に吹込まれるCO2の線流速を
大きくすることが効果的であることが本発明者等
の経験で確認された。しかしながら底吹ノズル1
の口径を小さくすると当然の事ながらCO2の吹込
量に制限が余儀なくされ、これを解決するために
は底吹ノズル1を炉底に多数配設しなければなら
ず、設備費の高騰や保全性の悪化等を招く結果と
なつていた。一方、底吹ノズルは高温下の苛酷な
条件のもとで使用されることから耐スポーリング
性あるいはその他の種々の強度に秀れた性質を有
する高級耐火物、例えばMgO―C系耐火物等が
一般に用いられている。ところが前記MgO―C
系耐火物で構成された底吹ノズルによつてCO2
吹込んだ場合、例えば1000℃以上の高温下では耐
火物中のCがCO2と反応してCO化し、又500℃以
下の低温下ではMgOがCO2と反応してMgCO3
して前記耐火物の強度を低下させ、この結果底吹
ノズルの耐用寿命が著しく低下することが本発明
者等の種々の実験で知見された。
Thus, maintaining the pine room 2 stably,
The inventors' experience has confirmed that it is effective to reduce the diameter of the bottom blowing nozzle 1 and increase the linear flow velocity of CO 2 blown into the furnace in order to prevent its enlargement. Ta. However, bottom blowing nozzle 1
Naturally, if the bore diameter of the furnace is made smaller, the amount of CO 2 blown into the furnace will be limited. This resulted in deterioration of sexual quality, etc. On the other hand, since bottom-blown nozzles are used under harsh conditions at high temperatures, high-grade refractories with excellent spalling resistance and other various strength properties, such as MgO-C refractories, are used. is commonly used. However, the MgO-C
When CO 2 is injected using a bottom-blowing nozzle made of refractory material, for example, at high temperatures of 1000°C or higher, the C in the refractory reacts with CO 2 and turns into CO, and at low temperatures of 500°C or less. The present inventors have found through various experiments that MgO reacts with CO 2 and turns into MgCO 3 , lowering the strength of the refractory, and as a result, the service life of the bottom blowing nozzle is significantly reduced.

本発明は前記知見に基づき種々調査研究を重ね
た結果発明されたものであつて、マツシユルーム
の安定維持を計ると共に所要量のCO2吹込みを効
率的に行ない、かつノズル寿命の飛躍的向上を可
能ならしめる底吹ノズルを提供するものである。
The present invention was developed as a result of various research studies based on the above knowledge, and it aims to maintain the stability of the pine room, efficiently inject the required amount of CO 2 , and dramatically improve the life of the nozzle. The present invention provides a bottom blowing nozzle that enables this.

即ち本発明は、耐火物で形成されたノズル本体
の底部に、内部に空洞を有しその底部にガス供給
管が連続された密封風箱を設けると共に、前記ノ
ズル本体の縦方向に金属製小径単管ノズルを複数
個埋設し、該各単管ノズル下端を前記風箱に連通
固定したことを特徴とする底吹ノズルである。
That is, the present invention provides a sealed air box having a cavity inside and a continuous gas supply pipe at the bottom of a nozzle body formed of a refractory material, and a metal small diameter box extending in the vertical direction of the nozzle body. This bottom-blowing nozzle is characterized in that a plurality of single-tube nozzles are buried, and the lower end of each single-tube nozzle is connected and fixed to the wind box.

以下実施例に基づき本発明を詳述する。 The present invention will be described in detail below based on Examples.

さて、第2図は本発明の底吹ノズルの一実施例
を示す断面構造図であり、第3図は前記底吹ノズ
ルの炉底への装着状態を示す断面構造図である。
Now, FIG. 2 is a cross-sectional structural view showing one embodiment of the bottom blowing nozzle of the present invention, and FIG. 3 is a cross-sectional structural view showing the state in which the bottom blowing nozzle is attached to the furnace bottom.

