JPS6139373B2 - - Google Patents

Info

Publication number
JPS6139373B2
JPS6139373B2 JP23968083A JP23968083A JPS6139373B2 JP S6139373 B2 JPS6139373 B2 JP S6139373B2 JP 23968083 A JP23968083 A JP 23968083A JP 23968083 A JP23968083 A JP 23968083A JP S6139373 B2 JPS6139373 B2 JP S6139373B2
Authority
JP
Japan
Prior art keywords
nickel
powder
fsss
nickel chloride
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23968083A
Other languages
Japanese (ja)
Other versions
JPS60131904A (en
Inventor
Yasuhiro Okajima
Yasuhiro Tsugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23968083A priority Critical patent/JPS60131904A/en
Publication of JPS60131904A publication Critical patent/JPS60131904A/en
Publication of JPS6139373B2 publication Critical patent/JPS6139373B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、超微細な金属ニツケル粉末の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrafine metallic nickel powder.

従来、金属ニツケル粉末の製造方法としては、
(1) 粉末状又はガス状のニツケル化合物を熱分解
するか、あるいはガス還元する方法、(2) ニツケ
ル含有溶液から還元によつて製造する方法、(3)
ニツケル合金(NiとA又はSiの合金)を水酸化
ナトリウムで処理し、AやSiを溶出分離するこ
とにより水素活性の高いニツケル粉末を製造する
方法及び塊状金属ニツケルたら金属ニツケル粉末
を製造する方法等に大別される。この内第2、第
3の方法では望ましい微細な金属ニツケル粉末を
得ることは困難である。
Conventionally, the manufacturing method of nickel metal powder is as follows:
(1) A method of thermally decomposing a powdered or gaseous nickel compound or reducing it into a gas; (2) A method of producing it from a nickel-containing solution by reduction; (3)
A method for producing nickel powder with high hydrogen activity by treating a nickel alloy (an alloy of Ni and A or Si) with sodium hydroxide and eluting and separating A and Si, and a method for producing lumpy metallic nickel powder and metallic nickel powder. It is broadly divided into Among these methods, it is difficult to obtain the desired fine nickel metal powder using the second and third methods.

第1の方法は、酸化ニツケル、水酸化ニツケル
あるいは炭酸ニツケル粉末を水素ガスによつて還
元するか、あるいは蓚酸ニツケルの如き固体粉末
や、ニツケルカーボニル化合物の熱分解によつて
金属ニツケル粉末を得るものである。
The first method is to obtain nickel metal powder by reducing nickel oxide, nickel hydroxide, or nickel carbonate powder with hydrogen gas, or by thermally decomposing a solid powder such as nickel oxalate or a nickel carbonyl compound. It is.

以上の方法によつて得られる金属ニツケル粉末
は、何れも再酸化されやすいという欠点があり、
これを防止するため種々の不活性化処理が行なわ
れる。この不活性化処理により、微細な金属ニツ
ケル粉末の製造が極めて困難になる。
All of the metal nickel powders obtained by the above methods have the disadvantage of being easily reoxidized.
To prevent this, various inactivation treatments are performed. This inactivation treatment makes it extremely difficult to produce fine nickel metal powder.

上記の欠点を解消する方法として、本発明者等
は、既に、塩化ニツケルの水素還元方法による微
細な金属ニツケル粉末の製造方法について出願し
ている。(特開昭58―171506号公報)。この方法
は、塩化ニツケル粉末を水素ガス含有気流中で流
動させつつ500〜700℃で処理することを特徴とす
るものであり、上記のような再酸化のない微細な
金属ニツケル粉末を得ることができるが、本発明
は、さらに微細な金属ニツケル粉末を効率よく得
る方法を提供しようとするものである。本発明法
で対象とする粉末の平均粒径が約1μm以下のも
のは超微粉とよばれ、従来の粉末にはない特性
が、いろいろ見い出されている。たとえば1)
赤外線をよく吸収する。2) 微小孔フイルター
として使用できる。3) 比表面積が極めて大き
い。4) 燃焼特性を向上させる。5) 低温で
焼結する。6) 残留磁束密度が大きく、かつ抗
磁力が極めて高い。
As a method for solving the above-mentioned drawbacks, the present inventors have already filed an application for a method for producing fine metallic nickel powder using a hydrogen reduction method of nickel chloride. (Japanese Unexamined Patent Publication No. 171506/1983). This method is characterized by treating nickel chloride powder at 500 to 700°C while flowing it in an air stream containing hydrogen gas, and it is possible to obtain fine metallic nickel powder without reoxidation as described above. However, the present invention aims to provide a method for efficiently obtaining even finer nickel metal powder. Powders targeted by the method of the present invention with an average particle size of about 1 μm or less are called ultrafine powders, and various properties have been found that are not found in conventional powders. For example 1)
Absorbs infrared rays well. 2) Can be used as a micropore filter. 3) Extremely large specific surface area. 4) Improve combustion characteristics. 5) Sinter at low temperature. 6) Large residual magnetic flux density and extremely high coercive force.

