JPS6135509A - Substrate heating method - Google Patents

Substrate heating method

Info

Publication number
JPS6135509A
JPS6135509A JP15812884A JP15812884A JPS6135509A JP S6135509 A JPS6135509 A JP S6135509A JP 15812884 A JP15812884 A JP 15812884A JP 15812884 A JP15812884 A JP 15812884A JP S6135509 A JPS6135509 A JP S6135509A
Authority
JP
Japan
Prior art keywords
substrate
thin film
radiant heat
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15812884A
Other languages
Japanese (ja)
Inventor
Shunichi Murakami
俊一 村上
Tetsuo Ishida
哲夫 石田
Sumio Sakai
酒井 純朗
Hideo Mito
三戸 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP15812884A priority Critical patent/JPS6135509A/en
Publication of JPS6135509A publication Critical patent/JPS6135509A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating

Abstract

PURPOSE:To efficiently and quickly heat only the required region of substrate surface with excellent accuracy and response characteristic with the radiation heat by covering the rear surface of the area to be heated of the substrate with a radiation heat absorbing thin film by vacuum deposition or discharge reaction processing. CONSTITUTION:The rear surface of substrate 1 is covered with a radiation heat absorbing thin film 2 made of metal such as molybdenum or carbon by the film forming technology such as vacuum deposition or discharge reaction processing within the radiation heat absorbing thin film forming chamber 4. When the substrate 1 is sufficiently thin, coverage is formed just the rear surface of the area to be heated. Next, a gate 7 is opened and the substrate 1 covered with thin film is sent to the substrate heating chamber 5 and it is then subjected to the predetermined surface processings in this heating chamber 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、分子線エピタキシー処理で必要とな
る技術であって、半導体もしくは絶縁体の基板を真空中
で加熱する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technique required, for example, in molecular beam epitaxy processing, and relates to a method of heating a semiconductor or insulator substrate in a vacuum. .

イオン注入後の半導体基板では、注入不純物を電気的に
活性化するために、フラッジエアニールという基板加熱
方法がとられているが、この基板を、面内均一に昇温す
るためにも本発明は極めて有効性を発揮する方法である
For semiconductor substrates after ion implantation, a substrate heating method called fludge air annealing is used to electrically activate the implanted impurities. is an extremely effective method.

(従来技術とその問題点) 従来、分子線エピタキシー成長処理等の工程で、輻射熱
で半導体もしくは絶縁体の基板を300℃〜1200℃
等に加熱する場合、この半導体または絶縁体の基板を熱
伝導度のよい部材の上に置き、との部材を輻射熱で加熱
しこの部材からの熱伝導で間接的に基板を加熱していた
。加熱を間接的にする理由は、3i 、 G[LASな
どの半導体、もしくは透明な絶縁体は、赤外波長領域で
は透過率が高く、輻射熱をほとんど透過してしまい、基
板の温就を上昇させることに困難があるためである。こ
の間接的な方法で基板を加熱する場合には、裏面に設置
した部材をも加熱することになり、基板単体の場合に比
べて熱容量が犬きくなるため、加熱電力が増大する。そ
れと同時に、部材周辺部も加熱されるので、真空へのガ
ス放出の原因となシ、基板表面が汚染されるなどの欠点
がめった。またこの加熱部材からゴミが遊離して基板表
面に付着する現象も見られ、これらはデバイス製造プロ
セス上大きい問題となっていた。
(Prior art and its problems) Conventionally, in processes such as molecular beam epitaxy, semiconductor or insulator substrates are heated to 300°C to 1200°C using radiant heat.
When heating a semiconductor or an insulator, the semiconductor or insulator substrate is placed on a member with good thermal conductivity, and the member is heated with radiant heat, and the substrate is indirectly heated by heat conduction from this member. The reason for indirect heating is that semiconductors such as 3i, G[LAS, etc., or transparent insulators have high transmittance in the infrared wavelength region, and transmit most of the radiant heat, increasing the temperature of the substrate. This is because there are particular difficulties. When heating the substrate using this indirect method, the members installed on the back side are also heated, and the heat capacity becomes smaller than that of the substrate alone, so heating power increases. At the same time, the periphery of the member is also heated, which causes disadvantages such as gas emission into the vacuum and contamination of the substrate surface. In addition, a phenomenon has been observed in which dust is released from the heating member and adheres to the surface of the substrate, which has become a major problem in the device manufacturing process.

