JPS59153818A - Refining process in top and bottom-blown converter - Google Patents

Refining process in top and bottom-blown converter

Info

Publication number
JPS59153818A
JPS59153818A JP2743483A JP2743483A JPS59153818A JP S59153818 A JPS59153818 A JP S59153818A JP 2743483 A JP2743483 A JP 2743483A JP 2743483 A JP2743483 A JP 2743483A JP S59153818 A JPS59153818 A JP S59153818A
Authority
JP
Japan
Prior art keywords
nozzle
blowing
gas
blown
blowing nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2743483A
Other languages
Japanese (ja)
Inventor
Keiji Arima
有馬 慶治
Yujiro Ueda
裕二郎 上田
Yoshihiro Hatsuta
八太 好弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2743483A priority Critical patent/JPS59153818A/en
Publication of JPS59153818A publication Critical patent/JPS59153818A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To stabilize the formation of mushroom and to prolong the life of nozzles in a top and bottom-blown converter refining by using a concentrated nozzle formed to have a specified sectional area of the pipe and degree of concentration to perform bottom-blow of the stirring gas with a specified flow rate. CONSTITUTION:A single nozzle 1 having 0.24-1.4% degree of concentration of metallic pipes 3 having <=30mm.<2> sectional area is formed. This concentrated nozzle 4 is fitted to a brick wall 6 at the bottom of a converter, and CO2 or a gaseous mixture produced by mixing about 5-30% O2 with CO2 is blown into the converter after adjusting the flow rate to 1,000Nm<3>/hr nozzle. By this refining process, a normally grown mushroom covering the whole surface of the bottom blowing nozzle 4 is formed, and the damage of the bottom-blowing nozzle 4 by the molten iron is prevented. Damage of the nozzle due to spalling is also reduced remarkably, thus, the life of the bottom blowing nozzle 4 is improved.

Description

【発明の詳細な説明】 安定したマッシュルームを形成せしめることにより底吹
ノズルの寿命延長を図り精錬効率を高めることを可能な
らしめる前記精錬法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the above-mentioned refining method which makes it possible to extend the life of the bottom blowing nozzle and improve the refining efficiency by forming stable mushrooms.

近年転炉における精錬効率を高めるために上吹ランスよ
シ酸素(Oz)’r,浴面下の底吹ノズルより攪拌ガス
を底吹きする上底吹転炉精錬が積極的に実施されるよう
になっている。
In recent years, in order to improve the refining efficiency in converters, top-bottom blowing converter refining, in which oxygen (Oz)'r is blown from top-blowing lances and stirring gas is bottom-blown from bottom-blowing nozzles below the bath surface, has been actively implemented. It has become.

而して前記上底吹転炉精錬を可能ならしめるために種々
の構造の底吹ノズルやガス吹込み法等が提案されている
In order to make the top-bottom blowing converter refining possible, various bottom-blowing nozzle structures and gas blowing methods have been proposed.

例えば耐火物で形成されたプラグに細径の貫通孔を複数
個設けて底吹ノズルを構成したもの、前記貫通孔を耐火
物本体とは異なる材質からなる管状体で構成したもの、
さらには底吹きガス量を精錬条件によって適宜制御する
方法等が提案され、試用されている。
For example, a bottom-blowing nozzle is constructed by providing a plurality of small-diameter through holes in a plug made of refractory material, and a plug in which the through holes are constructed from a tubular body made of a material different from that of the refractory body;
Furthermore, methods for appropriately controlling the amount of bottom-blown gas according to refining conditions have been proposed and are being used on a trial basis.

ところが前記従来の底吹ノズルでは、単体としてのプラ
グに構成される貫通孔は、比較的少数の複数個設けるか
、あるいは所定断面内にできるだけ多く設ける程度の技
術思想しかなかった。このため前述した底吹きガスの吹
込み制御範囲が極く限られたものとなったり、あるいは
底吹ノズルとし7ての強度低下を招き、その耐用寿命は
極めて短かく、長期間、安定した操業を実施することは
困難であった。
However, in the conventional bottom blowing nozzle, the only technical idea was to provide a relatively small number of through holes in a single plug, or to provide as many through holes as possible within a predetermined cross section. For this reason, the blowing control range of the bottom blowing gas described above becomes extremely limited, or the strength of the bottom blowing nozzle 7 is reduced, and its service life is extremely short, making it difficult to operate stably for a long period of time. was difficult to implement.