このように1μm以下の金属ニツケル粉末の用
途は多く、さらに多くの可能性を秘めており広範
な実用化が期待されるものである。
As described above, nickel metal powder with a particle size of 1 μm or less has many uses, has even more potential, and is expected to be put to widespread practical use.

しかしながら、1μm以下の超微粉金属は、極
めて活性である。即ち酸素との親和力が極めて大
きいので酸素との断絶が必要である。このため、
真空蒸発装置が一般に良く用いられる。つまり真
空度10-4Torr以下の真空蒸発装置内に数ないし
数百Torrの不活性ガス(He、Ar)を入れ、その
中で溶解、蒸発し、特殊な回収装置にて超微粉金
属が回収されている。この方法の欠点は、生産性
が低く、エネルギーを多く消費することである。
この欠点を解消するため、本発明者等は、前述の
塩化ニツケルの水素還元による微細な金属ニツケ
ル粉末の製造方法をさらに改良すべく種々の方法
について検討を行なつた結果、塩化ニツケルに有
機系の化合物、即ち、直鎖飽和脂肪酸あるいは炭
水化物あるいはこれらの組み合せ化合物を添加
し、水素ガス含有気流中にて還元することによつ
て好ましい粒度を有し、しかも再酸化の起り難い
金属ニツケル粉末を得る方法を見い出し本発明に
到達したものである。
However, ultrafine metal particles of 1 μm or less are extremely active. That is, it has an extremely high affinity with oxygen, so it is necessary to disconnect it from oxygen. For this reason,
A vacuum evaporator is commonly used. In other words, several to hundreds of Torr of inert gas (He, Ar) is put into a vacuum evaporation device with a vacuum level of 10 -4 Torr or less, and the metal is dissolved and evaporated therein, and ultrafine metal powder is recovered using a special recovery device. has been done. The disadvantages of this method are low productivity and high energy consumption.
In order to eliminate this drawback, the present inventors investigated various methods to further improve the above-mentioned method for producing fine metallic nickel powder by hydrogen reduction of nickel chloride. By adding a compound, i.e., a straight chain saturated fatty acid, a carbohydrate, or a combination thereof, and reducing it in a hydrogen gas-containing gas stream, a metal nickel powder having a preferable particle size and which is unlikely to be reoxidized is obtained. The present invention was achieved by discovering a method.

すなわち本発明の方法は塩化ニツケルに、ラウ
リン酸、ミリスチン酸、ステアリン酸等の直鎖飽
和脂肪酸あるいは殿粉、ブドウ糖、デキストリン
等の炭水化物を6水塩の塩化ニツケルに対して外
割りで1〜10重量%添加し、温度400〜750℃に
て、水素ガス含有気流中、好ましくは水素ガス30
容量%以上、残部はN2、Ar等の不活性ガス中に
て、固体状の塩化ニツケルを還元処理した後不活
性雰囲気中で常温まで冷却して微細な金属ニツケ
ル粉末として取り出すようにしたものである。
In other words, the method of the present invention is to add linear saturated fatty acids such as lauric acid, myristic acid, and stearic acid, or carbohydrates such as starch, glucose, and dextrin to nickel chloride, in an amount of 1 to 10% of the hexahydrate salt of nickel chloride. % by weight, at a temperature of 400 to 750°C, in a hydrogen gas-containing air stream, preferably 30% hydrogen gas.
Solid nickel chloride is reduced in an inert gas such as N 2 or Ar, and then cooled to room temperature in an inert atmosphere and extracted as fine metallic nickel powder. It is.

