JPS58167717A - Nozzle for refining molten metal - Google Patents

Nozzle for refining molten metal

Info

Publication number
JPS58167717A
JPS58167717A JP5055182A JP5055182A JPS58167717A JP S58167717 A JPS58167717 A JP S58167717A JP 5055182 A JP5055182 A JP 5055182A JP 5055182 A JP5055182 A JP 5055182A JP S58167717 A JPS58167717 A JP S58167717A
Authority
JP
Japan
Prior art keywords
nozzle
refractory
molten metal
holes
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055182A
Other languages
Japanese (ja)
Inventor
Yoshiharu Miyawaki
宮脇 芳治
Masayuki Hanmiyo
半明 正之
Yusuke Shiraishi
白石 勇介
Teruyuki Hasegawa
輝之 長谷川
Youichi Tanmura
洋一 丹村
Noriyuki Hiraga
紀幸 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5055182A priority Critical patent/JPS58167717A/en
Priority to PCT/JP1983/000098 priority patent/WO1983003427A1/en
Priority to BR8306711A priority patent/BR8306711A/en
Priority to US06/556,162 priority patent/US4539043A/en
Priority to EP83900974A priority patent/EP0105380B1/en
Priority to AU13719/83A priority patent/AU567023B2/en
Publication of JPS58167717A publication Critical patent/JPS58167717A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To obtain the nozzle having the broad range of controlling a flow amount during the injection of gas and a long service life, by surrounding the side surface of a refractory member having a plurality of through holes extending from a use surface to a back side with a metal cover, and providing a pressure box leading to the through holes at the bottom of the refractory member. CONSTITUTION:A refractory member 1 comprising nonporous bricks, when being provided in a vessel for molten metal, has a plurality of practically straight through holes 2 extending from the use surface which comes in direct contact with the molten metal inside the vessel to the back surface of the refractory member 1 which constitutes the outer surface of the vessel. The side surface of the refractory member 1 is partially or entirely surrounded with a metal cover 3. The lower end of the cover 3 extends beyond the lower end of the refractory member 1 and forms a gas-reserving space surrounded with upper and lower metal plates 5, 6. A communicating hole is perforated in the plate 5 at its every part which comes in contact with each of the holes 2. Gas is injected from an inflow pipe 7 through a pressure box 4 into the vessel for molten metal. By making a distance between the adjacent holes 2 at about 3- 150mm., the range of controlling a flow amount can be broadened, and the dissolution loss of the refractory member 1 can be remarkably lowered.

Description

【発明の詳細な説明】 本発明は、溶融金属精錬炉の炉底等に設置されことから
ガスを吹き込む丸めの溶融金属精錬用ノズルに関するも
のであって、その目的とするとζろは、諒精錬用ノズル
のガス吹込みの際の流量制御範囲を大きくすると共に1
併せてノズル自体の耐用寿命を弧長させるととにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a round molten metal refining nozzle that is installed at the bottom of a molten metal smelting furnace and blows gas into it. In addition to increasing the flow rate control range when blowing gas with the nozzle for
At the same time, the useful life of the nozzle itself is extended.

従来、溶融金属の精錬処理、脱ガス、攪拌などを目的と
して、溶融金属容器の主として底部にガス吹込みのため
の耐火物製ノズルを設け、これよ抄溶融金属中に各種の
ガスを吹込むことが行われていることは周知である。又
、最近で社転炉などの精錬炉においても、耐火物からな
るガス吹込用ノズルを用いて底部からガスを吹込むこと
が行われており、このためのノズルに関して本発明者ら
のグループは先に特願昭56−84321号及び実願昭
56−125950号をもって提案をし九。
Conventionally, for the purpose of refining molten metal, degassing, stirring, etc., a refractory nozzle for blowing gas was installed mainly at the bottom of a molten metal container, and various gases were blown into the molten metal. It is well known that this is happening. Recently, gas has also been injected from the bottom of refining furnaces such as converters using refractory gas injection nozzles. I first made a proposal with Japanese Patent Application No. 56-84321 and Utility Application No. 56-125950.

しかしながら、上記の提案のノズルにもその後検討を重
ね九結果、次の問題があることが判明した。
However, as a result of repeated studies, it has been found that the nozzle proposed above has the following problems.

