JPS6232653A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS6232653A
JPS6232653A JP17216085A JP17216085A JPS6232653A JP S6232653 A JPS6232653 A JP S6232653A JP 17216085 A JP17216085 A JP 17216085A JP 17216085 A JP17216085 A JP 17216085A JP S6232653 A JPS6232653 A JP S6232653A
Authority
JP
Japan
Prior art keywords
film
silicon
gate electrode
silicon film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17216085A
Other languages
Japanese (ja)
Inventor
Kenji Nakazawa
中沢 憲二
Hitoshi Arai
均 新井
Shigeto Koda
幸田 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17216085A priority Critical patent/JPS6232653A/en
Publication of JPS6232653A publication Critical patent/JPS6232653A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To suppress electric resistance to a low value, by removing a gate insulating film with a gate electrode as a mask, depositing a metal film on the surface of a silicon film, which is exposed by said removable, projecting any one of light, an electromagnetic waves and charged particles, heating the material, and forming the compound of metal and silicon. CONSTITUTION:A polycrystalline silicon film 22 is formed on a quartz substrate 21. Then, a gate insulating film 23 such as a silicon oxide film and a silicon nitride film is formed. Thereafter, a gate electrode 24 is formed. Then, an insulating film 25 is formed on the side wall of the gate electrode 24. Thereafter, a metal film 26 is deposited. Halogen-lamp light rays 27 and 28 are projected on the sample formed in this way for several tens of seconds or so. As a result, crystallization of the silicon film 22 is carried out directly beneath the gate electrode 24, and a crystallized silicon film 29 is formed. At the same time, a silicon compound (silicide) is formed on both sides of the gate insulating film 23 owing to the reaction between the metal film 26 and the silicon film 22. Thus a source region 31 and a drain region 32 are obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えばアクティブマトリクス型平面ディスプ
レイパネルの各画素の切替えに用いられる薄膜トランジ
スタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a thin film transistor used for switching each pixel of an active matrix flat display panel, for example.

「従来の技術」 近年アクティブマトリクス型の平面ディスプレイパネル
の実現を目的として、半導体薄膜として多結晶シリコン
膜を用い、高速なスイッチング特性をもつ薄膜トランジ
スタの開発が進められている。第2図に多結晶シリコン
膜を用いた従来の薄膜トランジスタの断面構造を示す。
"Prior Art" In recent years, with the aim of realizing active matrix type flat display panels, development of thin film transistors using polycrystalline silicon films as semiconductor thin films and having high-speed switching characteristics has been progressing. FIG. 2 shows a cross-sectional structure of a conventional thin film transistor using a polycrystalline silicon film.

(例えば。(for example.

Lakatos 、 proceedings of 
the SIp 、 VOI、 24(1983) 1
87.)この薄膜トランジスタの構造では、半導体薄膜
に多結晶シリコン膜を用いている。この多結晶シリコン
膜の移動度向上のためには、高温でシリコン膜を形成す
るか、あるいは高温でシリコン膜を加熱して結晶粒径を
増大する必要があった。
Lakatos, proceedings of
the SIp, VOI, 24 (1983) 1
87. ) In this thin film transistor structure, a polycrystalline silicon film is used as the semiconductor thin film. In order to improve the mobility of this polycrystalline silicon film, it is necessary to form the silicon film at a high temperature or to increase the crystal grain size by heating the silicon film at a high temperature.