而して本発明の底吹ノズル10は金属製小径単
管ノズル(以下ノズルと云う)11を耐火物12
内の縦方向に複数個埋込んで構成されている。
又、本実施例の底吹ノズル10は、その底部にガ
スヘツダー機能を有する空洞13aを形成し、か
つ周縁に保護筒体14を立脚せしめた底板構造体
が設けらている。該底板構造体は前記空洞13a
を頂板13bと底板13cと側板13dで密閉し
た構造になつており、以下密閉風箱13eと呼
ぶ。前記ノズル11は密閉風箱13eに連通固定
されている。又密閉風箱13eの底面にはガス供
給管15が連接されている。底吹ノズル10は、
炉底の羽口煉瓦16内に装着され、受け煉瓦17
およびベース煉瓦18によつて炉底の煉瓦壁19
に固定保持されている。
The bottom-blowing nozzle 10 of the present invention has a small-diameter metal single pipe nozzle (hereinafter referred to as a nozzle) 11 with a refractory material 12.
It consists of multiple pieces embedded in the vertical direction.
Further, the bottom blowing nozzle 10 of this embodiment is provided with a bottom plate structure having a cavity 13a having a gas header function formed at the bottom thereof and a protective cylinder 14 standing on the periphery. The bottom plate structure has the cavity 13a.
It has a structure in which it is sealed by a top plate 13b, a bottom plate 13c, and a side plate 13d, and is hereinafter referred to as a closed air box 13e. The nozzle 11 is fixedly communicated with a closed air box 13e. Further, a gas supply pipe 15 is connected to the bottom surface of the closed air box 13e. The bottom blowing nozzle 10 is
It is installed in the tuyere brick 16 at the bottom of the hearth, and the receiving brick 17
and the brick wall 19 of the hearth bottom by the base brick 18
is held fixed.

而してCO2は炉外のガス供給設備20よりガス
供給管15を介して、密閉風箱13eに供給され
た後、各ノズル11より炉内へ吹込まれる。
The CO 2 is supplied from the gas supply equipment 20 outside the furnace through the gas supply pipe 15 to the closed wind box 13e, and then blown into the furnace from each nozzle 11.

ところでノズル11は所定の口径の吹込口を構
成すると共に、その内側を流れるCO2と耐火物1
2を分離し、CO2と耐火物12が直接的に反応す
ることを防止する機能を果すものであり、前記機
能を発揮し得るものであれば、例えば炭素鋼鋼管
の如き金属管を用いることも可能である。しかし
ながら発明者等の経験ではノズル11の先端は炉
内の高温に曝されることから、例えばステンレス
鋼鋼管の如き耐熱性を有する金属管を用いること
が好ましい、又、個々のノズル11の口径は前述
の如くマツシユルーム2の肥大化を防止し、安定
した形態を保持させるために、3〜5mmφ(金属
管の内径)程度以下の金属製小径単管で構成し、
CO2の見かけの線流速を約1000m/sec以上の確
保することが効果的である。
By the way, the nozzle 11 constitutes an inlet of a predetermined diameter, and the CO 2 flowing inside the nozzle 11 and the refractory 1
2 and prevents direct reaction between CO 2 and the refractory 12, and as long as it can perform the above function, a metal pipe such as a carbon steel pipe may be used. is also possible. However, in the experience of the inventors, since the tip of the nozzle 11 is exposed to the high temperature inside the furnace, it is preferable to use a heat-resistant metal tube such as a stainless steel tube, and the diameter of each nozzle 11 is As mentioned above, in order to prevent the pine room 2 from enlarging and maintain a stable form, it is constructed of a small diameter single metal pipe with a diameter of 3 to 5 mm (inner diameter of the metal pipe) or less.
It is effective to ensure that the apparent linear flow velocity of CO 2 is approximately 1000 m/sec or more.