(発明の目的) 本発明は、上記問題を解決し、基板のみを効率よく輻射
熱で加熱する方法を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to solve the above problems and provide a method for efficiently heating only a substrate with radiant heat.

(発明の構成) 蒸着又は放電反応処理で輻射熱吸収体薄膜を被覆し、そ
の後にこれを輻射熱加熱する基板加熱方法によって上記
目的全達成したものである。
(Structure of the Invention) All of the above objects have been achieved by a substrate heating method in which a radiant heat absorber thin film is coated by vapor deposition or discharge reaction treatment, and then radiant heat is applied to the thin film.

(実施例) 以下、図に基いて、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail based on the drawings.

第1図の実施例において、1は加熱される基板、−2は
輻射熱吸収体薄膜、3は発熱体である。輻射熱吸収体薄
膜としては、モリブデン、タングステンなどの金属又は
カーボンが用いられる。
In the embodiment shown in FIG. 1, 1 is a substrate to be heated, -2 is a radiant heat absorbing thin film, and 3 is a heating element. As the radiant heat absorber thin film, metal such as molybdenum, tungsten, or carbon is used.

第2図では、4が輻射熱吸収体薄膜生成室、5は基板加
熱室である。生成基4内で基板の裏面に真空蒸着又は放
電反応処理などの成膜技術をもちいて輻射熱吸収体薄膜
を被覆する。基板が充分に薄いときには、加熱したい表
面部のすぐ裏面に被覆が行なわれる。次いで、ゲート5
1開いて被覆された基板を基板加熱室5へ送シ出し、こ
の加熱室5で所定の表面加工が行なわれる。
In FIG. 2, 4 is a radiant heat absorber thin film production chamber, and 5 is a substrate heating chamber. A radiant heat absorber thin film is coated on the back surface of the substrate within the generating group 4 using a film forming technique such as vacuum deposition or discharge reaction treatment. If the substrate is sufficiently thin, the coating will be applied immediately behind the surface area desired to be heated. Then gate 5
1, the coated substrate is sent to a substrate heating chamber 5, where a predetermined surface processing is performed.

第3図は、輻射熱吸収体薄膜を多層に被覆した本発明の
実施例である。多層膜は、薄膜が熱線の波長に対し、吸
収・反射の選択性を持つ場合に、それを補完できる効果
があるが、殊に基板と輻射熱吸収体薄膜が反応する場合
に、その防止策として効果が著るしい。このときは基板
と吸収体薄膜の間に基板と反応しない薄膜を挿入するも
ので、例えば、基板がSiのときに、先づStowの薄
膜を被覆したのち、その上にモリブデン薄膜を被覆する
とか、基板がGaASのときに、先づ51sN4の薄膜
を置いてその上にモリブデン薄膜を被覆するとかの方法
が採用される。
FIG. 3 shows an embodiment of the present invention in which a radiant heat absorber thin film is coated in multiple layers. Multilayer films have the effect of complementing the heat ray wavelength when it has absorption/reflection selectivity, but it can also be used as a preventive measure, especially when the substrate and the radiant heat absorber thin film react. The effect seems to be significant. In this case, a thin film that does not react with the substrate is inserted between the substrate and the absorber thin film. For example, when the substrate is Si, a Stow thin film is first coated, and then a molybdenum thin film is coated on top of that. When the substrate is GaAS, a method is adopted in which a 51sN4 thin film is first placed and a molybdenum thin film is coated thereon.

なお、実施に当って、本発明の輻射熱吸収体薄膜又はそ
の一部の薄膜層の生成は、これを完全に別工程で、バッ
チ処理で行なうことも可能である。
In addition, in carrying out the production, the radiant heat absorber thin film of the present invention or a thin film layer of a part thereof can be produced in a completely separate process by batch processing.