(1)  多数の貫通孔を有するガス吹込用耐大物にお
いて、貫通孔の間隔が小さくなった場合ノズル耐火物の
溶損が大となる。
(1) In a large gas blowing resistant material having a large number of through holes, if the interval between the through holes becomes small, the nozzle refractory material will suffer from erosion.

(11)  同上のガス吹込用耐大物の貫通孔を耐火物
中に埋設し丸鋼管によ抄構成する場合、鋼管の肉厚が薄
いと耐火物製造時に潰れるし、厚いと使用時の溶損が大
きい。
(11) When the through-holes of the above-mentioned large resistant material for gas injection are buried in the refractory and made of round steel pipes, if the wall thickness of the steel pipe is thin, it will collapse during the manufacture of the refractory, and if it is thick, it will melt during use. is large.

GiD  同上のガス吹込用耐大物の下部に圧力箱を設
けた装置において、圧力箱を形成している上部鉄板と下
部鉄板の間隔が小さ過ぎると、吹込ガスの流れが悪く、
圧損が大きくなる。
GiD In a device with a pressure box installed at the bottom of a large object for blowing gas, if the distance between the upper and lower iron plates forming the pressure box is too small, the flow of the blowing gas will be poor.
Pressure loss increases.

位−同上のガス吹込用耐火物の側面を囲む金属製カバー
ノ厚さが適当でないとノズルノ耐用轡命製作費に影響を
与える。
- If the thickness of the metal cover surrounding the side surface of the gas injection refractory is not appropriate, the lifetime of the nozzle and the manufacturing cost will be affected.

M 同上のガス吹込用耐大物の化学組成カニ適当でない
と溶鋼、スラグの浸透が大とな抄、又熱的本発明は、こ
のようなガス吹込の丸めの溶融金属精錬用ノズルにおけ
る未解決の問題を解決する丸め罠なされたものであって
、上記のそれぞれの問題に対応する対策を講じたもので
ある。
If the chemical composition of the large-sized material for gas injection is not appropriate, the penetration of molten steel and slag will be large. This is a round-trip solution to the problem, and measures have been taken to address each of the above problems.

本発明の要旨とするところは、使用面から背部に至る複
数の貫通孔を有する耐火物と、該耐火物の側面を囲む金
属製カバーと、前記耐火物の底部に設けられていて前記
貫通孔と連通しかつガス溜め空間を形成する圧力箱と、
よ如なる溶融金属精錬用ノズルなるものである。
The gist of the present invention is to provide a refractory having a plurality of through holes extending from the use surface to the back, a metal cover surrounding the side surface of the refractory, and a metal cover provided at the bottom of the refractory and having the through holes. a pressure box that communicates with the gas tank and forms a gas reservoir space;
This is a nozzle for refining molten metal.

本発明のさらに一つの特徴は、前記耐火物の複数の貫通
孔の間隔を5m以上150■以下としであることである
Another feature of the present invention is that the intervals between the plurality of through holes in the refractory are 5 m or more and 150 cm or less.

本発明のさらに一つの特徴は、前記耐火物の複数の貫通
孔が耐火物中に埋設された金属管よりなり、咳金属管の
肉厚が0.1■以上1o■以下とし 。
Still another feature of the present invention is that the plurality of through holes in the refractory are made of metal tubes embedded in the refractory, and the wall thickness of the metal tube is 0.1 to 10 mm.

であることである。It is to be.

本発明のさらに一つの特徴は、前記金属製カバーが厚さ
0.1−以上5−以下の鉄板よ妙なっていることである
Another feature of the present invention is that the metal cover is made of an iron plate with a thickness of 0.1 to 5.

本発明のさらに一つの特徴は、前記圧力箱のガス溜め空
間を形成する上部金属板と下部金属板との間隔を2W以
上50−以下としであることである。
Another feature of the present invention is that the distance between the upper metal plate and the lower metal plate forming the gas reservoir space of the pressure box is 2W or more and 50- or less.