以下、この第2図に示す薄膜トランジスタの製遣方法を
説明する。まず絶縁基板11上に多結晶シIJ−7ン膜
12あるいはアモルファスシリコン膜12を形成し、必
要に応じて電気炉加熱、レーザアニール等の方法により
シリコン膜12の結晶化を行う。次に多結晶シリコン膜
12上にゲート絶縁膜13を形成した後、ゲート絶縁膜
13上(ニゲート電極14を形成する。その後、ゲート
電極14をマスクとしてイオン注入法によりリン、ボロ
ン、ヒ素等の不純物を打ち込み、電気炉加熱、ランプ加
熱等の方法により不純物の活性化を行い、多結晶シリコ
ン膜12にソース領域15およびドレイン領域16を形
成する。次に全体の上に層間絶縁膜17を堆積した後、
ソース領域15、ドレイン領域16」二の層間絶縁膜1
7にそれぞれコンタノドホールを開口し、これら開口を
通じてソース領域15、ドレイン領域16とそれぞれ接
触したソース電極18、ドレイン電極19を形成して薄
膜トランジスタを完成する。
Hereinafter, a method for manufacturing the thin film transistor shown in FIG. 2 will be explained. First, a polycrystalline IJ-7 film 12 or an amorphous silicon film 12 is formed on an insulating substrate 11, and if necessary, the silicon film 12 is crystallized by heating in an electric furnace, laser annealing, or the like. Next, after forming a gate insulating film 13 on the polycrystalline silicon film 12, a gate electrode 14 is formed on the gate insulating film 13. Then, using the gate electrode 14 as a mask, ion implantation is performed to inject phosphorus, boron, arsenic, etc. Impurities are implanted and activated by a method such as electric furnace heating or lamp heating to form a source region 15 and a drain region 16 in the polycrystalline silicon film 12. Next, an interlayer insulating film 17 is deposited on the entire surface. After that,
Source region 15, drain region 16'' second interlayer insulating film 1
A contact hole is opened in each of 7, and a source electrode 18 and a drain electrode 19 are formed in contact with the source region 15 and drain region 16, respectively, through these openings, thereby completing a thin film transistor.

「発明が解決しようとする問題点」 このような従来の薄膜トランジスタの製造方法では次の
ような欠点があった。
"Problems to be Solved by the Invention" Such conventional methods for manufacturing thin film transistors have the following drawbacks.

(a)  絶縁基板11として安価なガラスの使用が望
まれるが、そのガラス基板が耐えるように製造工程を低
温化せねばならず、次のような問題が生じる。まずイオ
ン注入法により導入した不純物の活性化が低温熱処理で
は不十分であるため、ソース領域15、ドレイン領域1
6のシート抵抗が高くなる。例えば活性化の温度をガラ
スの変形温度以下である600°Cにした場合、ソース
領域15、ドレイン領域16のシート抵抗は1000 
VDにもなる。この結果、ソース電極18、ドレイン電
極19とソース領域15゜1・上゛レイン領域16との
各接触抵抗が高くなり、薄膜トランジスタの高駆動化が
図れない。また低温熱処理では多結晶シリコン膜12の
結晶化が不十分であり、キャリアの移動度が小さくなる
ため、高駆動な薄膜トランジスタが形成できない。
(a) Although it is desirable to use inexpensive glass as the insulating substrate 11, the manufacturing process must be carried out at a low temperature so that the glass substrate can withstand it, which causes the following problems. First, since low-temperature heat treatment is insufficient to activate impurities introduced by ion implantation, source region 15 and drain region 1
The sheet resistance of No. 6 becomes high. For example, when the activation temperature is set to 600°C, which is below the deformation temperature of glass, the sheet resistance of the source region 15 and drain region 16 is 1000°C.
Also available on VD. As a result, the contact resistance between the source electrode 18, the drain electrode 19, and the source region 15.1 and upper drain region 16 increases, making it impossible to achieve high drive of the thin film transistor. Further, in low-temperature heat treatment, crystallization of the polycrystalline silicon film 12 is insufficient and carrier mobility is reduced, making it impossible to form a highly driven thin film transistor.

(b)  大面積基板の使用が望まれるが、イオン注入
法を用いる場合は、−基板当りの処理時間が長く生産性
が悪い。
(b) Although it is desirable to use a large-area substrate, when using the ion implantation method, the processing time per substrate is long and productivity is poor.