而してノズル11の埋込み数も炉容および操業
条件等に応じて設定されるCO2の吹込量に対応し
て任意に設定し、例えば第4〜6図に示す如く相
隣わるノズルと適宜の間隔を有して配列し耐火物
12内に埋込めばよい。
The number of embedded nozzles 11 is also set arbitrarily in accordance with the amount of CO 2 blown in, which is set according to the furnace capacity and operating conditions. For example, as shown in FIGS. They may be arranged with an interval of , and embedded in the refractory 12 .

以上のように本発明の底吹ノズル10ではノズ
ル11が常に所定の口径を保持し、又その間、
CO2と耐火物12との反応を完全に防止すること
からMgO―C系等の高級な耐火物の特性を有効
に発揮させることができ、この結果底吹ノズル1
0の寿命を大巾に延長させることが可能となつ
た。加えて複数個の金属製小径単管からなるノズ
ル11が単体の底吹ノズル10に収束されて構成
されるため単体の底吹ノスル10によつて多量の
CO2吹込みが可能となり、しかも個々のノズル1
1からは前述のように所定の線流速を確保しつゝ
CO2が吹込まれることから、CO2吹込みによる精
錬効果を最大限に発揮できるようになつた。
As described above, in the bottom blowing nozzle 10 of the present invention, the nozzle 11 always maintains a predetermined diameter, and during that time,
Since the reaction between CO 2 and the refractory 12 is completely prevented, the characteristics of high-grade refractories such as MgO-C type can be effectively exhibited, and as a result, the bottom blowing nozzle 1
It has become possible to significantly extend the lifespan of 0. In addition, since the nozzles 11 made of a plurality of small-diameter single metal pipes are converged into a single bottom-blowing nozzle 10, a large amount of water can be
CO 2 injection is now possible, and individual nozzles 1
From 1 onwards, as mentioned above, while ensuring the predetermined linear flow velocity,
Since CO 2 is injected, the refining effect of CO 2 injection can now be maximized.

尚、本発明は前記実施例に限定されるものでは
なく、例えばN2,Ar等の不活性ガスあるいは
CO2にN2,Ar、空気、O2等を適宜添加した混合
ガスに対しても同様な効果を発揮しうるものであ
る。又、本発明者等の経験では前記第2図および
第3図に示す如く底部に密閉風箱13eを設けて
構成した底吹ノズル10がその製作性に秀れ、又
ノズル11の長さを煉瓦壁19の使用限界厚みよ
り若干程度長くして底吹ノズル10を構成すれば
よく、この結果、小径のノズル11を用いた場合
に問題となる配管途中におけるガスに圧力損失を
最小限にとどめることが出来る上に、CO2ガスの
シール性即ち、CO2ガスが耐火物12やノズル1
1の接合部等より漏洩することを確実に碧止でき
る等種々の秀れた効果が確認された。
It should be noted that the present invention is not limited to the above embodiments, and for example, inert gas such as N 2 or Ar, or
A similar effect can be exerted on a mixed gas in which N 2 , Ar, air, O 2 , etc. are appropriately added to CO 2 . In addition, according to the experience of the present inventors, the bottom-blowing nozzle 10 configured with a closed air box 13e at the bottom as shown in FIGS. The bottom-blowing nozzle 10 may be configured to be slightly longer than the maximum usable thickness of the brick wall 19, and as a result, the pressure loss in the gas in the middle of the piping, which would be a problem when using a small-diameter nozzle 11, can be minimized. In addition, the CO 2 gas sealing property, that is, the CO 2 gas is
Various excellent effects were confirmed, such as being able to reliably prevent leakage from the joints etc. of No. 1.

次に本発明の底吹ノズル10についてCO2ガス
吹込みを行つた実施例について説明する。
Next, an example in which CO 2 gas is blown into the bottom blowing nozzle 10 of the present invention will be described.