次に、本発明による溶融金属精錬用ノズルについて図に
基づいて説明する。第1図は本発明の溶融金属精錬用ノ
ズルを溶融金属容器の底部へ設置した一例を示す縦断面
図であり、第2図はその溶融金属精錬用ノズルの平面図
である0図に示す符号(1)は非多孔質煉瓦からなる耐
火物である。この耐火物(1)には、使用面即ち溶融金
属容器に設置した場合容器の内側で溶融金属に直接接触
する方の面から、背面即ち該耐火物の容器外面に至る複
数の貫通孔(2が略直線上に貫通する如く穿たれている
。(6)は金属製カバーであって、前記耐火物(1)の
馬面の一部又は全部を囲む構造になっている。こり金属
製カバー(3)の下端部は前記耐火物(1)の下端より
延びて、□上部金属板(5) 、下部金属板(6)とに
囲筐1九ガス溜め空間を形成している。なお、前配上郁
金−板(5には複数の貫通孔(2の夫々と接する個所毎
に連通孔が穿たれており、ガス吹込みに支障がないよう
にしである。(7)はガス送入管であって、とζから前
記圧力箱(4)を介して溶融金属1!−内へガス吹込み
が行われるようになっている。■は外巻きスリーブであ
って、溶融金属容器のセット煉瓦(9)及び鉄皮(10
) K溶融金属精錬用ノズルを固定する丸めに設けられ
ている。尚、この外巻きスリーブ社運搬途中等における
くづれ郷を肪ぐためのもので必須ではない。
Next, a molten metal refining nozzle according to the present invention will be explained based on the drawings. FIG. 1 is a longitudinal cross-sectional view showing an example of the molten metal refining nozzle of the present invention installed at the bottom of a molten metal container, and FIG. 2 is a plan view of the molten metal refining nozzle with the symbols shown in FIG. (1) is a refractory made of non-porous bricks. This refractory (1) has a plurality of through holes (2 (6) is a metal cover, which has a structure that surrounds part or all of the horse face of the refractory (1). 3) The lower end extends from the lower end of the refractory (1) and forms a gas reservoir space in the enclosure with the upper metal plate (5) and the lower metal plate (6). The upper metal plate (5) has a plurality of through holes (a communication hole is bored at each point where it contacts each of the parts 2, so that there is no problem with gas injection. (7) is a gas supply hole. The pipe is such that gas is blown into the molten metal 1!- from the pressure box (4) through the pressure box (4). Bricks (9) and iron skins (10
) K is provided in a round shape to fix the molten metal refining nozzle. It should be noted that this outer sleeve is not essential, as it is intended to save space during transportation.

しかして、本発明の溶融金属精錬用ノズルは以上説明し
九通りの構成になるものであるが、本発明の目的を遠戚
するため更に次の構成を採用することが必要である。
Although the molten metal refining nozzle of the present invention has nine configurations as described above, it is necessary to further adopt the following configuration in order to remotely achieve the object of the present invention.

その一つは、前記耐火物(1)に設けられている貫通孔
(2の間隔を5m以上150m以下とすることである。
One of them is to set the interval between the through holes (2) provided in the refractory (1) to be 5 m or more and 150 m or less.

斯くすることにより、従来のノズル耐火物における如き
貫通孔の間隔が小さい場合問題であったノズル耐火物の
溶損を大幅に低下させ得る。このときの間隔を5mm以
上15〇−以下とじ九理由は、3■未満では前述の効果
が得られず、150−を超えると耐火物(1)の面積に
対し貫通孔(2の占める面積が少〈な抄過ぎ、従ってガ
ス吹込量が少くなり流量制御範囲が小さくなるからであ
る。
By doing so, it is possible to significantly reduce the erosion of the nozzle refractory, which was a problem when the distance between the through holes was small as in conventional nozzle refractories. The reason for this is that the above-mentioned effect cannot be obtained if the spacing is 5 mm or more and 150 mm or less, and if it exceeds 150 mm, the area occupied by the through hole (2) is smaller than the area of the refractory (1). This is because if the paper is too small, the amount of gas blown will be reduced, and the flow rate control range will be narrowed.