この発明の目的は従来のイオン注入法によるソース領域
、ドレイン領域の形成工程と、シリコン膜の結晶化に必
要であった高温熱処理工程とを除去し、低温熱処理でも
ソース領域、ドレイン領域の低抵抗化とシリコン膜の結
晶粒径の増大とが図れ、かつ大面積基板上でも形成が可
能な薄膜トランジスタの製造方法を提供することにある
The purpose of this invention is to eliminate the process of forming source and drain regions using the conventional ion implantation method and the high-temperature heat treatment process necessary for crystallizing silicon films, and to reduce the resistance of the source and drain regions even with low-temperature heat treatment. It is an object of the present invention to provide a method for manufacturing a thin film transistor, which is capable of increasing the crystal grain size of a silicon film and can be formed even on a large-area substrate.

「問題点を解決するための手段」 この発明によればゲート電極をマスクとしてゲート絶縁
膜を除去し、その除去により露出したシリコン膜表面上
に金属膜を堆積し、その金属膜および前記ゲート電極に
光、電磁波、荷電粒子の何れか一つを照射して加熱する
ことにより、前記露出したシリコン膜表面と前記金属膜
との界面にソース電極、ドレイン電極として使用する金
后・シリコン化合物(シリサイド)を形成し、かつ前記
ゲート電極直下のシリコン膜を熱処理し、結晶化する。
"Means for Solving the Problem" According to the present invention, the gate insulating film is removed using the gate electrode as a mask, a metal film is deposited on the surface of the silicon film exposed by the removal, and the metal film and the gate electrode are removed. By irradiating the surface with light, electromagnetic waves, or charged particles and heating it, a gold-silicon compound (silicide) to be used as a source electrode and a drain electrode is formed at the interface between the exposed silicon film surface and the metal film. ) is formed, and the silicon film directly under the gate electrode is heat-treated and crystallized.

従来の技術とはソース・ドレインがシリサイドで形成さ
れること、およびシリコン膜の結晶化がゲート電極から
の伝導熱によって行われることが異なる。
The difference from the conventional technology is that the source and drain are formed of silicide, and that the silicon film is crystallized by conductive heat from the gate electrode.

「実施例」 第1図にこの発明による薄膜トランジスタの製造方法の
一実施例を示す。まず第1図Aに示すように、例えば石
英基板21上に多結晶シリコン膜22、あるいはアモル
ファスシリコン膜22をCVD法、グロー放電分解法、
蒸着法等で形成した後、そのシリコン膜22上にシリコ
ン酸化膜、シリコン窒化膜等のゲート絶縁膜33を形成
する。
"Embodiment" FIG. 1 shows an embodiment of the method for manufacturing a thin film transistor according to the present invention. First, as shown in FIG. 1A, for example, a polycrystalline silicon film 22 or an amorphous silicon film 22 is deposited on a quartz substrate 21 using a CVD method, a glow discharge decomposition method, or the like.
After forming by vapor deposition or the like, a gate insulating film 33 such as a silicon oxide film or a silicon nitride film is formed on the silicon film 22.

次に第1図Bに示すように光吸収係数が比較的大きいシ
リコン、モ1ノプデン、タングステン、あるいはチタン
等を例えば厚さ4oooi程度に堆積してゲート電極2
4を例えば4oooi程度の厚さで形成する。その後、
必要に応じてこのゲート電極24とソース領域、ドレイ
ン領域との短絡を防止するために、°  −酸化シリコ
ン、窒化シリコン恐どの絶縁膜25をゲート電極24の
側壁に、膜厚100オグストロント程度に形成する。
Next, as shown in FIG. 1B, silicon, monobdenum, tungsten, titanium, or the like having a relatively large light absorption coefficient is deposited to a thickness of, for example, about 4 oooi, and the gate electrode 2 is deposited.
4 is formed to have a thickness of about 4oooi, for example. after that,
If necessary, in order to prevent short circuits between the gate electrode 24 and the source and drain regions, an insulating film 25 such as silicon oxide or silicon nitride is formed on the side walls of the gate electrode 24 to a thickness of approximately 100 Å. Form.