ところで底吹ノズルより攪拌ガスを吹込むと底吹ノズル
の直上にマツジ−ルームが形成されることは周知である
。該マy7ユルームは、溶融金属、即ち溶湯の半凝固物
の耳状構成体であって底吹ノズルや炉底部耐火物を溶湯
−・ら課護すると共にガス吹込みを円滑にする作用があ
る。ところが該マツジ−ルームの構成は極めて脆弱であ
り、状況によってはたちまち消失したり、その反面凝固
体てなり易いなど安定的に維持することが困難で、かつ
扱い:(りい構成体である。
By the way, it is well known that when agitation gas is blown in from a bottom blowing nozzle, a matzi room is formed directly above the bottom blowing nozzle. The my7 room is an ear-like structure of molten metal, that is, semi-solidified molten metal, and has the function of protecting the bottom blowing nozzle and the furnace bottom refractory from the molten metal and smoothing gas injection. . However, the structure of the matge room is extremely fragile, and it is difficult to maintain it stably, as it can quickly disappear depending on the situation, and on the other hand, it tends to form a solidified substance, and it is difficult to handle.

本発明者等は/gθ屯の実操業の転炉において種々の実
験、研究を繰返した結果、前述した細径の貫通孔を設け
た底吹ノズルにおいて、貫通孔の構成、大きさ、ノズル
断面(て対する集合率およびガス吹込み量等が前記安定
]7たマツンール〜ムを形成せしめるうえから極めて重
要な影響を与えると云う知見を得たつ 本発明は、前記知見に基づき、さらに実験研究を重ねだ
結果発明されたものである0 以下実施例に基づき本発明を詳述する。
As a result of repeated various experiments and research in a converter in actual operation at /gθtun, the inventors of the present invention have determined that the configuration, size, and nozzle cross section of the through-hole in the bottom blowing nozzle provided with the above-mentioned small-diameter through-hole. (The aggregation rate and gas injection amount, etc. are stable as described above) 7) Based on the above knowledge, the present invention has obtained the knowledge that it has an extremely important influence on the formation of the matun room. This invention was invented as a result of repeated efforts.The present invention will be described in detail below based on Examples.

第1図は本発明に基づく一実施例を示すもので底吹集合
ノズルとその炉底部耐火物への装着状況を示す断面構造
図であシ、第2図は前記ノズルの平面図である。
FIG. 1 shows an embodiment of the present invention, and is a cross-sectional structural view showing a bottom blowing collective nozzle and how it is attached to a furnace bottom refractory, and FIG. 2 is a plan view of the nozzle.

図シでおいて/は耐火物!で形成された単体ノズルであ
り、前記耐火物2に金属、Sイブ3を後述する設定集合
率で埋設して底吹集合ノズルll(以下、底吹ノズルグ
と云う)を構成している0該底吹ノズルダは、例えば羽
(コ煉瓦Sを介して炉底煉瓦壁乙に装着されている。7
けガス供給管であり、攪拌ガスは該ガス供給管7よシ単
体ノズル/VC設けられたヘッダ一部gを介して金属パ
イプ3に供給され、該金属パイプ3より炉内へ吹込まれ
る。9はノズル押え煉瓦を示す。
In the figure, / is refractory! It is a single nozzle formed of a bottom-blowing collective nozzle 11 (hereinafter referred to as a bottom-blowing nozzle) by embedding a metal Sib 3 in the refractory 2 at a set collection rate described later. The bottom blowing nozzle is attached to the hearth brick wall B via, for example, a blade (brick S).7
The stirring gas is supplied to the metal pipe 3 through the gas supply pipe 7 through a header part g provided with a single nozzle/VC, and is blown into the furnace from the metal pipe 3. 9 indicates a nozzle holding brick.

さて、前記底吹ノズルグを用いて攪拌ガスを底吹きする
と底吹ノズルグの直りに前述の如くマ、ツシュルームが
形成される。一方、攪拌ガスは、炉内の溶湯の静圧に抗
しかつ、溶湯を効率的((攪埋するためて通常S〜/ 
3 Vrs2の圧力で吹送まれる。
Now, when the agitation gas is bottom-blown using the bottom-blowing nozzle, a mushroom is formed as described above right at the bottom-blowing nozzle. On the other hand, the stirring gas resists the static pressure of the molten metal in the furnace and efficiently moves the molten metal.
It is blown at a pressure of 3 Vrs2.