次の一つは、前記耐火物(1)の複数の貫通孔(2が耐
火物(1)中に埋設された金属管よ抄なる場合の、該金
属管の肉厚を0.1−以上10■以下とすることである
The next one is that when the plurality of through holes (2) of the refractory (1) are made of metal tubes embedded in the refractory (1), the wall thickness of the metal tube should be 0.1- or more. It should be 10■ or less.

斯くすることによ抄、前記金属管の肉厚力監0.1−未
満と薄過ぎる場合にしばしば発生する耐火物製造時の潰
れがなくな抄、又内厚が10−を超えて厚過ぎる場合の
溶損が該金属管が埋設されていることにより早くなるこ
とを防止する。
By doing this, the crushing that often occurs during the manufacture of refractories, which often occurs when the wall thickness of the metal tube is too thin (less than 0.1 mm), is eliminated, and the inner thickness is too thick (more than 10 mm). To prevent corrosion damage from accelerating due to the metal pipe being buried.

次の一つは、舘記金属製カッ(−<5)の厚さを0.1
−以上5−以下の鉄板をもって構成するものである。
The next one is to reduce the thickness of Tateki metal cup (-<5) to 0.1
It is composed of iron plates of -5 to -5.

斯くすることにより、金属製°□カッ< −(5)に本
来要求される耐火物中の貫通孔Q)以外の側面からのガ
ス洩出を防止し、吹込、ガスの圧損を防止すること寿命
を得るために適当袋材料鉄板の厚さの下限を0.1−と
し、又ノズル製作費のコストアップを避ける丸めその上
限を5−とすることが必要である。
By doing this, it is possible to prevent gas from leaking from the sides other than the through hole Q) in the refractory, which is originally required for metal pipes (5), and to prevent blowing and gas pressure loss. In order to obtain a suitable bag material, the lower limit of the thickness of the iron plate should be set to 0.1-, and the upper limit of rounding should be set to 5- to avoid an increase in the nozzle manufacturing cost.

次の一つは、前記圧力箱4)のガス溜め空間を形成して
いる上部金属板6)と下部金属板(6)との間隔を2−
以上50■以下とするものである。
The next method is to increase the distance between the upper metal plate 6) and the lower metal plate (6) forming the gas reservoir space of the pressure box 4) by 2-
The above shall be 50■ or less.

斯くすることにより、従来問題とされていえ上。By doing so, it is no longer considered a problem in the past.

下金属板間の間隔が小さ過ぎるごとによる吹込ガスの流
れが悪いばか抄でカく流量制御特性が小さく圧損、が大
きくなることを避けるために必要な間隔の下限は2■と
じ、又ノズルをコンパタトにするためその上限を501
1mとする必要がある。
The lower limit of the required spacing is 2■ in order to avoid poor flow of blown gas due to the spacing between the lower metal plates being too small, resulting in poor flow rate control characteristics and large pressure drop. In order to make it compatible, the upper limit is set to 501.
It needs to be 1m.

斯くすることにより、従来のガス吹込用耐大物の化学成
分が適当でなかったことによるスラグ浸透が大きいこと
、熱的スポーリングによる損傷が大であること等の問題
がなくなる。しかして、前記化学成分の中Cの下限を5
チとしたのは、これ未満では溶鋼、スラグの浸透が大と
なり、耐火物の溶損が大きいからであり、又その上限を
30優としたのは、これを超えると耐火物の強度及び耐
貴性が劣化するからである。
By doing so, problems such as large slag penetration and large damage due to thermal spalling caused by unsuitable chemical composition of conventional large-sized materials for gas injection are eliminated. Therefore, the lower limit of C among the chemical components is 5
The reason why the upper limit was set at 30 is because if it is less than this, the penetration of molten steel and slag will be large, and the refractory will be damaged by erosion. This is because the nobility deteriorates.