次に第1図Cに示すように絶縁膜25をゲート電極24
の側壁部だけ残して反応性イオンエツチング等により除
去する。その後、金属膜26としてシリコンと反応しシ
リサイド(化合物)の形成が可能で、かつシリコン膜よ
り光吸収係数の大きいチタン、モリブデン、あるいはタ
ングステン等を1000人程度以上に堆積する。
Next, as shown in FIG.
It is removed by reactive ion etching or the like, leaving only the side wall portion. Thereafter, titanium, molybdenum, tungsten, or the like, which can react with silicon to form a silicide (compound) and has a larger light absorption coefficient than the silicon film, is deposited as the metal film 26 in an amount of about 1000 or more.

このようにして形成した試料へ第1図りに示すよう(二
例えば18KWのハロゲンランプ光27゜28を数10
秒程度照射する。試料の上方から入射した光27はゲー
ト電極24および金属膜26にほとんど吸収される。一
方、試料の下方から入射した光28は石英基板21を透
過して一部シリコン膜22に吸収され、残りは金属膜2
6およびゲート電極24に吸収される。光の吸収量はゲ
ート電極24および金属膜26で最も多く、次にシリコ
ン膜22であり、石英基板21では無視できるほど少な
い。この結果、試料の温度はゲート電極24および金属
膜26で最も高く、次にシリコン膜22が高くなる。こ
のためゲート電極24および金属膜26からシリコン膜
22へ熱伝導が生じ、シリコン膜22はシリコン膜22
の光吸収による発熱に加え、侵導熱の寄与により、さら
に高温に加熱され、例えば1000°cB上C二なる。
As shown in the first diagram, the sample formed in this way is
Irradiate for about seconds. Most of the light 27 incident from above the sample is absorbed by the gate electrode 24 and the metal film 26. On the other hand, light 28 incident from below the sample passes through the quartz substrate 21 and is partially absorbed by the silicon film 22, and the rest is absorbed by the metal film 22.
6 and the gate electrode 24. The amount of light absorbed is greatest in the gate electrode 24 and the metal film 26, followed by the silicon film 22, and is negligibly small in the quartz substrate 21. As a result, the temperature of the sample is highest at the gate electrode 24 and the metal film 26, followed by the silicon film 22. Therefore, heat conduction occurs from the gate electrode 24 and the metal film 26 to the silicon film 22, and the silicon film 22
In addition to the heat generated by the absorption of light, the material is heated to an even higher temperature due to the contribution of invasive heat, for example, to 1000°C or higher.

この結果、例えば第32回応用物理学関係連合講演会講
演予稿集の122−C−9に述べられているようにゲー
ト電極24直下においてシリコン膜2′2:の結晶化が
生じ、結晶化シリコン膜29となる。また同時に金属膜
26とシリコン膜22との反応によりシリコン化合物(
シリサイド)がゲート絶縁膜23の両側に形成されてソ
ース領域31、ドレイン領域32が得られる。
As a result, for example, as described in 122-C-9 of the 32nd Applied Physics Conference Proceedings, the silicon film 2'2: crystallizes directly under the gate electrode 24, and the crystallized silicon This becomes a film 29. At the same time, a silicon compound (
Silicide) is formed on both sides of the gate insulating film 23 to obtain a source region 31 and a drain region 32.

次に未反応金属膜26を゛エツチングなどにより除去し
た後、第1図Eに示すように層間絶縁膜33を堆積する
。最後に層間絶縁膜33にコンタクトホールな開口しそ
れぞれその開口をimじてソース領域31およびドレイ
ン領域32と接触したソース電極34およびドレイン電
極35を形成して薄膜トランジスタを完成する。
Next, after removing the unreacted metal film 26 by etching or the like, an interlayer insulating film 33 is deposited as shown in FIG. 1E. Finally, a contact hole is opened in the interlayer insulating film 33, and a source electrode 34 and a drain electrode 35 are formed in contact with the source region 31 and drain region 32 through the opening, respectively, thereby completing a thin film transistor.