ところで本発明者等の実、@では、単体ノズル/((金
属パイプ3を埋設した底吹ノズルダを用いると金属パイ
プ、3に溶湯が凝着しこれを起点としてマソンールーム
が形成され易く、又、一旦形成されたマツンールームは
剥離ししてくいことが確認さtした。しかし前記金寓バ
イブ3は、その大きさが大きくなると第3図に示すよう
1て溶湯が金属ノ<イブ31て浸入する、いわゆる地金
差し込み現象が生じ易くなり、この結果、ノズル詰りと
なったり、そのノズル詰りして起因して一旦形成された
マツシュルーム/θが剥離することも判った。
By the way, the inventors of the present invention have found that when using a single nozzle/((bottom-blowing nozzle with a buried metal pipe 3), the molten metal adheres to the metal pipe 3, and a mason room is likely to be formed from this as a starting point. It has been confirmed that once formed, the metal tube 31 is difficult to peel off.However, when the size of the metal tube 3 becomes large, molten metal tends to penetrate through the metal tube 31, as shown in FIG. It has also been found that the so-called bare metal insertion phenomenon tends to occur, resulting in nozzle clogging, and the once-formed pine mushroom/θ peeling off due to the nozzle clogging.

さら((実験ヲ換返した結果、金属パイプ3の形状の如
何してか\わらずその断面積が30mm2を超えると前
記現象が顕著((表われ、逆に3θ鮒2以下の大きさで
あれば前記現象は全く生じないことも確認された。
Furthermore, ((as a result of repeating the experiment), the above-mentioned phenomenon is noticeable when the cross-sectional area exceeds 30 mm2, regardless of the shape of the metal pipe 3. It was also confirmed that the above phenomenon did not occur at all.

本発明において金属パイプ3の浴((接する側の断1■
墳全3θmm2以rに限定したのは前記理由からである
In the present invention, the bath of the metal pipe 3 ((the cut on the contact side 1)
The reason why the total diameter of the tomb was limited to 3θmm2 or less is for the reason mentioned above.

次に前記金属パイプ3の単体ノズル/における数および
配列等は、正常なマ、7シユル−ム/θを形成させるう
えから極めて重要である。例えば単体ノズル/の大きさ
に対して金属ノζイブ3の数が少なかったり、一定部分
にのみ集中して設けられた底吹ノズルダでは、正常なマ
ツシュル−ムを形成しないことが判明した。
Next, the number and arrangement of the single nozzles of the metal pipe 3 are extremely important for forming a normal ma, 7 shroom/θ. For example, it has been found that a bottom blowing nozzle in which the number of metal ζ ribs 3 is small relative to the size of the single nozzle or in which they are concentrated only in a certain area does not form a normal pine mushroom.

この知見に基づきさらに研究を行った結果、単体ノズル
/に埋設される金属パイプ3の相互間隔を後述する所定
距離以下に保持せしめると共に単体ノズル/の平断面積
に対する金属ノ々イブ3の断面占積率を設定範囲内とす
ることが効果的であることが判った。即ちノズルまわり
の溶湯と底吹きされる攪拌ガスとの熱バランスを最適に
制御すること(でよって、個々の金属パイプ3の先端に
凝着し、生長を開始したマンンユルームは、相隣り合う
金属パイプ上のマツシュルームと連結し、第9図すに示
すように底吹ノズルグの上面全体を覆い耳状の形状を呈
(7だ正常なマツシュルームを形成する。
As a result of further research based on this knowledge, we found that the distance between the metal pipes 3 buried in the single nozzle was maintained at a predetermined distance or less, which will be described later, and that the cross-sectional area of the metal nozzle 3 was It has been found that it is effective to keep the product moment within a set range. In other words, by optimally controlling the heat balance between the molten metal around the nozzle and the stirring gas blown from the bottom (therefore, the manuyu room that has adhered to the tip of each metal pipe 3 and started to grow, It is connected to the upper pine mushroom, and covers the entire upper surface of the bottom blowing nozzle to form an ear-like shape as shown in Figure 9 (7) to form a normal pine mushroom.