次に示す第1表は本発明の溶融金属精錬用ノズルを転炉
における複合吹錬(上吹及び下吹)K641oh用い九
場合の実施例を示す。第1表よ抄明らかなように、上吹
きのみの吹錬よりも歩留りが0、5911向上し、合金
鉄についても効果が得られている。その他の効果として
も吹錬時間の短縮、出鋼IL&の低下などが与られる0
表中、耐火物の溶損速度は従来の多孔質ノズル(ポーラ
ス)でガス通気100iクロン以下の場合の溶損速度カ
ニ25〜5.0■/@hでTo抄、本発明のノズルは非
多孔質煉瓦ノズルに1−φIl[の貫通孔を設けた場合
の溶損速度が0.8〜0.9■/ahと極めて溶損速度
p;小さいことが理解される。
Table 1 below shows nine examples in which the molten metal refining nozzle of the present invention was used for combined blowing (top blowing and bottom blowing) K641oh in a converter. As is clear from Table 1, the yield was improved by 0.5911 points compared to top blowing only, and the effect was also obtained for ferroalloys. Other effects include shortening blowing time and lowering IL& of steel.
In the table, the erosion rate of refractories is 25 to 5.0 cm/@h with a conventional porous nozzle (porous) when gas aeration is 100 i/h, and the nozzle of the present invention is It is understood that when a porous brick nozzle is provided with a through hole of 1-φIl, the erosion rate is 0.8 to 0.9 .mu./ah, which is extremely low.

第5図は本発明によるノズルの吹込ガスの流量制御特性
を示すグラフである。
FIG. 5 is a graph showing the flow rate control characteristics of the blown gas of the nozzle according to the present invention.

第4図は使用条件をノズル材質M、0−C(C2011
)底吹ガス圧力4〜20’P/cIIGs流量10〜2
0ON#//Hr−、本、 ガス穫類Ar、 Cal 
、 Nl、操業条件を出嘔 城 鍋温t 1680〜1685tZ’、  底吹パターン
は第6図の通り、として吹錬を行った場合のノズルの耐
用却命の推移を示すグラフである。
Figure 4 shows the usage conditions for nozzle material M, 0-C (C2011
) Bottom blowing gas pressure 4~20'P/cIIGs flow rate 10~2
0ON#//Hr-, book, gas harvest Ar, Cal
, Nl, the operating conditions are a pot temperature t of 1680 to 1685 tZ', and a bottom blowing pattern as shown in FIG. 6.

第6図は出鋼温度と溶損速度の関係を示すグラフである
FIG. 6 is a graph showing the relationship between tapping temperature and melting loss rate.

崗、第4図、第5図の場合の底吹ガスがCO,の場合は
Arの場合より溶損速度が大きい理由は、(1)  F
@(至)+C03(め→F@O+ C0F@0 + C
(M匹−C中)→F@(イ)+C0(u)   (F@
O) + C(M卸−C中)→F@(イ)+c。
The reason why the erosion rate is higher when the bottom blowing gas is CO in the case of Figures 4 and 5 than when it is Ar is that (1) F
@(to)+C03(me→F@O+ C0F@0 + C
(M animals - in C) → F@ (a) + C0 (u) (F@
O) + C (M wholesale - C middle) → F@(I) + c.

上記の反応よりMto−C中のCがF@Oにより還元さ
れ、M%が直接溶損されていると考えられる。
From the above reaction, it is thought that C in Mto-C is reduced by F@O, and M% is directly dissolved away.

(F@に)層がα5〜1.0111111働面上に存在
)その丸めに本発明ではMto−C中のCの適切な量の
添加及びCの純度向上(95〜99チ)、M)0の純度
向上、等の配置がなされている。
(F@) layer exists on α5~1.0111111 working surface) In order to round it off, the present invention adds an appropriate amount of C in Mto-C and improves the purity of C (95~99ch), M) 0 purity improvement, etc. are arranged.