以上説明したこの発明の薄膜トランジスタの製造方法に
よれば、ソース領域31、ドレイン領域32がシリサイ
ドで形成され、従来のイオン注入法によるソース領域、
ドレイン領域と比較し電気抵抗が1/100〜1/10
00になる。また多結晶シリコン膜29の結晶粒径はゲ
ート電極24からの1云導熱の寄与により2〜3倍増大
する。
According to the method for manufacturing a thin film transistor of the present invention described above, the source region 31 and the drain region 32 are formed of silicide, and the source region and the drain region 32 are formed of silicide using the conventional ion implantation method.
Electrical resistance is 1/100 to 1/10 compared to the drain region
It becomes 00. Further, the crystal grain size of the polycrystalline silicon film 29 increases by 2 to 3 times due to the contribution of 1 yen of heat conduction from the gate electrode 24.

以上説明した実施例ではシリサイド化とシリコン膜22
の結晶化を・・ロゲンランプ光照射により行ったが、こ
れに限ることはなくレーザ光照射によってもまったく同
様に実施できる。また電磁波照射による高周波加熱法に
よっても同様に実施でき、この場合には金属膜26およ
びゲート電極24が電磁波を吸収し、渦電流の発生によ
り発熱する点が光照射による方法と異なる。例えば周波
数400 KHzをもつ高周波加熱装置を用いると、金
属膜26における電磁波の表皮深さが数靜にも及ぶため
、ゲート電極24および金属膜26は膜厚方向に一様に
加熱され、光照射の場合と同様にシリコン膜22はゲー
ト電極24、金属膜26からの伝導熱によって加熱され
、結晶化が生じ、またシリサイド化も光照射の場合と同
様に行える。荷電粒子の照射によっても光照射、電磁波
照射の場合とまったく同様に実施できる。例えば荷電粒
子として電子ビームを用いて行うことができ、加速電圧
10KV、ビーム電流数mAの条件でシリコン膜22の
結晶化およびシリサイド化を生じさせることができる。
In the embodiment described above, silicidation and silicon film 22
Although the crystallization was carried out by irradiation with rogen lamp light, the crystallization is not limited to this and can be carried out in exactly the same manner by irradiation with laser light. A high-frequency heating method using electromagnetic wave irradiation can also be used. In this case, the metal film 26 and the gate electrode 24 absorb the electromagnetic waves and generate heat due to the generation of eddy current, which is different from the method using light irradiation. For example, when a high-frequency heating device with a frequency of 400 KHz is used, the skin depth of the electromagnetic waves in the metal film 26 reaches several degrees, so the gate electrode 24 and the metal film 26 are heated uniformly in the film thickness direction, and the light irradiation The silicon film 22 is heated by conductive heat from the gate electrode 24 and the metal film 26 to cause crystallization, and silicidation can also be performed in the same manner as in the case of light irradiation. Irradiation with charged particles can be carried out in exactly the same way as light irradiation and electromagnetic wave irradiation. For example, an electron beam can be used as the charged particle, and the silicon film 22 can be crystallized and silicided under the conditions of an acceleration voltage of 10 KV and a beam current of several mA.

以上説明した実施例では、石英基板を用いて説明したが
、ガラス基板を用いても同様に実施できる。この場合に
はガラス基板が石英基板に比べて低融点物質であるため
、シリコン膜22の結晶化およびシリサイド化の際にガ
ラス基板を過度に加熱する前に、シリサイド化とシリコ
ン膜の結晶化を終了する必要があり、そのためには加熱
時間を短かくするためキャノンランプ光、レーザ光など
を用いることができる。
Although the embodiments described above are explained using a quartz substrate, the same can be implemented using a glass substrate. In this case, since the glass substrate has a lower melting point than the quartz substrate, silicidation and crystallization of the silicon film should be performed before excessively heating the glass substrate during crystallization and silicidation of the silicon film 22. For this purpose, cannon lamp light, laser light, etc. can be used to shorten the heating time.