前記熱バランスを最適に保持するためては1本発明者等
の経験では、金属パイプ3の相互間距離t(第2図)を
下記(1)式を満足する距離とすると共(て、金属パイ
プ3を単体ノズル/のほぼ全面に均等に分布せしめ、単
体ノズルの平断面積AVc対する金・寓パイプ3の総断
面積Σaの比Xaをθ、2り〜/q係とすればよいこと
が五′、認された。
In order to optimally maintain the heat balance, the inventors have found that the distance t between the metal pipes 3 (Fig. 2) is set to a distance that satisfies the following formula (1), and The pipes 3 should be distributed evenly over almost the entire surface of the single nozzle /, and the ratio Xa of the total cross-sectional area Σa of the metal pipe 3 to the flat cross-sectional area AVc of the single nozzle should be set to θ, the ratio of 2 to /q. 5' was approved.

/−</:、、2X/θ−”X  ’/ −+11t:
金属パイプの相互間距離(cm )T:金属パイプ/本
轟りのガス流量 (rm3/s e c ) L:金属パイプ/本当りの内周長(cm)尚、本発明1
ておいて集合率とは、前述の如く金属パイプの相互間距
離tを所定距離以下としつh 、t1体ノズル/のほぼ
全面(て、均等に分布せしめて配列したときの単体ノズ
ル横断面積に対する金属パイプの総断面積の割合を云う
ものである。
/-</:,,2X/θ-”X'/-+11t:
Mutual distance between metal pipes (cm) T: Metal pipe/real gas flow rate (rm3/sec) L: Metal pipe/inner circumference length of main (cm) Invention 1
As mentioned above, the aggregation rate is defined as the distance t between the metal pipes being equal to or less than a predetermined distance, h, almost the entire surface of the nozzle (t), and the cross-sectional area of the single nozzle when arranged evenly. It refers to the percentage of the total cross-sectional area of a metal pipe.

さて第9図は、前記集合率と形成されたマツンユルーl
、および底吹ノズル内の温度分布の関係の調査結果を示
すものである。該第9図より判明するように集合率がθ
、、211〜/り係 の底吹ノズル(実施例b)では底
吹ノズルグの全面を覆う正常な77シユルーム/θが形
成され、溶湯による底吹ノズルグの溶損が防止されると
共に底吹ノズルにおける温度分布も均一なものとなる。
Now, Figure 9 shows the aggregation rate and the formed Matsunyuru l.
, and the relationship between the temperature distribution inside the bottom blowing nozzle. As is clear from FIG. 9, the aggregation rate is θ
In the bottom blowing nozzle (Example b) of 211~/Register, a normal 77 shroom/θ is formed that covers the entire surface of the bottom blowing nozzle, which prevents the bottom blowing nozzle from being melted and damaged by the molten metal, and also prevents the bottom blowing nozzle from being damaged by the molten metal. The temperature distribution will also be uniform.

この結果、スポーリングによる損傷も激減し、底吹ノズ
ルグの寿命が大巾に向上した、これに対し、集合率がθ
2グ襲未満の底吹ノズル、例え−ば遺施例aでは個々の
金属パイプ3の上部にそれぞれ独立した小型(7’)−
rッンユルーム10aが形成される程度であり、又実施
例dでは集中的に配列された金属パイプ3の上部のみに
マツシュルーム/θbが形成される程度である。而して
、いずれも底吹ノズルグを溶湯より完全に保護すること
はできず、温度分布も犬きくバラつくことがら溶損やス
ポーリングによる損傷も激しく底吹ノズルグの寿命は極
めて短いものであった。逆に集合率が/ダ係を超えた実
施例Cではノズル上の熱バランスが過冷却となり、肥大
化シたマツシュルーム/θCとなってマツシュルーム1
0cが不安定となるうえにノズル自体の強度が著しく低
下し、この結果その寿命も短いものであった0 さて、前述した本発明の底吹ノズルグを用いて攪拌ガス
を底吹きすると攪拌ガスは、単体ノズル/のほぼ全面か
ら均等(で吹込まれることから少量の吹込み量でも優・
比た溶湯の攪拌効率を得ることが可能となる。加えて本
発明の底吹ノズルグでは金暎パイプ3の断面積が3θm
r42以下であることから少量の吹込量でも地金差し込
み現象が防止でき、少量の吹込制御が充分可能である。
As a result, damage caused by spalling has been drastically reduced, and the life of the bottom blowing nozzle has been greatly improved.
A bottom-blowing nozzle with a stroke of less than 2 g, for example, in Example A, an independent small (7') nozzle is installed at the top of each metal pipe 3.
In Example d, only the upper portions of the metal pipes 3 that are arranged in a concentrated manner have a pine mushroom room/θb formed. However, neither of these methods can completely protect the bottom blowing nozzle from the molten metal, and because the temperature distribution varies widely, damage due to melting and spalling is severe, and the life of the bottom blowing nozzle is extremely short. Ta. On the other hand, in Example C where the aggregation rate exceeds the /da ratio, the heat balance on the nozzle becomes supercooled, resulting in an enlarged pine mushroom /θC and a pine mushroom 1
0c became unstable, and the strength of the nozzle itself was significantly reduced, resulting in a shortened lifespan.0 Now, when the stirring gas is bottom-blown using the bottom-blowing nozzle of the present invention mentioned above, the stirring gas becomes Since the air is blown evenly from almost the entire surface of the single nozzle, even a small amount of air can be
It becomes possible to obtain the stirring efficiency of the molten metal compared to the above. In addition, in the bottom blowing nozzle of the present invention, the cross-sectional area of the metal pipe 3 is 3θm.
Since it is r42 or less, the metal insertion phenomenon can be prevented even with a small amount of blowing, and it is possible to sufficiently control the blowing of a small amount.