本発明の溶融金属精錬用ノズルは、以上の実施例によっ
て明らかなように、ガス吹込みの際の流量制御が広範囲
に可能であ抄、従って吹錬効果が向上するばかりでなく
、ノズル自体の耐用寿命を弧長させることも可能である
As is clear from the above embodiments, the molten metal refining nozzle of the present invention not only allows for wide range control of the flow rate during gas injection, improving the blowing effect, but also improves the nozzle itself. It is also possible to lengthen the service life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶融金属精錬用ノズルの一例を示す縦
断面図であり、第2図は前記ノズルの平面図である。第
6図は本発明のノズルによる流量制御特性を示すグラフ
であり、第4図はノズルの溶損速度の推移を示すグラフ
であり、第5図はノズルの溶損速度と出鋼温度の関係を
示すグツ7であり、第6図は第4図にデータを示したテ
ストの底吹パターンを示すグラフである。 (1)耐火物、2)貫通孔、6)金属製カバー、(4)
圧力箱、(5)上部金属板、(6)下部金属板、(7)
ガス送入管。 代理人摺埋士佐籐正年
FIG. 1 is a longitudinal sectional view showing an example of a molten metal refining nozzle of the present invention, and FIG. 2 is a plan view of the nozzle. Fig. 6 is a graph showing the flow rate control characteristics of the nozzle of the present invention, Fig. 4 is a graph showing the change in the melting rate of the nozzle, and Fig. 5 is a graph showing the relationship between the melting rate of the nozzle and the tapping temperature. Figure 6 is a graph showing the bottom blow pattern of the test whose data is shown in Figure 4. (1) Refractory, 2) Through hole, 6) Metal cover, (4)
Pressure box, (5) upper metal plate, (6) lower metal plate, (7)
Gas feed pipe. Agent Suri Burialist Masatoshi Sato

Claims (4)

【特許請求の範囲】[Claims] (1)使用面から背部に至る値数の貫通孔を有する耐火
物と、該耐火物の側面の一部又は全部を囲む金属性カバ
ーと、前記耐火物の底部に設けられていて前記貫通孔と
連通しかつガス溜め空間を形成する圧力精と、よりなる
ことを特徴とする溶融金属精錬用ノズル。
(1) A refractory having a number of through holes extending from the use surface to the back, a metal cover surrounding part or all of the side surfaces of the refractory, and a through hole provided at the bottom of the refractory. 1. A molten metal refining nozzle characterized by comprising: a pressure ejector communicating with the gas reservoir space and forming a gas reservoir space;
(2)前記耐火物の複数の貫通孔の間隔を6■以上15
0■以下としである特許請求の範囲第1項記載の溶融金
属精錬用ノズル。
(2) The interval between the plurality of through holes in the refractory is 6 or more than 15
A molten metal refining nozzle according to claim 1, which has a molten metal refining nozzle of 0 or less.
(3)  前記耐火物の複数の貫通孔が耐火物中に堀設
された金属管よりな抄、骸金属管の肉厚が0.1W以上
10−以下としである特許請求の範囲第1項記載の溶融
金属精錬用ノズル。
(3) The plurality of through holes of the refractory are made of metal tubes drilled in the refractory, and the wall thickness of the metal tube is 0.1W or more and 10- or less. The described nozzle for smelting molten metal.
(4)前記金属製カバーが厚さ0.1−以上5−以下の
鉄板よりなっている特許請求の範i!@第1項記載の溶
融金属精錬用ノズル。 (団 前記圧力箱のガス溜め空間を形成する上部金属板
と下部金属板との間隔を2−以上50−以下としである
特許請求の範囲第1項記載の溶融金属精錬用ノズル。
(4) Claim 1, wherein the metal cover is made of an iron plate with a thickness of 0.1 to 5. @The molten metal refining nozzle described in item 1. (Group) The nozzle for molten metal refining according to claim 1, wherein the interval between the upper metal plate and the lower metal plate forming the gas reservoir space of the pressure box is 2 to 50.
JP5055182A 1982-03-29 1982-03-29 Nozzle for refining molten metal Pending JPS58167717A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5055182A JPS58167717A (en) 1982-03-29 1982-03-29 Nozzle for refining molten metal
PCT/JP1983/000098 WO1983003427A1 (en) 1982-03-29 1983-03-29 Bottom blowing gas nozzle in molten metal refining furnace and method of melting steel using the same nozzle
BR8306711A BR8306711A (en) 1982-03-29 1983-03-29 GAS INSULATING TUBE THROUGH THE FUND FOR FUSING METAL REFINING OVEN AND STEEL REFINING PROCESS USING THE SAME
US06/556,162 US4539043A (en) 1982-03-29 1983-03-29 Bottom-blown gas blowing nozzle
EP83900974A EP0105380B1 (en) 1982-03-29 1983-03-29 Bottom blowing gas nozzle in molten metal refining furnace and method of melting steel using the same nozzle
AU13719/83A AU567023B2 (en) 1982-03-29 1983-03-29 Bottom blown gas blowing nozzle for maltev metal refining furnace and steel refining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055182A JPS58167717A (en) 1982-03-29 1982-03-29 Nozzle for refining molten metal