また、基板表面の加熱したい部分が局在するときは、輻
射熱吸収体薄膜生成時にマスクを用いることもできる。
Furthermore, if the portion of the substrate surface that is desired to be heated is localized, a mask may be used when forming the radiant heat absorber thin film.

なお1だ、裏面に被覆する膜の熱膨張率は、基板の熱膨
張率に近接させることが望ましい。
First, it is desirable that the coefficient of thermal expansion of the film covering the back surface be close to that of the substrate.

次に、もし表面処理後、裏面に電極を設けたい 20な
どで、裏面の薄膜を除去したいときは、有機物のレジス
トを表面に塗布して裏面の薄膜を酸で除くとか、裏面の
薄膜を機械的に除去するとかの方法が採られる。
Next, if you want to remove the thin film on the back side after surface treatment, such as in 20, where you want to provide an electrode on the back side, you can apply an organic resist to the front surface and remove the thin film on the back side with acid, or you can remove the thin film on the back side with a machine. Methods such as removing them are adopted.

(発明の効果) 本発明の方法によれば、基板表面の加熱したい部分のみ
を効率よくしかも迅速に、かつ精度よく、すぐれた応答
性をもって、輻射熱で加熱出来る効果がある。
(Effects of the Invention) According to the method of the present invention, only the portion of the substrate surface that is desired to be heated can be heated efficiently, quickly, accurately, and with excellent responsiveness using radiant heat.

また、本発明の副次的効果として次のものがある。即ち
イオン注入を絶縁体または半絶縁半導体基板に対して行
なう場合、イオン衝突によって多量の2次電子が放出さ
れ、この2次電子で基板全体がチャージアップし、所定
の場所にイオンを注入することが不可能となる現象かめ
るが、このブヤージアップを防ぐ方法として裏面に高融
点金属を被覆する本発明の方法は著効をもっている。
Further, the following side effects of the present invention are available. In other words, when ion implantation is performed into an insulating or semi-insulating semiconductor substrate, a large amount of secondary electrons are emitted due to ion collisions, and the entire substrate is charged up by these secondary electrons, and ions are implanted into predetermined locations. However, as a method of preventing this blow-up, the method of the present invention in which the back surface is coated with a high melting point metal is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の加熱状況を示す図。 第2図は、本発明の実施例の薄膜生成、加熱処埋装置を
略示する図。 第3図は本発明の多層膜を被覆した実施例の図。 1・・・基 板、2,6・・・輻射熱吸収体薄膜、3・
・・発熱体、4・・・輻射熱吸収体薄膜生成室、5・・
・基板加熱室。 特許出願人   日電アネルバ株式会社FIG。1 FIG。2 FIG、3
FIG. 1 is a diagram showing a heating situation in an embodiment of the present invention. FIG. 2 is a diagram schematically showing a thin film production and heat treatment apparatus according to an embodiment of the present invention. FIG. 3 is a diagram of an embodiment coated with the multilayer film of the present invention. 1... Substrate, 2, 6... Radiant heat absorber thin film, 3...
... Heating element, 4... Radiant heat absorber thin film generation chamber, 5...
・Substrate heating chamber. Patent applicant: Nichiden Anelva Co., Ltd. FIG. 1 FIG. 2 FIG, 3

Claims (5)