而して本発明者等の経験では攪拌ガスの底吹き量を単体
ノズル7本あたり/θθθN+>+7Hr以下とすると
単体ノズルの大きさを必要以上(て大きくすることなく
その吹込みが可能であり、しかも溶湯の↑V拌効率を低
下させることも全くなかった。従って単体ノズル/の大
きさが取扱性て優わ、だ適宜なもの匠できることからノ
ズルの製作が容易となり、その取替等の作業性が優れた
ものとなった。而して炉容が大きくなり底吹ガス量が/
θθθNrr?/Hr以上必要となる場合1ては、底吹
ノズルダを3個、もしくは2個以上の複゛数個設置すれ
ばよい。攪拌ガスとしては、CO2,Ar+ N2等を
用いることが可能である。しかしながら前記攪拌ガスK
 CO2を用いると、吹込ガス量の2倍量のガスとなっ
て鋼浴攪拌に寄与するため(CO2+ C−+ 、2 
CO)、ガス吹込設備としては同一冶金効果を得るため
のAr、N2等に比し、小規模なもので良く、かつガス
の原単位、原単価の面で有利であるばかりでなくノズル
耐用的にみても吹込ガスが小さい分だけ有利となる。
According to the experience of the present inventors, if the bottom blowing amount of stirring gas is set to less than /θθθN+>+7Hr per 7 single nozzles, it is possible to blow the stirring gas without increasing the size of the single nozzle more than necessary. Moreover, there was no reduction in the ↑V stirring efficiency of the molten metal.Therefore, the size of the single nozzle/ is superior in handling, and since the nozzle can be designed appropriately, it is easy to manufacture the nozzle, and its replacement etc. Workability has been improved.As a result, the furnace volume has become larger and the amount of bottom blowing gas has been reduced.
θθθNrr? If more than /Hr is required, three bottom blowing nozzles or two or more bottom blowing nozzles may be installed. As the stirring gas, CO2, Ar+N2, etc. can be used. However, the stirring gas K
When CO2 is used, the amount of gas becomes twice the amount of blown gas and contributes to steel bath stirring (CO2+ C-+, 2
Compared to Ar, N2, etc. to obtain the same metallurgical effect, the gas blowing equipment needs to be smaller, and is not only advantageous in terms of the gas consumption rate and unit cost, but also has a long lifespan of the nozzle. This is advantageous because the amount of blown gas is small.

又、前述のように正常なマツシュルーム/θが形成され
ていても、予期できない操業条件の変化、例えば底吹ガ
ス圧力を必要以上に小さくし、しかも長時間流量を絞っ
た状態等の操業によって、マンジルーム/θに形成され
たガス吹出口//が閉塞する事態の生ずることがある。
Furthermore, even if a normal pine mushroom/θ is formed as described above, unforeseen changes in operating conditions, such as lowering the bottom blowing gas pressure more than necessary and reducing the flow rate for a long period of time, may cause A situation may occur where the gas outlet// formed in the mange room/θ becomes blocked.