Publications (1)

Publication Number Publication Date
JPS58167717A true JPS58167717A (en) 1983-10-04

Family

ID=12862147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055182A Pending JPS58167717A (en) 1982-03-29 1982-03-29 Nozzle for refining molten metal

Country Status (1)

Country Link
JP (1) JPS58167717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118822A (en) * 1982-12-24 1984-07-09 Kawasaki Refract Co Ltd Gas blowing nozzle for vessel containing molten metal
JPS60149709A (en) * 1983-12-12 1985-08-07 アルベッド エス.アー. Refractory gas permeation element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149750A (en) * 1979-05-11 1980-11-21 Kawasaki Steel Corp Gas blowing plug for molten metal vessel
JPS563268B2 (en) * 1977-11-22 1981-01-23
JPS5621799A (en) * 1979-07-27 1981-02-28 Yamakita Tekkosho Kk Raw material feeder for drieddbonito plane
JPS5811718A (en) * 1981-07-15 1983-01-22 Nippon Steel Corp Bottom-blowing nozzle
JPS5812263B2 (en) * 1979-03-19 1983-03-07 田伏 岩夫 Macrocyclic hexaketones and their production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563268B2 (en) * 1977-11-22 1981-01-23
JPS5812263B2 (en) * 1979-03-19 1983-03-07 田伏 岩夫 Macrocyclic hexaketones and their production method
JPS55149750A (en) * 1979-05-11 1980-11-21 Kawasaki Steel Corp Gas blowing plug for molten metal vessel
JPS5621799A (en) * 1979-07-27 1981-02-28 Yamakita Tekkosho Kk Raw material feeder for drieddbonito plane
JPS5811718A (en) * 1981-07-15 1983-01-22 Nippon Steel Corp Bottom-blowing nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118822A (en) * 1982-12-24 1984-07-09 Kawasaki Refract Co Ltd Gas blowing nozzle for vessel containing molten metal
JPS60149709A (en) * 1983-12-12 1985-08-07 アルベッド エス.アー. Refractory gas permeation element

Similar Documents

Publication Publication Date Title
JP4550977B2 (en) Direct smelting method
US3427151A (en) Process and apparatus for introducing a gaseous treating stream into a molten metal bath
KR101349229B1 (en) Direct smelting vessel and cooler therefor
KR20010071627A (en) Direct smelting vessel and direct smelting process
KR20010040095A (en) Producing method of molten metal from metaliferus feed material
RU2203961C2 (en) Tuyere for feeding raw material and method for introducing solid raw materials into metallurgical vessel
US4539043A (en) Bottom-blown gas blowing nozzle
EP0070197A1 (en) A nozzle assembly for bottom blown steel converter
CN104848682A (en) Smelting furnace of molten bath
FI103584B (en) A converter and a method for blowing up a metal from above
US4465514A (en) Method of producing steel by the LD process
JPS58167717A (en) Nozzle for refining molten metal
JPS6146523B2 (en)
KR930003631B1 (en) Metallurgical vessel
CA1178051A (en) Gas-blast pipe for feeding reaction agents into metallurgical melts
CN104894390A (en) Method of adopting oxygen-enriched vortex bath smelting furnace for treatment of jamesonite
EP0128987A2 (en) Tuyere and method for blowing gas into molten metal
CN104894385A (en) Method for adopting oxygen-enriched vortex bath smelting furnace to treat antimony-oxygen smoke
JP3398986B2 (en) Metal smelting tuyere
CN213060916U (en) Slag discharging structure for smelting reduction furnace
JPS58167707A (en) Method of smelting high-carbon steel by top and bottom-blown converter
RU63271U1 (en) BLOWING BLOCK AND DEVICE FOR BLOWING A LIQUID METAL WITH A GAS IN A DUCK (OPTIONS)
RU2750254C1 (en) Device for bottom blowing of metal by gas in ladle
AU783471B2 (en) A direct smelting vessel
SU1404529A1 (en) Fuel-oxygen lance