実施例 溶銑180tonの精錬においてCO2ガス供給圧9
Kg/cm2として300Nm3/Hrの吹込量で操業した実
施例では従来の例へばMgO―C耐火物にガス吹
込口を穿孔して構成した底吹ノズルの寿命は平均
50チヤージであつたのに対し、前記第2図に示す
本発明実施例の底吹ノズル10では平均400チヤ
ージ以上の耐用寿命を有することが確認される、
しかも寿命末期において300Nm3/Hrの吹込みを
行つたときの供給圧も9Kg/cm2と全く変化のない
ことが確認された。
Example CO2 gas supply pressure 9 in refining 180 tons of hot metal
In an example in which operation was performed at a blowing rate of 300Nm 3 /Hr (Kg/cm 2 ) , the lifespan of a bottom-blowing nozzle constructed by drilling a gas inlet in an MgO-C refractory was average compared to the conventional example.
It is confirmed that the bottom-blowing nozzle 10 according to the embodiment of the present invention shown in FIG.
Moreover, it was confirmed that the supply pressure when blowing at 300 Nm 3 /Hr at the end of the life was 9 Kg/cm 2 and did not change at all.

尚、本実施例に用いたノズル11の口径は3mm
φ、埋込数は14本、耐火物12はMgO―C系耐
火物である。
Note that the diameter of the nozzle 11 used in this example was 3 mm.
φ, the number of embeddings is 14, and the refractory 12 is an MgO-C based refractory.

以上詳述したように本発明の底吹ノズルは構造
が簡単でありながら、その耐用性は著しく向上
し、又マツシユルームの安定にも極めて有効で精
錬効果を高めるうえで有用である。
As detailed above, the bottom blowing nozzle of the present invention has a simple structure, but its durability is significantly improved, and it is also extremely effective in stabilizing the pine room and is useful in enhancing the refining effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCO2ガス吹込みによるマツシユルーム
形成状況を説明する概略図。第2図〜第6図は本
発明の実施例を示すもので、第2図は底吹ノズル
の断面構造図、第3図は底吹ノズルの装着状態を
示す断面構造図、第4図〜第6図はそれぞれ異な
つたノズルの埋込み状態の実施例を示す底吹ノズ
ルの平面図である。 1:底吹ノズル、2:マツシユルーム、3:ガ
ス通気孔、4:細い通気孔、5:底部耐火物、1
0:本発明の底吹ノズル、11:ノズル、12:
耐火物、13a:空洞、13b:頂板、13c:
底板、13d:側板、13e:密閉風箱、14:
保護筒体、15:ガス供給管、16:雨口煉瓦、
17:受け煉瓦、18:ベース煉瓦、19:炉底
煉瓦壁、20:ガス供給設備、21:ヘツダー
管。
Figure 1 is a schematic diagram illustrating the formation of a pine room by CO 2 gas injection. 2 to 6 show embodiments of the present invention, in which FIG. 2 is a cross-sectional structural diagram of a bottom blowing nozzle, FIG. 3 is a cross-sectional structural diagram showing the bottom blowing nozzle in an installed state, and FIGS. FIG. 6 is a plan view of a bottom blowing nozzle showing embodiments of different nozzle embedding states. 1: Bottom blow nozzle, 2: Pine room, 3: Gas vent, 4: Thin vent hole, 5: Bottom refractory, 1
0: Bottom blowing nozzle of the present invention, 11: Nozzle, 12:
Refractory, 13a: Cavity, 13b: Top plate, 13c:
Bottom plate, 13d: Side plate, 13e: Sealed wind box, 14:
Protective cylinder, 15: Gas supply pipe, 16: Rain outlet brick,
17: Receiving brick, 18: Base brick, 19: Hearth brick wall, 20: Gas supply equipment, 21: Header pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 耐火物で形成されたノズル本体の底部に、内
部に空洞を有しその底面にガス供給管が連接され
た密封風箱を設けると共に、前記ノズル本体の縦
方向に金属製小径単管ノズルを複数個埋設し、該
各単管ノズル下端を前記風箱に連通固定したこと
を特徴とする底吹ノズル。
1 At the bottom of the nozzle body made of refractory material, a sealed air box having a cavity inside and a gas supply pipe connected to the bottom is provided, and a metal small diameter single pipe nozzle is installed in the vertical direction of the nozzle body. A bottom-blowing nozzle characterized in that a plurality of single-pipe nozzles are buried, and the lower end of each single-pipe nozzle is connected and fixed to the wind box.
JP11057681A 1981-07-15 1981-07-15 Bottom-blowing nozzle Granted JPS5811718A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11057681A JPS5811718A (en) 1981-07-15 1981-07-15 Bottom-blowing nozzle
AU85970/82A AU541441B2 (en) 1981-07-15 1982-07-13 Bottom blowing nozzle embedded in a refractory block
EP82303692A EP0070197A1 (en) 1981-07-15 1982-07-14 A nozzle assembly for bottom blown steel converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11057681A JPS5811718A (en) 1981-07-15 1981-07-15 Bottom-blowing nozzle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7187586A Division JPS61276912A (en) 1986-03-29 1986-03-29 Operating method for top and bottom blown converter