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明の実施に際して、使用可能な添加剤とし
ては、一般式CmH2mO2中m6の直鎖飽和脂肪
酸、あるいは炭水化物あるいはこれらの組み合せ
化合物を用いることができる。特に、効果の著し
いものとしてステアリン酸あるいはデキストリン
が好ましい。該脂肪酸中、mが6以下のものは微
細ニツケルとするための効果が弱く実用的ではな
い。
In the practice of the present invention, additives that can be used include linear saturated fatty acids of m6 in the general formula CmH 2 mO 2 , carbohydrates, or combinations thereof. In particular, stearic acid or dextrin are preferred as they are highly effective. Among these fatty acids, those with m of 6 or less have a weak effect on forming fine nickel and are not practical.

一般に直鎖飽和脂肪酸は、セツケン、金属セツ
ケン、表面活性剤、分散剤などの原料として用い
られ、その起泡性が良いことが知られている。特
に、ステアリン酸が、飽和脂肪酸セツケンとして
良く用いられている。そして、泡立をの面からす
ると、さらにラウリン酸、ミリスチン酸の方が良
好とされている。また、炭水化物は、いわゆる糊
の原料として用いられるが、直鎖飽和脂肪酸と比
較的構造が似ている。
Generally, straight chain saturated fatty acids are used as raw materials for soaps, metal soaps, surfactants, dispersants, etc., and are known to have good foaming properties. In particular, stearic acid is often used as a saturated fatty acid. In terms of foaming, lauric acid and myristic acid are said to be better. Carbohydrates are also used as raw materials for so-called glue, and have a relatively similar structure to straight-chain saturated fatty acids.

これらの化合物は、C、H、Oから成り、分子
式としてCmHnCで示される炭化水素化合物で
ある。特にm6の直鎖飽和脂肪酸はCmH2mO2
で示され、炭水化物のCmH2mOn-1に比べて酸素
含有量が少ない。
These compounds are hydrocarbon compounds consisting of C, H, and O and having the molecular formula CmHnC. In particular, m6 straight chain saturated fatty acids are CmH 2 mO 2
It has a lower oxygen content compared to CmH 2 mO n-1 of carbohydrates.

このような、直鎖飽和脂肪酸あるいは炭水化物
を外割りで1〜10重量%、塩化ニツケル粉末に添
加し、400〜750℃にて還元処理することにより、
極めて効率的にかつ安定に平均粒径(Fsss)=1
μm以下の微細なニツケル粉末を生成させ得るこ
とを見い出した。さらに驚くべきことには、本発
明によれば、Fsss=1μm以下でかつ比表面積
5m2/g以上の微細粉末にもかかわらず、再酸化
が殆んどないことである。従つて本発明法により
得られる製品の取り扱いは極めて容易である。本
発明の方法において、該脂肪酸等の添加剤の添加
量を塩化ニツケル(6水塩)に対し外割りで1〜
10重量%とするのは、これ以下では効果が認めら
れず、これ以上でも特に効果が向上しないからで
ある。還元時の温度を400〜750℃とするのはこれ
以下では還元速度が小さく、これ以上ではニツケ
ルが揮散するためである。
By adding 1 to 10% by weight of such linear saturated fatty acids or carbohydrates to nickel chloride powder and reducing it at 400 to 750°C,
Average particle size (Fsss) = 1 extremely efficiently and stably
It has been found that nickel powder as fine as micrometers or less can be produced. What is even more surprising is that according to the present invention, there is almost no reoxidation despite the fine powder having Fsss = 1 μm or less and a specific surface area of 5 m 2 /g or more. Therefore, handling of the product obtained by the method of the present invention is extremely easy. In the method of the present invention, the amount of additives such as fatty acids added is 1 to 1% relative to nickel chloride (hexahydrate).
The reason why the content is 10% by weight is that no effect is observed below this level, and no particular improvement in the effect occurs even above this level. The reason why the temperature during reduction is set to 400 to 750°C is that below this temperature, the reduction rate is low, and above this temperature, nickel will volatilize.