前記閉塞傾向がノズル先の圧力、流量特性の変化から検
出されたらC02i’?:02を添加、混合することに
より、閉塞現象を解消することが可能となる。即ちCO
2KO2を混合せしめることによってマツシュルーム自
体の燃焼、マンジ−ルームまわりの酸化発熱反応等によ
り閉塞傾向が解決される。02の混合量が、5%未満で
は前述したマンジ−ルーム閉塞解除効果を発揮できず、
逆に3θチ超となると金属パイプ3やその周辺の耐火物
!を溶損せしめる危険性が大きくなるうえに攪拌ガス供
給設備Iて耐酸素性を考慮する必要があり、前述した攪
拌ガスKCO2を用いた効果が失われること!でなる。
If the clogging tendency is detected from changes in the pressure and flow characteristics at the nozzle tip, C02i'? By adding and mixing :02, it becomes possible to eliminate the clogging phenomenon. That is, CO
By mixing 2KO2, the tendency of clogging can be solved by combustion of the pine mushroom itself, oxidative exothermic reaction around the mangee room, etc. If the mixing amount of 02 is less than 5%, the above-mentioned effect of unblocking the mangee room cannot be exhibited,
On the other hand, if it exceeds 3θ, the metal pipe 3 and its surrounding refractories! In addition to increasing the risk of melting and damaging the gas, it is necessary to consider the oxygen resistance of the stirring gas supply equipment I, and the above-mentioned effect of using the stirring gas KCO2 is lost! It becomes.

次に本発明の具体的な実施阻目でついて説明する。Next, specific implementation obstacles of the present invention will be explained.

第1表は/gθ屯転炉において低臭Atギルド鋼を製造
し7たときの実施結果を示すものである。第1表の実施
結果からも明らかなように金属パイプ3の断面積が30
 mm2以下で、かつ集合率が929〜79%の範囲の
ものでは、ノズルの溶損量がいずれもθ’l am/C
H程度と、極めて少なかった。これに対し比較例/9,
2の如く金属パイプ3の断面積が3θ−2以下であって
も集合率φ;θ2グチ未満あるいは/ダチ超となると前
記溶損量は著しく増大したっ一方、攪拌ガスとしては香
拌効果の大きな差異は認められなかったがCO2を用い
た本発明実施例/においてはArあるいはN2を用いた
本発明実施例2゜3に対し、ガス原単位が約乙θチとな
り、その優れた効果が確認された。
Table 1 shows the results of producing low odor At guild steel in a /gθtun converter. As is clear from the implementation results in Table 1, the cross-sectional area of the metal pipe 3 is 30
For those with a diameter of less than mm2 and an agglomeration rate in the range of 929 to 79%, the amount of erosion of the nozzle is θ'l am/C
It was extremely low, about H. On the other hand, comparative example/9,
Even if the cross-sectional area of the metal pipe 3 is less than 3θ-2 as shown in 2, when the agglomeration ratio φ is less than θ2 or exceeds 2, the amount of erosion increases significantly. Although no difference was observed, the gas consumption rate in Example 2 of the present invention using CO2 was approximately 2° compared to Example 2 of the present invention using Ar or N2, confirming its superior effect. It was done.

又、本発明実施例グ1(おいて閉塞傾向が検出されただ
め(て02をコθ%混合せしめて底吹きを継続した結果
76分後(では前記閉塞は完全【で解消された。
In addition, although a clogging tendency was detected in Example G1 of the present invention, the clogging was completely eliminated after 76 minutes as a result of mixing θ% of 02 and continuing bottom blowing.