【特許請求の範囲】[Claims] (1)真空中にて、輻射熱を用いて、半導体もしくは絶
縁体の基板の表面の一部又は全面を加熱する方法におい
て、前記被加熱基板の該加熱したい面の裏面に輻射熱吸
収体薄膜を蒸着又は放電反応処理で被覆した後、これを
輻射熱加熱することを特徴とする基板加熱方法。
(1) In a method of heating a part or the entire surface of a semiconductor or insulator substrate using radiant heat in a vacuum, a radiant heat absorbing thin film is deposited on the back side of the surface to be heated of the substrate to be heated. Or, a method for heating a substrate, which comprises coating it with a discharge reaction treatment and then heating it with radiant heat.
(2)真空中で前記基板を加熱するその真空装置と真空
々間を互いに連通しうる装置内において、前記輻射熱吸
収体薄膜を被覆することを特徴とする特許請求の範囲第
1項記載の基板加熱方法。
(2) The substrate according to claim 1, wherein the radiant heat absorbing thin film is coated in a vacuum device that heats the substrate in a vacuum and a device that can communicate between the vacuum device and the vacuum device. Heating method.
(3)前記輻射熱吸収体薄膜が高融点金属、又はカーボ
ンを含んで構成されていることを特徴とする特許請求の
範囲第1又は2項記載の基板加熱方法。
(3) The method for heating a substrate according to claim 1 or 2, wherein the radiant heat absorber thin film contains a high melting point metal or carbon.
(4)前記輻射熱吸収体薄膜が多層膜で構成されている
ことを特徴とする特許請求の範囲第1又は2項記載の基
板加熱方法。
(4) The substrate heating method according to claim 1 or 2, wherein the radiant heat absorber thin film is composed of a multilayer film.
(5)前記多層膜の該基板に接する膜が、該基板と化学
的に反応しない物質で構成されていることを特徴とする
特許請求の範囲第4項記載の基板加熱方法。
(5) The substrate heating method according to claim 4, wherein a film of the multilayer film that is in contact with the substrate is made of a substance that does not chemically react with the substrate.
JP15812884A 1984-07-28 1984-07-28 Substrate heating method Pending JPS6135509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15812884A JPS6135509A (en) 1984-07-28 1984-07-28 Substrate heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15812884A JPS6135509A (en) 1984-07-28 1984-07-28 Substrate heating method

Publications (1)

Publication Number Publication Date
JPS6135509A true JPS6135509A (en) 1986-02-20

Family

ID=15664897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15812884A Pending JPS6135509A (en) 1984-07-28 1984-07-28 Substrate heating method

Country Status (1)

Country Link
JP (1) JPS6135509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123764A (en) * 1988-11-02 1990-05-11 Semiconductor Energy Lab Co Ltd Electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190897A (en) * 1982-04-30 1983-11-07 Fujitsu Ltd Method for growing crystal by molecular beam
JPS60240119A (en) * 1984-05-15 1985-11-29 Fujitsu Ltd Molecular beam crystal growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190897A (en) * 1982-04-30 1983-11-07 Fujitsu Ltd Method for growing crystal by molecular beam
JPS60240119A (en) * 1984-05-15 1985-11-29 Fujitsu Ltd Molecular beam crystal growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123764A (en) * 1988-11-02 1990-05-11 Semiconductor Energy Lab Co Ltd Electronic device

Similar Documents

Publication Publication Date Title
US20050087514A1 (en) Method for high-resolution processing of thin layers using electron beams
JPS6135509A (en) Substrate heating method
JPS5992019A (en) Vacuum vapor deposition of material onto heating plate
JPH0717148Y2 (en) Substrate device
JPH0454972B2 (en)
JPH1056214A (en) Method for forming superconducting thin film
JP3793273B2 (en) Manufacturing method of semiconductor integrated circuit device
JP3106690B2 (en) Film formation method
JP3078853B2 (en) Oxide film formation method
JPH0335825B2 (en)
JP2789742B2 (en) Film forming apparatus and film forming method
JPS6232653A (en) Manufacture of thin film transistor
JPS6350854B2 (en)
JP4094127B2 (en) Amorphous silicon production equipment
JP2696987B2 (en) Thin film manufacturing method
JPH0136976B2 (en)
JP2782797B2 (en) Method for manufacturing semiconductor device
JPH0766920B2 (en) Wiring connection method and device for IC element
JP2613246B2 (en) Dry etching equipment
JP2604998B2 (en) Wiring connection method for IC element
JPS6175517A (en) Compound semiconductor substrate annealing method
JPS59100536A (en) Microwave processor
JPH06116708A (en) Method and apparatus for production of film for laser
JP2633039B2 (en) Heat treatment method for compound semiconductor wafer
JPS5948939A (en) Method and apparatus for forming film