以下これらについて具体的に説明する。 These will be explained in detail below.

まず添加剤としてステアリン酸の添加量が平均
粒径(Fsss μm)に及ぼす影響を調べたのが
第1図である。第1図より、処理温度500℃の場
合ステアリン酸の添加量が多くなるにしたがつて
平均粒径(Fsss)が小さくなつていることが明
らかである。第2図にはNiC・6H2Oにステ
アリン酸を外割りで1重量%添加した塩化ニツケ
ル装入量がニツケル粉の平均粒径(以下Fsssと
略す)に及ぼす影響を示した。還元処理温度は
500℃である。
First, Figure 1 shows the effect of the amount of stearic acid added as an additive on the average particle size (Fsss μm). From FIG. 1, it is clear that when the treatment temperature is 500° C., the average particle size (Fsss) becomes smaller as the amount of stearic acid added increases. FIG. 2 shows the effect of the amount of nickel chloride charged by adding 1% by weight of stearic acid to NiC 2.6H 2 O on the average particle size of nickel powder (hereinafter abbreviated as Fsss). The reduction treatment temperature is
The temperature is 500℃.

添加剤無添加の場合には塩化ニツケル装入量と
ともに、Fsssが大きくなる傾向があるが、ステ
アリン酸添加の場合は、むしろFsssは小さくな
る傾向がある。また図中の矢印で示しているの
は、生成した微細な金属ニツケル粉末のFsssの
バラツキで、ステアリン酸添加の方がバラツキが
小さいことが明らかである。即ちステアリン酸添
加の方が微細な金属ニツケル粉を安定して得られ
ることになる。
When no additive is added, Fsss tends to increase with the amount of nickel chloride charged, but when stearic acid is added, Fsss tends to decrease. Furthermore, the arrows in the figure indicate the variation in Fsss of the fine nickel metal powder produced, and it is clear that the variation is smaller when stearic acid is added. That is, the addition of stearic acid makes it possible to more stably obtain fine nickel metal powder.

以上の具体例でわかるように、本発明法におい
てはFsss,1μm以下の所謂超微粉の金属ニツ
ケル粉末が効率よく得られ、殆んど再酸化しない
製品が得られる。又この粉末は比表面積5m2/g
以上と大きいものが得られるという利点も得られ
る。
As can be seen from the above specific examples, in the method of the present invention, a so-called ultrafine metal nickel powder of Fsss, 1 μm or less can be efficiently obtained, and a product that is hardly reoxidized can be obtained. Also, this powder has a specific surface area of 5m 2 /g
There is also the advantage that a larger amount can be obtained.

以下、実施例について説明する。 Examples will be described below.

実施例 1 6水塩の塩化ニツケルを150℃で無水にした塩
化ニツケル1500gにデキストリンを外割りで1重
量%添加して混合しこれをニツケルボード中に入
れ環状炉を用い、500℃にて水素50容量%残部窒
素雰囲気で還元して得られた微細な金属ニツケル
粉末の平均粒径Fsssを測定したところFsss=
0.97μmであつた。また比表面積は5m2/gであつ
た。なおこの微細金属ニツケル粉末は、取り扱い
時に、発熱をともなう再酸化は殆んど認められな
かつた。確認のため、酸素を分析したところ0.74
%であつた。
Example 1 Add 1% by weight of dextrin to 1500 g of nickel chloride made anhydrous at 150°C, which is a hexahydrate salt, and mix. Place this in a nickel board and heat it with hydrogen at 500°C using an annular furnace. When the average particle diameter Fsss of fine nickel metal powder obtained by reduction in a 50% by volume nitrogen atmosphere was measured, Fsss =
It was 0.97 μm. Further, the specific surface area was 5 m 2 /g. It should be noted that almost no reoxidation accompanied by heat generation was observed in this fine nickel metal powder during handling. To confirm, oxygen was analyzed and found to be 0.74.
It was %.