以上詳述したように本発明の実用的効果は極めて大であ
る。
As detailed above, the practical effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明(で基づく底吹ノズルの一実施例を示す
断面構造図、第一図1ri第1図の平面図、第3図(イ
)、(ロ)、(ハ)は地金差し込み現象の発生しでよる
マツシュルームの剥離を説明するだめの構造図、第9図
は、集合率と形成されたマ、ンユルームおよびノズル内
温度分布の関係の調査結果を示す図、第5図は本発明実
施例へ、2.3. ll、 5比較例へj戸吹ノズル断
面図、第6図は本発明実施例6の底吹ノズル断面図であ
る。 /:単体ノズル   、2:耐火物 3:金属パイプ   グ:底吹集合ノズルj:羽目煉瓦
      (底吹ノズル)6:炉底煉瓦壁   7:
ガス供給管 と:ヘッダ一部   9=ノズル押え煉瓦/θ:マッシ
ュルーム //”、−1−1ス吹出ロイ゛r<Il’i
ゴ (α)                      
   (ハノ第51′η 竺6r7+ 一+20.jO。 ’5−−− −250≠−門 手続補正書(自発) 昭オu58年3月26日 特許片長′g      殿 1、$件の表示 昭和58年特訂願第2’7434号 2光明の名称 上底吹転′)P梢錬法 3補正をする省 知イ午との関保 特許出願人 任 H[米足部千代田区大手町2丁目6番3勺名 杯 
  代表者  武   1)  豊4代 理 人 −r
−103置 241−0441住 Hl   東京省I
S甲犬区H本橋不町1丁目14首2号5、 n+止葡令
のH句 自発 6、@正の対象 補正の内容 l明細徊5頁下から2行目「浴に接する(!IIIの」
を門り除すめ。 2ヴ]細畳7買5行巨り「単体ノズル」を1−浴Vこ接
−ffl’る側の単体ノズル−1に釘止する。
Figure 1 is a cross-sectional structural diagram showing an embodiment of a bottom blowing nozzle based on the present invention, Figure 1 is a plan view of Figure 1, Figure 3 (A), (B), and (C) are bare metal. Fig. 9 is a diagram showing the structure of a nozzle explaining the separation of pine mushrooms due to the insertion phenomenon, and Fig. 9 is a diagram showing the investigation results of the relationship between the aggregation rate, the formed pine mushroom room, and the temperature distribution inside the nozzle. To Examples of the Invention, 2.3. ll, To 5 Comparative Examples j Cross-sectional view of the top blowing nozzle, Figure 6 is a cross-sectional view of the bottom blowing nozzle of Example 6 of the present invention. /: Single nozzle, 2: Refractory 3 :Metal pipe gu:Bottom blowing collective nozzle j:Pain brick (bottom blowing nozzle) 6:Bottom brick wall 7:
Gas supply pipe: Part of header 9 = Nozzle holding brick / θ: Mushroom //'', -1-1 space blowout Royr<Il'i
Go (α)
(Hano No. 51'η 纺6r7+1+20.jO. '5--- -250≠- Gate procedural amendment (voluntary) March 26, 1982 Special Revision Application No. 2'7434 2 Komei's name upper bottom blown') No.6 3 name cup
Representative Takeshi 1) Yutaka 4th representative -r
-103 241-0441 Hl Tokyo I
S Koinu-ku H Motohashi Fumachi 1-14 No. 2 No. 5, n + H clause of the order, spontaneous 6, @ Positive subject correction content l Specification page 5, 2nd line from the bottom ``Touching the bath (!III of"
The gate is closed. 2V] Buy 7 narrow tatami mats, 5 rows, and nail the ``single nozzle'' to the single nozzle 1 on the 1-bath V connection-ffl' side.

Claims (3)

【特許請求の範囲】[Claims] (1)断面積3θ胡2以下の金属パイプを集合率θββ
ダル/クチして単体ノズルを形成せしめた底吹集合ノズ
ルを用い流量/θθθNn?/Hr・ノズル以下の攪拌
ガスを底吹きすることを特徴とする上底吹転炉精錬法。
(1) Aggregation rate θββ of metal pipes with a cross-sectional area of 3θhu2 or less
Flow rate/θθθNn? using a bottom-blowing collective nozzle with dull/cropped edges to form a single nozzle. A top-bottom-blown converter refining method characterized by bottom-blowing stirring gas of less than /Hr nozzle.
(2)  攪拌ガスとしてco2を用いることを特徴と
する特許請求の範囲第1項記載の上底吹転炉精錬法0
(2) Top-bottom blowing converter refining method 0 according to claim 1, characterized in that CO2 is used as the stirring gas.
(3)  攪拌ガスとしてCO2K 5〜3θチの02
を混合せしめた混合ガスを用いることを特徴とする特許
請求の範囲第1項記載の上底吹転炉精錬法。
(3) CO2K 5-3θ 02 as stirring gas
The top-bottom blowing converter refining method according to claim 1, characterized in that a mixed gas containing the following is used.
JP2743483A 1983-02-21 1983-02-21 Refining process in top and bottom-blown converter Pending JPS59153818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2743483A JPS59153818A (en) 1983-02-21 1983-02-21 Refining process in top and bottom-blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2743483A JPS59153818A (en) 1983-02-21 1983-02-21 Refining process in top and bottom-blown converter