また上記実施例ではゲート電極とソース領域31、ドレ
イン領域32との短絡を防止するためにゲート電極に絶
縁物から成る側壁25を形成したが、これに限ることは
なく、側壁25を形成しなくてもゲート絶縁膜23の存
在によりソース領域31、ドレイン領域32とゲート電
極24とは互に分離される。
Further, in the above embodiment, the sidewall 25 made of an insulator is formed on the gate electrode in order to prevent a short circuit between the gate electrode and the source region 31 and drain region 32. However, the present invention is not limited to this, and the sidewall 25 may not be formed. However, due to the presence of the gate insulating film 23, the source region 31, drain region 32, and gate electrode 24 are separated from each other.

「発明の効果」 以上説明したようにこの発明の方法によれば、ソース領
域、ドレイン領域がシリサイドで形成されるため電気抵
抗を低く抑えることができる。このためソース電極、ド
レイン電極とのコンタクト抵抗を小さくすることができ
、薄膜トランジスタの高駆動化が図れる。また大面漬基
板にも適用でき、イオン注入法に比ベスループット(生
産性)を上げることができる。さらにシリコン膜の結晶
化はゲート電極からの1云導熱により行われるため。
"Effects of the Invention" As explained above, according to the method of the present invention, the source region and the drain region are formed of silicide, so that the electrical resistance can be kept low. Therefore, the contact resistance with the source electrode and the drain electrode can be reduced, and the thin film transistor can be highly driven. It can also be applied to large substrates, and can increase throughput (productivity) compared to ion implantation. Furthermore, crystallization of the silicon film is performed by heat conduction from the gate electrode.

透明基板の加熱を抑えて、ゲート電極直下のアクティブ
領域に結晶粒径の大きな結晶化したシリコン膜を形成で
きる。この結果、チャネル領域の移動度が向上し、薄膜
トランジスタの高駆動化が図れる利点がある。
A crystallized silicon film with large grain size can be formed in the active region directly under the gate electrode while suppressing heating of the transparent substrate. As a result, there is an advantage that the mobility of the channel region is improved and the thin film transistor can be highly driven.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の薄膜トランジスタの製;貴注の一実
施例の各・工程を示す断面図、第2図は従来の薄膜トラ
ンジスタの製造方法により得られた薄膜トランジスタを
示す断面図である。 21:絶縁基板、22:多結晶シリコン4λ、23:ゲ
ート絶縁膜、24:ゲート電極、25:絶縁膜、26:
金属膜、27:試料の上方から入射するハロゲンランプ
光、28:試料の下方から入射するハロゲンランプ光、
29:結晶化頭載、31:シリサイドで形成したソース
領域、32:シリサイドで形成したドレイン@域、33
:層間絶嶽膜、34:ソース電極、35ニドレイン電極
。 特許出願人  日本′宸信電話株式会社代  理  人
   草  野     卓オ 1 図 士 1 図 オ 2 図
FIG. 1 is a cross-sectional view showing each step of manufacturing a thin film transistor of the present invention; FIG. 2 is a cross-sectional view showing a thin film transistor obtained by a conventional thin film transistor manufacturing method. 21: Insulating substrate, 22: Polycrystalline silicon 4λ, 23: Gate insulating film, 24: Gate electrode, 25: Insulating film, 26:
metal film, 27: halogen lamp light incident from above the sample, 28: halogen lamp light incident from below the sample,
29: Crystallization head, 31: Source region formed of silicide, 32: Drain @ region formed of silicide, 33
: Interlayer film, 34: Source electrode, 35 Ni-drain electrode. Patent applicant: Nihon Shinshin Denwa Co., Ltd. Representative: Takuo Kusano 1 Illustration artist 1 Illustration 2 Illustration