Publications (2)

Publication Number Publication Date
JPS5811718A JPS5811718A (en) 1983-01-22
JPS6146523B2 true JPS6146523B2 (en) 1986-10-15

Family

ID=14539332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11057681A Granted JPS5811718A (en) 1981-07-15 1981-07-15 Bottom-blowing nozzle

Country Status (1)

Country Link
JP (1) JPS5811718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101485A (en) * 1995-10-03 1997-04-15 Mitsuo Waki Spectacles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840331U (en) * 1981-09-08 1983-03-16 三菱鉛筆株式会社 Parts delivery device
JPS58167717A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Nozzle for refining molten metal
JPS5931810A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS5931813A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS5931809A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS5931808A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter
JPS6017009A (en) * 1983-07-11 1985-01-28 Mitsubishi Metal Corp Construction of tuyere part of refining furnace
JPS6036612A (en) * 1983-08-06 1985-02-25 Kawasaki Steel Corp Gas blowing nozzle for refining
JPS6086206A (en) * 1983-10-14 1985-05-15 Nippon Steel Corp Choking device for tuyere molten-metal container
TWI630276B (en) * 2016-09-02 2018-07-21 中國鋼鐵股份有限公司 Method for controlling status of accretion formation in pyrometallurgical treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101485A (en) * 1995-10-03 1997-04-15 Mitsuo Waki Spectacles

Also Published As

Publication number Publication date
JPS5811718A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
JPH032215B2 (en)
JPS6146523B2 (en)
CA2341898A1 (en) A direct smelting process
US4007035A (en) Method of using an expendable tap hole tuyere in open hearth decarburization
JP2006283065A (en) Gas-blowing tuyere
TW200525041A (en) Method for producing low carbon steel
JPS5931810A (en) Steel making method with converter
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
WO1982001013A1 (en) Method for controlling bottom-blown gas in top-and bottom-blown converter smelting
CN1035629C (en) A method for blowing oxidizing gases into molten metal
JPS58167707A (en) Method of smelting high-carbon steel by top and bottom-blown converter
JP3630003B2 (en) Method of injecting hydrocarbon gas into molten metal
JP3398986B2 (en) Metal smelting tuyere
JPS5959820A (en) Metal refining furnace and its operating method
JPS61276912A (en) Operating method for top and bottom blown converter
JPS6217463Y2 (en)
CN85107265B (en) Bottom oxygen blast compound injector of top-bottom double-blown converter
JPH01234513A (en) Method for blowing oxygen
JPS6235447B2 (en)
JPH0256404B2 (en)
JPS5834123A (en) Molten metal treatment vessel
JPS60177114A (en) Dephosphorizing method of molten iron
JPS61195910A (en) Tuyere construction
JPS635448B2 (en)
JPS6224489B2 (en)