Publications (1)

Publication Number Publication Date
JPS59153818A true JPS59153818A (en) 1984-09-01

Family

ID=12221002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2743483A Pending JPS59153818A (en) 1983-02-21 1983-02-21 Refining process in top and bottom-blown converter

Country Status (1)

Country Link
JP (1) JPS59153818A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613817A (en) * 1984-06-18 1986-01-09 Kawasaki Steel Corp Method for blowing gas into molten iron in steel making vessel
JPS6187810A (en) * 1984-10-05 1986-05-06 Kawasaki Steel Corp Method for blowing gas into molten iron in refining vessel
CN102041347A (en) * 2010-12-23 2011-05-04 秦皇岛首秦金属材料有限公司 Method for synchronizing combined blowing and furnace age of converter
JP2016199788A (en) * 2015-04-10 2016-12-01 Jfeスチール株式会社 Bottom-blown tuyere for converter
TWI630276B (en) * 2016-09-02 2018-07-21 中國鋼鐵股份有限公司 Method for controlling status of accretion formation in pyrometallurgical treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811718A (en) * 1981-07-15 1983-01-22 Nippon Steel Corp Bottom-blowing nozzle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811718A (en) * 1981-07-15 1983-01-22 Nippon Steel Corp Bottom-blowing nozzle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613817A (en) * 1984-06-18 1986-01-09 Kawasaki Steel Corp Method for blowing gas into molten iron in steel making vessel
JPH0440407B2 (en) * 1984-06-18 1992-07-02 Kawasaki Steel Co
JPS6187810A (en) * 1984-10-05 1986-05-06 Kawasaki Steel Corp Method for blowing gas into molten iron in refining vessel
JPH0445564B2 (en) * 1984-10-05 1992-07-27 Kawasaki Steel Co
CN102041347A (en) * 2010-12-23 2011-05-04 秦皇岛首秦金属材料有限公司 Method for synchronizing combined blowing and furnace age of converter
JP2016199788A (en) * 2015-04-10 2016-12-01 Jfeスチール株式会社 Bottom-blown tuyere for converter
TWI630276B (en) * 2016-09-02 2018-07-21 中國鋼鐵股份有限公司 Method for controlling status of accretion formation in pyrometallurgical treatment

Similar Documents

Publication Publication Date Title
SU1591816A3 (en) Method of refining blister copper
CN102812136B (en) Copper anode refining system and method
JPS5687617A (en) Steel making method using arc furnace
JPS59153818A (en) Refining process in top and bottom-blown converter
CN100507014C (en) Method for producing low carbon steel
EA014399B1 (en) Lead slag reduction
JPS6146523B2 (en)
US5885323A (en) Foamy slag process using multi-circuit lance
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPS61139616A (en) Method for removing accretion on throat of converter
KR102146751B1 (en) Bottom gas bubbling refractory structure
JPS5837110A (en) Refining method of converter
JP2969731B2 (en) Heating method of molten steel in tundish
JPH1030111A (en) Steelmaking lance for preventing accumulation of skull and method for cleaning skull
JPS6217463Y2 (en)
JPH03274218A (en) Multiple purpose three-ply pipe lance
EP2440872B1 (en) Method for operating a bottom purging system of a bof converter
JP3398986B2 (en) Metal smelting tuyere
JP3706429B2 (en) Method of injecting gas into molten metal
RU2012156906A (en) METHOD AND SYSTEM FOR REMOVING THE LAYER OF THE SHEET IN THE FURNACE
WO2020082726A1 (en) Bottom-blowing refining furnace and use thereof
KR20010004491A (en) The formation method of Ti-Bear on weak point of hearth carbon brick by multiple injection of TiO2 powder at blast furnace tuyere
JPS61276912A (en) Operating method for top and bottom blown converter
JP6888384B2 (en) Gas blowing nozzle and gas blowing method using it
JPS63266016A (en) Nozzle for blowing gas