実施例 2 6水塩の塩化ニツケル1500gに、ラウリン酸を
外割りで1重量%添加して混合し150℃で無水に
した塩化ニツケルをニツケルボード中に入れ、
600℃にて実施例1と同様にして水素(水素40容
量%残部アルゴン)還元し得られた微細な金属ニ
ツケル粉末の平均粒径Fsssを測定したところ
Fsss=1.00μmであつた。また比表面積は4.5m2/
gであつた。なお、この微細金属ニツケル粉末
は、取り扱い時に、発熱にともなう再酸化は殆ん
ど認められなかつた。確認のため含有酸素量を分
析したところ0.50%であつた。
Example 2 Nickel chloride, which was made by adding 1% by weight of lauric acid to 1500 g of nickel chloride hexahydrate and making it anhydrous at 150°C, was placed in a nickel board.
The average particle diameter Fsss of fine metallic nickel powder obtained by reducing hydrogen (40% by volume hydrogen, balance argon) at 600°C in the same manner as in Example 1 was measured.
Fsss was 1.00 μm. Also, the specific surface area is 4.5m 2 /
It was hot at g. It should be noted that during handling of this fine metallic nickel powder, almost no reoxidation due to heat generation was observed. To confirm, the oxygen content was analyzed and found to be 0.50%.

実施例 3 6水塩の塩化ニツケルに、ステアリン酸を外割
りで5重量%添加し混合したのち150℃で無水に
した塩化ニツケル1500gをニツケルボート中に入
れ、700℃にて水素(水素30容量%残部窒素)還
元して得られた微細金属ニツケル粉末の平均粒径
Fsssを測定したところFsss=0.60μmであつ
た。また比表面積は10m2/gであつた。なお、こ
の微細金属ニツケル粉末は取り扱い時に発熱にと
もなう再酸化は殆んど認められなかつた。確認の
ため酸素を分析したところ0.85%であつた。以上
の実施例から明らかなように何れもFsssは1.0μ
m以下で比表面積は5m2/g以上のものが得られ
た。
Example 3 5% by weight of stearic acid was added to hexahydrate nickel chloride, mixed, and then 1500 g of nickel chloride made anhydrous at 150°C was placed in a nickel boat, and hydrogen (30 volumes of hydrogen) was added at 700°C. % balance nitrogen) Average particle size of fine metallic nickel powder obtained by reduction
When Fsss was measured, it was found to be Fsss = 0.60 μm. Further, the specific surface area was 10 m 2 /g. It should be noted that almost no reoxidation due to heat generation was observed in this fine metallic nickel powder during handling. To confirm, oxygen was analyzed and found to be 0.85%. As is clear from the above examples, Fsss is 1.0μ in all cases.
m or less and a specific surface area of 5 m 2 /g or more was obtained.

比較例 塩化ニツケル6H2Oを150℃で無水にした塩化ニ
ツケル1500gをニツケルボート中に入れ500℃に
て水素(水素50容量%残部窒素)還元して得られ
た微細な金属ニツケル粉末の平均粒径Fsssを測
定したところFsss=2.15μmであつた。また比
表面積は0.5m2/gであつた。なおこの微細金属ニ
ツケル粉末は取り扱い時に発熱をともなう再酸化
は殆んど認められなかつた。確認のため含有酸素
量を分析したところ0.6%であつた。
Comparative example: Average particles of fine metallic nickel powder obtained by placing 1500 g of nickel chloride made from nickel chloride 6H 2 O anhydrous at 150℃ into a nickel boat and reducing it with hydrogen (hydrogen 50% by volume, balance nitrogen) at 500℃. When the diameter Fsss was measured, it was Fsss = 2.15 μm. Further, the specific surface area was 0.5 m 2 /g. It should be noted that almost no reoxidation accompanied by heat generation was observed during handling of this fine metallic nickel powder. To confirm, the oxygen content was analyzed and found to be 0.6%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はステアリン酸の添加量が平均粒径
(Fsss、μm)に及ぼす影響を示すグラフで、横
軸はステアリン酸の添加量(重量%/NiC
6H2O)、縦軸は平均粒径(Fsss、μm)であ
る。第2図はNiC・6H2Oにステアリン酸を
外割りで1重量%添加した塩化ニツケル装任量が
ニツケル粉の平均粒径(Fsss、μm)に及ぼす
影響を示すグラフで、横軸はNiC装入量
(g/バツチ)、縦軸は平均粒径(Fsss、μm)
である。
Figure 1 is a graph showing the effect of the amount of stearic acid added on the average particle size (Fsss, μm), and the horizontal axis is the amount of stearic acid added (wt%/ NiC2 .
6H 2 O), and the vertical axis is the average particle size (Fsss, μm). Figure 2 is a graph showing the influence of the loading amount of nickel chloride, obtained by adding 1% by weight of stearic acid to NiC 2.6H 2 O, on the average particle size (Fsss, μm) of nickel powder, and the horizontal axis is NiC2 charging amount (g/batch), vertical axis is average particle size (Fsss, μm)
It is.