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に堆積されたシリコン膜と、そのシリ
コン膜上面に順次形成されたゲート絶縁膜およびゲート
電極とを具備する薄膜トランジスタの製造方法において
、 前記ゲート電極をマスクとして前記ゲート絶縁膜を除去
する工程と、 その除去により露出した前記シリコン膜表面上に金属膜
を堆積する工程と、 その堆積された金属膜および前記ゲート電極に、光、電
磁波、荷電粒子のうちの何れか一つを照射して加熱する
ことにより、前記露出したシリコン膜表面と前記金属膜
との界面にソース電極、ドレイン電極として使用する金
属シリコン化合物を形成し、かつ前記ゲート電極直下の
シリコン膜を熱処理し結晶化する工程とを含むことを特
徴とする薄膜トランジスタの製造方法。
(1) A method for manufacturing a thin film transistor comprising a silicon film deposited on an insulating substrate, and a gate insulating film and a gate electrode sequentially formed on the upper surface of the silicon film, wherein the gate insulating film is formed using the gate electrode as a mask. a step of depositing a metal film on the surface of the silicon film exposed by the removal; and a step of applying one of light, electromagnetic waves, and charged particles to the deposited metal film and the gate electrode. By irradiating and heating, a metal silicon compound to be used as a source electrode and a drain electrode is formed at the interface between the exposed silicon film surface and the metal film, and the silicon film directly under the gate electrode is heat-treated and crystallized. A method for manufacturing a thin film transistor, comprising the steps of:
JP17216085A 1985-08-05 1985-08-05 Manufacture of thin film transistor Pending JPS6232653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17216085A JPS6232653A (en) 1985-08-05 1985-08-05 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17216085A JPS6232653A (en) 1985-08-05 1985-08-05 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPS6232653A true JPS6232653A (en) 1987-02-12

Family

ID=15936683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17216085A Pending JPS6232653A (en) 1985-08-05 1985-08-05 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS6232653A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341028A (en) * 1990-10-09 1994-08-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and a method of manufacturing thereof
EP0645802A2 (en) * 1993-09-20 1995-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009141144A (en) * 2007-12-06 2009-06-25 Sharp Corp Semiconductor memory device, and methods of manufacturing and driving the same
CN104716193A (en) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 Thin film transistor and preparation method and application thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444282A (en) * 1990-10-09 1995-08-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and a method of manufacturing thereof
US5341028A (en) * 1990-10-09 1994-08-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and a method of manufacturing thereof
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
EP0645802A3 (en) * 1993-09-20 1998-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6049092A (en) * 1993-09-20 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6867431B2 (en) 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP0645802A2 (en) * 1993-09-20 1995-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009141144A (en) * 2007-12-06 2009-06-25 Sharp Corp Semiconductor memory device, and methods of manufacturing and driving the same
CN104716193A (en) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 Thin film transistor and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5595944A (en) Transistor and process for fabricating the same
US5132754A (en) Thin film silicon semiconductor device and process for producing thereof
US5248630A (en) Thin film silicon semiconductor device and process for producing thereof
TW515101B (en) Method for fabrication of field-effect transistor
US5946560A (en) Transistor and method of forming the same
JPH06232069A (en) Manufacture of semiconductor device
JP2000353666A (en) Semiconductor thin film and manufacture thereof
JPH01187814A (en) Manufacture of thin film semiconductor device
JP3781787B2 (en) Multipurpose substrate processing apparatus, operation method thereof, and manufacturing method of thin film integrated circuit
JP3402030B2 (en) Thin-film semiconductor device manufacturing method
JPS6232653A (en) Manufacture of thin film transistor
JP3377137B2 (en) Semiconductor device and its manufacturing method, thin film transistor and its manufacturing method, and liquid crystal display device
US5770486A (en) Method of forming a transistor with an LDD structure
JP3054186B2 (en) Method for manufacturing insulated gate semiconductor device
JPS62104021A (en) Formation of silicon semiconductor layer
JP3565911B2 (en) Method for manufacturing semiconductor device
JP3925085B2 (en) Manufacturing method of semiconductor device, manufacturing method of light modulation element, and manufacturing method of display device
JP2002280304A (en) Method of manufacturing semiconductor device
JP2001223208A (en) Semiconductor element manufacturing device and method of manufacturing the same
JPH0714849A (en) Manufacture of thin film transistor
JP2002237598A (en) Manufacturing method of thin-film transistor
JP2753023B2 (en) Method for manufacturing semiconductor device
JPH04307741A (en) Manufacture of semiconductor device
JP3051363B2 (en) Method for manufacturing semiconductor device
KR100209586B1 (en) Method of fabricating poly silicon thin film transistor