Claims (1)

【特許請求の範囲】 1 塩化ニツケル粉末を水素ガスで還元して、金
属ニツケル粉末を製造する方法において、塩化ニ
ツケル粉末に添加剤として直鎖飽和脂肪酸及び又
は炭水化物を添加したのち、水素ガス含有気流中
400〜750℃で処理することを特徴とする微細な金
属ニツケル粉末の製造方法。 2 直鎖飽和脂肪酸は、一般式CmH2mO2中のm
は6以上であることを特徴とする特許請求の範囲
第1項に記載の方法。 3 添加剤の量は、6水塩の塩化ニツケルに対し
外割りで1〜10重量%である特許請求の範囲第1
項に記載の方法。
[Claims] 1. A method for producing metal nickel powder by reducing nickel chloride powder with hydrogen gas, in which straight-chain saturated fatty acids and/or carbohydrates are added as additives to nickel chloride powder, and then a hydrogen gas-containing gas stream is added. During ~
A method for producing fine nickel metal powder, characterized by processing at 400 to 750°C. 2 Straight chain saturated fatty acids are m in the general formula CmH 2 mO 2
The method according to claim 1, wherein: is 6 or more. 3. The amount of the additive is 1 to 10% by weight based on the nickel chloride of the hexahydrate salt.
The method described in section.
JP23968083A 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder Granted JPS60131904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23968083A JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23968083A JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Publications (2)

Publication Number Publication Date
JPS60131904A JPS60131904A (en) 1985-07-13
JPS6139373B2 true JPS6139373B2 (en) 1986-09-03

Family

ID=17048309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23968083A Granted JPS60131904A (en) 1983-12-21 1983-12-21 Manufacture of fine metallic nickel powder

Country Status (1)

Country Link
JP (1) JPS60131904A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0518440A2 (en) * 2004-11-19 2008-11-18 Falconbridge Ltd METHOD FOR THE PRODUCTION OF LOW VOLUMETRIC DENSITY METAL PICKEL

Also Published As

Publication number Publication date
JPS60131904A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US4274865A (en) Production of magnetic powder
US4404024A (en) Production of magnetic powder
JPH0362764B2 (en)
EP0174078B1 (en) Iron catalyst for ammonia synthesis
US3627509A (en) Method of preparing a magnetically stable metal powder consisting mainly of iron and meant for magnetic recording
US4056410A (en) Process for preparing acicular iron powders containing titanium and tin, and the resulting powders when so prepared
JPS6139373B2 (en)
EP0269361B1 (en) Process for producing acicular iron alpha-oxyhydroxide particles
US3925114A (en) Process for preparation of magnetic alloy powder
US2730441A (en) Process of reducing iron formate
JPS58171506A (en) Manufacture of fine metallic nickel powder
JPH0477689B2 (en)
KR20050013990A (en) Process for manufactruing diamond using a novel method of catalysis and a new method for processing the graphite and catalyst mixture used in synthesis
JP3300460B2 (en) Method for producing ultrafine monodispersed gold particles
JP2736693B2 (en) Method for producing jarosite particle powder
JPH05156324A (en) Production of superfine nickel aggregated powder
JPS6350842B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2669010B2 (en) Desiliconization method in metal salt solution
JPS63143802A (en) Manufacture of magnetic iron powder
JPH05156325A (en) Production of fine metal powder
JPH10251714A (en) Production of silver powder for powder metallurgy
JPS6349722B2 (en)
JPS6213506A (en) Production of rare earth metal powder
JPH0232321B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees