JPS6130655A - Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater - Google Patents

Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater

Info

Publication number
JPS6130655A
JPS6130655A JP14940484A JP14940484A JPS6130655A JP S6130655 A JPS6130655 A JP S6130655A JP 14940484 A JP14940484 A JP 14940484A JP 14940484 A JP14940484 A JP 14940484A JP S6130655 A JPS6130655 A JP S6130655A
Authority
JP
Japan
Prior art keywords
phase
cast steel
seawater
erosion
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14940484A
Other languages
Japanese (ja)
Other versions
JPH0517301B2 (en
Inventor
Toshinori Ozaki
敏範 尾崎
Tsutomu Konuma
小沼 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14940484A priority Critical patent/JPS6130655A/en
Publication of JPS6130655A publication Critical patent/JPS6130655A/en
Publication of JPH0517301B2 publication Critical patent/JPH0517301B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled stainless cast steel having high castability and weldability by specifying the metallic structure of a steel contg. specified percentages of C, Si, Mn, Ni, Cr, Mo and Co. CONSTITUTION:A stainless cast steel consisting of, by weight, 0.05-0.1% C, 0.1-1.5% Si, 0.4-5% Mn, 0.5-4.5% Ni, 15-18.5% Cr, 2-4% Mo, 3.5-7% Co and the balance essentially Fe and satisfying 18-24 Ni equiv. (Ni%+0.65Cr%+ 0.98Mo%+1.05Mn%+0.35Si%+12.6C%) and an equation Cr%+3.3Mo%=21.6- 29% is manufactured. The steel has a structure consisting of 0.5-30% ferrite phase, <=40% martensite phase and the balance austenite phase or epsilon-phase. The steel has superior resistance to cavitation erosion and corrosion by seawater and is suitable for use as a material for the impeller of a seawater pump.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、耐キャビテーション・エロージヨン性と耐海
水腐食性に優れ、特に海水ポンプのインペラに好適なス
テンレス鋳鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stainless steel cast steel that has excellent cavitation/erosion resistance and seawater corrosion resistance and is particularly suitable for impellers of seawater pumps.

〔発明の背景〕[Background of the invention]

最近、海水ポンプや海水揚水発電用水車(以下海水ポン
プと記す)が高速化、小型化、高揚程化されるに伴いイ
ンペラ(以下水車も含む)のキャ9゜ ビテーション・エロション損傷が目立って発生しはじめ
、ポンプ寿命を左右する状態にまで致った。
Recently, as seawater pumps and water turbines for seawater pumped storage power generation (hereinafter referred to as seawater pumps) have become faster, smaller, and have higher head, cavitation and erosion damage to impellers (hereinafter also referred to as water turbines) has become noticeable. This has started to occur and has reached the point where it affects the life of the pump.

一方、従来のポンプインペラは13 Cr%Ni含有−
13Crおよび18 Cr −8N i系ステンレス鋼
が用いられて来たが、上述のように耐キャビテーション
・エロージヨン性および耐海水腐食性が不十分である。
On the other hand, conventional pump impellers contain 13 Cr%Ni.
13Cr and 18Cr-8Ni stainless steels have been used, but as mentioned above, they have insufficient cavitation/erosion resistance and seawater corrosion resistance.

これらを満すため、オーステナイト相あるいはイプシロ
ン相からなるステンレス鋼(例えば特開昭57−152
447号)が提案されているが、耐キャビテーション性
や耐海水腐食性が不十分であり、鋳造性、溶接性につい
ても配慮されていない。
In order to satisfy these requirements, stainless steel consisting of austenite phase or epsilon phase (for example, JP-A-57-152
No. 447) has been proposed, but its cavitation resistance and seawater corrosion resistance are insufficient, and castability and weldability are not considered.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなしたもので、耐キャビテーショ
ン・エロージヨン性と耐海水腐食性に優れるとともに鋳
造性・溶接性も良好なステンレス鋳鋼を提供することを
目的とする。
The present invention was made in view of the above, and an object of the present invention is to provide a stainless steel cast steel that is excellent in cavitation/erosion resistance and seawater corrosion resistance, and also has good castability and weldability.

〔発明の概要〕[Summary of the invention]

本発明(以下第1の発明という)のステンレス鋳銅はC
; 0.05〜0.1%、Si;0.1〜1.5%、M
n : 0.4〜5%、Ni ; 0.5〜4.5%、
Cr;15〜18.5%、Mo:2〜4%、Co;3.
5〜7%、残部が実質的にFsよりなり、Ni当量;1
8〜24  、Cr+3.3Mo ; 21.6〜29
%、フェライト相;0.5〜30%、マルテンサイト相
;40%以下、残部がオーステナイト相あるいはイプシ
ロン相であることを特徴とするもので、耐キャビテーシ
ョン・エロージヨン性と耐海水腐食性に優れるとともに
鋳造性・溶接性が良好なものである。
The stainless steel cast copper of the present invention (hereinafter referred to as the first invention) is C
; 0.05-0.1%, Si; 0.1-1.5%, M
n: 0.4-5%, Ni; 0.5-4.5%,
Cr; 15-18.5%, Mo: 2-4%, Co; 3.
5 to 7%, the remainder substantially consists of Fs, Ni equivalent: 1
8-24, Cr+3.3Mo; 21.6-29
%, ferrite phase: 0.5-30%, martensitic phase: 40% or less, and the remainder is austenite phase or epsilon phase, and has excellent cavitation/erosion resistance and seawater corrosion resistance. It has good castability and weldability.

また、他の発明(以下第2の発明という)のステンレス
鋳鋼はC: 0.1〜0.22%181:0.1〜1.
5%、Mn;Q、4〜5%、Ni;0.5〜4.5%、
Cr :15〜18.5%1MO;2〜4%、Co ;
 3.5〜7%、残部が実質的にFeよりなり、Ni当
量; 18〜26  、Cr+3.3Mo : 21.
6〜29%、フェライト相;0.5〜30%、マルテン
サイト相:40%以下、残部がオーステナイト相あるい
はイプシロン相であることを特徴とするもので、耐海水
腐食性において第1の発明の鋳鋼よりやや劣るが、耐キ
ャビテーション性では第1の発明の鋳鋼より優れるもの
である。
Further, the stainless steel cast steel of another invention (hereinafter referred to as the second invention) has C: 0.1 to 0.22% 181:0.1 to 1.
5%, Mn; Q, 4-5%, Ni; 0.5-4.5%,
Cr: 15-18.5% 1MO; 2-4%, Co;
3.5 to 7%, the balance substantially consisting of Fe, Ni equivalent: 18 to 26, Cr+3.3Mo: 21.
6 to 29%, ferrite phase: 0.5 to 30%, martensite phase: 40% or less, and the remainder is an austenite phase or an epsilon phase, and has the first invention in terms of seawater corrosion resistance. Although it is slightly inferior to cast steel, it is superior to the cast steel of the first invention in terms of cavitation resistance.

さらに他の発明(以下第3の発明という)のステンレス
鋳鋼はC: 0.01〜0.1%981:0.1〜1.
5%、Mn;0.4〜5%、Ni;0.5〜4.5%、
Cr ; 15〜18.5%9Mo;2〜4%、Co 
; 3.5〜7%、NO,01〜0.15%、残部が実
質的にFeよりなり、Ni当量;18〜26  、Cr
+3.3Mo:21.6〜29%、フェライト相;0.
5〜30%、マルテンサイト相;40%以下、残部がオ
ーステナイト相あるいはイプシロン相であることを特徴
とするもので、鋳造性・溶接性において第1の発明の鋳
鋼よりやや劣るものの耐海水腐食性に第1の発明の鋳鋼
より優れるものである。
Furthermore, the stainless steel cast steel of another invention (hereinafter referred to as the third invention) has C: 0.01-0.1%981:0.1-1.
5%, Mn; 0.4-5%, Ni; 0.5-4.5%,
Cr; 15-18.5% 9Mo; 2-4%, Co
; 3.5-7%, NO, 01-0.15%, the balance substantially consists of Fe, Ni equivalent: 18-26, Cr
+3.3Mo: 21.6-29%, ferrite phase; 0.
5 to 30%, martensitic phase; 40% or less, the remainder is austenite phase or epsilon phase, and although it is slightly inferior to the cast steel of the first invention in castability and weldability, it has seawater corrosion resistance. This is superior to the cast steel of the first invention.

次に、成分組成および金属組織を限定した理由を述べる
Next, the reason for limiting the component composition and metal structure will be described.

(C) 0.05%以下では耐キャビテーション・エロージヨン
性の優れた鋳鋼が得られない。また、0.1 %以上で
は600〜b hrの熱処理範囲でオーステナイト粒界およびオーステ
ナイト〜フェライト粒界にそって、また500〜600
℃X (1〜1O)hrの熱処理範囲でマルテンサイト
葉にそって選択腐食(粒界腐食)が見られ、腐食はC含
有量が増す程激しくなる。よって0.05〜0.1%添
加する。
(C) If it is less than 0.05%, cast steel with excellent cavitation and erosion resistance cannot be obtained. In addition, when it is 0.1% or more, in the heat treatment range of 600 to 600 b hr, along the austenite grain boundaries and austenite to ferrite grain boundaries, and 500 to 600 b hr.
Selective corrosion (intergranular corrosion) is observed along the martensite leaves in the heat treatment range of ℃X (1 to 1 O) hr, and the corrosion becomes more severe as the C content increases. Therefore, add 0.05 to 0.1%.

しかし、第1の発明の鋳鋼より耐海水腐食性にやや劣り
、耐キャビテーション・エロージヨン性では優れた鋳鋼
を得たい場合、C含有量は少なく0.1〜0.22%添
加する。また、鋳造性・溶接性においてやや劣るものの
耐海水腐食性において第1の発明より優れた鋳鋼を得た
い場合、0.01〜0.05添加する。
However, if it is desired to obtain a cast steel that is slightly inferior to the cast steel of the first invention in seawater corrosion resistance but superior in cavitation and erosion resistance, the C content is added at a low level of 0.1 to 0.22%. Moreover, when it is desired to obtain a cast steel which is slightly inferior in castability and weldability but superior in seawater corrosion resistance to the first invention, 0.01 to 0.05 of C is added.

(Si) CrおよびMoの含有量を増加させ、耐海水腐食性を確
保、同時にNi当量の増大を抑制するためにNi当量元
素であるSiは少ない程良い。しかし鋳造性を確保する
必要であるので、0.1〜1.5%添加する。
(Si) In order to increase the contents of Cr and Mo, ensure seawater corrosion resistance, and at the same time suppress the increase in Ni equivalent, the smaller the amount of Si, which is the Ni equivalent element, the better. However, since it is necessary to ensure castability, it is added in an amount of 0.1 to 1.5%.

(Mn) Siと同様の理由により少ない程良い。一方、硬質の加
工誘起マルテンサイト相を得るには多量に添加すること
が好ましい。またNi当量との関係を守る必要があり、
0.4〜5 %添加する。
(Mn) For the same reason as Si, the smaller the amount, the better. On the other hand, in order to obtain a hard deformation-induced martensitic phase, it is preferable to add a large amount. Also, it is necessary to protect the relationship with Ni equivalent.
Add 0.4-5%.

(N i ) 添加理由はMnと同様である。一方、耐海水腐食性を向
上させる上で必要である。0.5 %以下では溶解素材
の選定上実用的でない。よって0.5〜4.5 %添加
する。
(N i ) The reason for addition is the same as that for Mn. On the other hand, it is necessary to improve seawater corrosion resistance. If it is less than 0.5%, it is not practical in terms of selecting a melting material. Therefore, add 0.5 to 4.5%.

(Cr) Ni当量およびCr+3.3Mo量を確保する上で必要
である。また、15%以下では耐海水腐食性が著しく損
なわれると共にδ−フェライト相が増大してオーステナ
イト相が減少するので、加工誘起マルテンサイト相へ生
成量が少なくなる。
(Cr) Necessary to ensure Ni equivalent and Cr+3.3Mo amount. Moreover, if it is less than 15%, the seawater corrosion resistance is significantly impaired, and the δ-ferrite phase increases and the austenite phase decreases, so that the amount of deformation-induced martensite phase produced decreases.

18.5%以上では適正Ni当量を確保しながらMoを
添加することが回置となる。よって15〜18.5%添
加する。
At 18.5% or more, Mo must be added while ensuring an appropriate Ni equivalent. Therefore, add 15 to 18.5%.

(Mo) 添加理由はCrと同様である。2%以下では耐海水腐食
性が著しく損なわれる。また、4%以上では耐海水腐食
性の効果が飽和し経済的でない。
(Mo) The reason for addition is the same as that for Cr. If it is less than 2%, seawater corrosion resistance will be significantly impaired. Moreover, if it exceeds 4%, the effect of seawater corrosion resistance is saturated and it is not economical.

よって2〜4%添加する。Therefore, add 2 to 4%.

(Go) 耐キャビテーション・エロージヨン性の向上に顕著な効
果があるが7%以上添加しても効果は飽和し経済的では
ない、また3、5%以下では効果が乏しい、よって、3
.5〜7%添加する。
(Go) It has a remarkable effect on improving cavitation and erosion resistance, but if it is added in an amount of 7% or more, the effect is saturated and it is not economical.If it is less than 3.5%, the effect is poor.
.. Add 5-7%.

(N) Coの添加理由と同様、オーステナイト相の安定に有効
であるが加工誘起マルテンサイトの生成を促進すると共
に、耐海水腐食性の向上に有効である。Nを添加する場
合、Cは0.01−0.05%の添加にとどめる。I’
lt0.01%以下では耐海水腐食性に効果がなく、0
.15%以上では固i容化熱処理温度域で固溶限以上と
なり耐海水腐食性が低下する。よって0.01〜0.1
5%添加する。
(N) Same as the reason for adding Co, it is effective for stabilizing the austenite phase, promotes the formation of deformation-induced martensite, and is effective for improving seawater corrosion resistance. When N is added, the amount of C added is limited to 0.01-0.05%. I'
If it is less than 0.01%, there is no effect on seawater corrosion resistance, and 0.
.. If it is more than 15%, the solid solubility limit will be exceeded in the solid-solidification heat treatment temperature range, resulting in a decrease in seawater corrosion resistance. Therefore, 0.01 to 0.1
Add 5%.

〔フェライト相〕[Ferrite phase]

0.5%以下では鋳造時および溶接時に高温割れが発生
する。また、30%以上ではオーステナイト相が少なく
、加工誘起マルテンサイト相の生成量が原理的に多くと
れず耐キャビテーション・エロージヨン性の向上が期待
できない、よって0.5〜30%とした。
If it is less than 0.5%, hot cracking will occur during casting and welding. Moreover, if it is 30% or more, the austenite phase is small and the amount of deformation-induced martensite phase produced cannot be expected to be large in principle, and improvement in cavitation and erosion resistance cannot be expected.Therefore, it is set at 0.5 to 30%.

〔マルテンサイト相〕[Martensite phase]

40%以上では、Ni当量が16〜18である場合、加
工誘起マルテンサイト相の生成量が減少し、耐キャビテ
ーション・エロージヨン性が向上しない。よって40%
以下とした。
When the Ni equivalent is 40% or more and the Ni equivalent is 16 to 18, the amount of deformation-induced martensitic phase produced decreases, and the cavitation and erosion resistance does not improve. Therefore 40%
The following was made.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明するが、説明に先立ち本発明の
基本的な考え方を説明する。
Next, the present invention will be explained in detail, but prior to the explanation, the basic idea of the present invention will be explained.

成を示す。表より材料&A、B、C,DおよびEはCo
含有量がそれぞれほぼ0%、2%、4%。
Indicates completion. From the table, materials &A, B, C, D and E are Co
The content is approximately 0%, 2%, and 4%, respectively.

6%および8%である。また材料FはCo:6%でNが
添加しである。これらの材料のキャビテーション・エロ
ージョン特性(壊食量)および腐食減量は表に示すとう
りである。
6% and 8%. Further, material F has Co: 6% and N is added. The cavitation/erosion characteristics (erosion amount) and corrosion loss of these materials are shown in the table.

次に第1表のキャビテーション・エロージョンを 試験結果を第1図にまとめ島よ。ここでは、材料Nα毎
にC含有量とNi当量に対する壊食量を4段階に分類し
て示した。図より、Co:0%の場合における壊食量は
、C含有量が高く、Ni当量が22以下の場合、概略4
0■以下となるものの、C含有量が0.1%、Ni当量
が22以上では40■以上であることがわかる。一方、
Co含有量が2%、4%、6%および8%と増すに伴い
、C含有量とNi当量の関係において、壊食量の低下が
見られる。そして、これらの測定値より、予想される各
壊食量レベルのバンド、たとえば10〜20■(図中Δ
印)はCo含有量が6%の場合、最も低C含有量側に位
置している。また、キャビテーション試験後の材料硬さ
をその断面より測定した。その結果、表面より0.02
1の位置における硬さは、壊食量の小さい材料程硬く、
最大でHy=630にも達していた。この傾向はNi当
量が18〜24で、C含有量の高い程顕著であった。ま
た、C含有量が同じ時はNi当量が21に近づく程、C
含有量とNi当量が同等の時はC。
Next, the cavitation/erosion test results in Table 1 are summarized in Figure 1. Here, the amount of erosion relative to the C content and Ni equivalent is classified into four levels for each material Nα. From the figure, the amount of erosion in the case of Co: 0% is approximately 4 when the C content is high and the Ni equivalent is 22 or less.
It can be seen that although the value is 0 ■ or less, it is 40 ■ or more when the C content is 0.1% and the Ni equivalent is 22 or more. on the other hand,
As the Co content increases to 2%, 4%, 6%, and 8%, the amount of erosion decreases in the relationship between the C content and Ni equivalent. From these measured values, bands of each expected erosion amount level, for example, 10 to 20
) is located on the lowest C content side when the Co content is 6%. In addition, the material hardness after the cavitation test was measured from its cross section. As a result, 0.02
The hardness at position 1 is as follows: The smaller the amount of erosion, the harder the material.
The maximum value reached Hy=630. This tendency was more pronounced as the Ni equivalent was 18 to 24 and the C content was higher. Also, when the C content is the same, the closer the Ni equivalent is to 21, the more C
C when the content and Ni equivalent are the same.

含有量が6%に近づく程、共に硬さが高く、耐キャビー
テヨン・エロージヨン性と良い相関が見られた。次に金
属組織変化に注目すると、Ni当量が24から大きくな
るに伴ない試験前後共にオーステナイト相が安定に存在
するものの、Ni当量が21前後では試験前大部分オー
ステナイト相であっても、試験後90%以上マルテンサ
イト相になっていた。Ni当量が18以下では試験前に
おいて大部分マルテンサイト相であり、試験後マルテン
サイト相が多少増すにとどまっていた。そして、この傾
向はCo含有量が4〜8%、なかでも6%のとき最も顕
著であった。
The closer the content was to 6%, the higher the hardness, and a good correlation with cavity resistance and erosion resistance was observed. Next, focusing on changes in metallographic structure, as the Ni equivalent increases from 24, an austenite phase stably exists both before and after the test, but when the Ni equivalent is around 21, even though most of the phase is austenite before the test, after the test More than 90% was in the martensite phase. When the Ni equivalent was 18 or less, the martensite phase was mostly present before the test, and the martensite phase only slightly increased after the test. This tendency was most remarkable when the Co content was 4 to 8%, especially 6%.

以上の事実は耐キャビテーション・エロージヨン性が主
にC含有量と材料のマルテンサイト相変態能によって決
定されることを示しており、キャビテーション衝撃によ
って材料が加工を受けた時。
The above facts indicate that the cavitation and erosion resistance is mainly determined by the C content and martensitic phase transformation ability of the material, and when the material is processed by cavitation impact.

硬い硬化層の生成しやすい材料が優れた耐キャビ−チー
ジョン・エロージヨン性を示すものと判断される。そし
て、Cは一定量の加工誘起マルテンサイト相が生成した
場合、その硬さ上昇に有効に作用し、Ni当量は加工誘
起マルテンサイト相の生成しやすさくNi当量最大の場
合、オーステナイト相が安定、Ni当量が小の場合、当
初よりマルテンサイト相あるいはフェライト相で共に有
効がない)に作用するものと思われる。またCOはオー
ステナイト相生成元素でありながらMd点の低下割合が
小さく、オーステナイト相生成範囲を拡大すると共に、
加工誘起マルテンサイト生成範囲を増大する。また本材
料に0.4〜5.0%添加した。Mnの効果は良く知ら
れているように、加工誘起マルテンサイト相の硬さ上昇
に有効な作用がある。よって、C以外については第1の
発明および第2の発明に示す合金組成が耐キャビテーシ
ョン・エロージヨン性に有効である。
It is considered that materials that easily form a hard hardened layer exhibit excellent cavity corrosion and erosion resistance. Furthermore, when a certain amount of deformation-induced martensitic phase is generated, C effectively acts to increase the hardness, and Ni equivalent facilitates the formation of deformation-induced martensitic phase, and when the Ni equivalent is maximum, the austenite phase becomes stable. , it is thought that when the Ni equivalent is small, the martensitic phase or the ferrite phase are both ineffective from the beginning. In addition, although CO is an austenite phase forming element, the rate of decrease in the Md point is small, and it expands the range of austenite phase formation.
Increase the range of deformation-induced martensite formation. Moreover, 0.4 to 5.0% was added to this material. As is well known, the effect of Mn is effective in increasing the hardness of the deformation-induced martensitic phase. Therefore, except for C, the alloy compositions shown in the first invention and the second invention are effective in cavitation and erosion resistance.

次に耐食性について述べる。第1表に示した腐食減量を
整理して第2図に示す。ここではGoC含有量、6%の
場合について示した。第2図より、腐食減量は。r’3
 、3 M。量およびオー8.−ケイ。
Next, we will discuss corrosion resistance. The corrosion loss shown in Table 1 is summarized and shown in Figure 2. Here, the case where the GoC content is 6% is shown. From Figure 2, the corrosion loss is. r'3
, 3M. Amount and O8. -Kay.

相合有量でよく整理され、Cr+3.3Mo量およびオ
ーステナイト相含有量が60%以上の場合、Cr + 
3 、3 M o量が21.6%以上で5C813相当
以上の耐食性が得られる。以上のことはCOC含有量4
〜8%であってもほぼ同様であった。
Well organized by interlocking content, when the amount of Cr + 3.3Mo and the content of austenite phase is 60% or more, Cr +
When the amount of 3,3Mo is 21.6% or more, corrosion resistance equivalent to or higher than that of 5C813 can be obtained. The above is COC content 4
It was almost the same even when it was 8%.

また、C含有量については、0.1%以上では600〜
750℃X 1〜10 h rの熱処理範囲でオーステ
ナイト粒界およびオーステナイト−フェライト粒界にそ
って、500〜b 10hrの熱処理範囲でマルテンサイト葉にそって選択
腐食(粒界腐食)が見られ、C含有量が増す程、激しく
腐食する。また、C固溶限の0.15%以上では固溶化
処理材でさえ、オーステナイト粒界にそった選択腐食が
見られる。
In addition, regarding the C content, if it is 0.1% or more, it is 600~
Selective corrosion (intergranular corrosion) was observed along the austenite grain boundaries and austenite-ferrite grain boundaries in the heat treatment range of 750°C for 1 to 10 hours, and along the martensite leaves in the heat treatment range of 500 to 10 hours. The higher the C content, the more intense the corrosion. Further, at 0.15% or more of the C solid solubility limit, selective corrosion is observed along the austenite grain boundaries even in the solution treated material.

以上より、耐キャビテーション・エロージヨン性および
耐海水腐食性を満足するためには、C;0.05〜0.
10%が望ましく、耐海水腐食性の多少の低下が許され
る場合にはC:0.1〜0.22%添加する1本鋳鋼は
耐キャビテーション・エロージヨン性では第1の発明の
鋳鋼より優れる。また耐海水腐食のさらに優れた鋳鋼を
得たい場合にはC; 0.01〜0.05%添加する。
From the above, in order to satisfy cavitation/erosion resistance and seawater corrosion resistance, C; 0.05 to 0.
10% is desirable, and if a slight decrease in seawater corrosion resistance is allowed, a single cast steel containing 0.1 to 0.22% C is superior to the cast steel of the first invention in terms of cavitation and erosion resistance. In addition, when it is desired to obtain cast steel with even better seawater corrosion resistance, C is added in an amount of 0.01 to 0.05%.

つぎに本発明の具体的実施例を説明する。Next, specific examples of the present invention will be described.

前述の考え方を基にして作成した本発明の鋳鋼の化学生
成と測定結果を第2表に示す、 I−1゜−2が第1の
発明に係る鋳鋼、H−1,−2が第2の発明に係る鋳鋼
、ll−1,−2が第3の発明に係る鋳鋼をそれぞれ示
す、キャビテーション・エロージョン試験は電歪振動式
キャビテーション・エロージョン試験装置を用い、6 
、3 K HX120μm振幅、25℃の3%食塩水中
で2時間試験して求めた。鋳鋼の大きなキャビテーショ
ンに接する面積が3.8dである。腐食試験は耐海水腐
食性2の相関性が良い0.8%FeCaa+0.5%H
CQ溶液であり、室温で1200h r浸漬し重量減に
より求めた。鋳鋼の大きな20X30X3tで耐キャビ
テーション・エロージヨン性を示す壊食量および腐食減
量の測定結果を前記第2表に示す。表より明らかなよう
に、壊食量、腐食減量ともに優れている。
The chemical formation and measurement results of the cast steel of the present invention created based on the above-mentioned idea are shown in Table 2. I-1゜-2 is the cast steel according to the first invention, H-1 and -2 are the second cast steel The cavitation/erosion test was conducted using an electrostrictive vibration type cavitation/erosion testing device.
, 3 K H x 120 μm amplitude, 2 hours in 3% saline at 25° C. The area in contact with the large cavitation of cast steel is 3.8d. Corrosion test is 0.8%FeCaa + 0.5%H with good correlation of seawater corrosion resistance 2
It is a CQ solution and was determined by weight loss after immersion at room temperature for 1200 hours. Table 2 above shows the measurement results of the amount of erosion and corrosion weight loss showing the cavitation and erosion resistance of a large 20x30x3t cast steel. As is clear from the table, both the amount of erosion and the amount of corrosion loss are excellent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、耐キャビテーショ
ン・エロージヨン性を耐海水腐食性に優れるとともに鋳
造性・溶接性も良好なステンレス情調が得られ1本鋳鋼
を例えば海水ポンプのインペラ材料として使用すればそ
の寿命が向上する。
As explained above, according to the present invention, a stainless steel material with excellent cavitation and erosion resistance and seawater corrosion resistance as well as good castability and weldability can be obtained, and single cast steel can be used as an impeller material for a seawater pump, for example. Improves the lifespan of grass.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、C;0.05〜0.1%、Si;0.1〜1.5%
、Mn;0.4〜5%、Ni;0.5〜4.5%、Cr
;15〜18.5%、Mo;2〜4%、Co;3.5〜
7%、残部が実質的にFeよりなり、Ni当量〔Ni%
+0.65Cr%+0.98Mo%+1.05Mn%+
0.35Si%+12.6C%〕;18〜24、Cr+
3.3Mo;21.6〜29%、フェライト相;0.5
〜30%、マルテンサイト相;40%以下、残部がオー
ステナイト相あるいはイプシロン相であることを特徴と
する耐キャビテーション・エロージヨン性と耐海水腐食
性に優れたステンレス鋳鋼。 2、C;0.1〜0.22%、Si;0.1〜1.5%
、Mn;0.4〜5%、Ni;0.5〜4.5%、Cr
;15〜18.5%、Mo;2〜4%、Co;3.5〜
7%、残部が実質にFeよりなり、Ni当量〔Ni%+
0.65Cr%+0.98Mo%+1.05Mn%+0
.35Si%+12.6C%〕;18〜26、Cr+3
.3Mo;21.6〜29%、フェライト相;0.5〜
30%、マルテンサイト相;40%以下、残部がオース
テナイト相あるいはイプシロン相であることを特徴とす
る耐キャビテーション・エロージヨン性と耐海水腐食性
に優れたステンレス鋳鋼。 3、C;0.01〜0.5%、Si;0.1〜1.5%
、Mn;0.4〜5%、Ni;0.5〜4.5%、Cr
;15〜18.5%、Mo;2〜4%、Co;3.5〜
7%、Ni0.01〜0.15%、残部が実質的にFe
よりなり、Ni当量〔Ni%+0.65Cr%+0.9
8Mo%+1.05Mn%+0.35Si%+12.6
C%〕;18〜26、Cr+3.3Mo;21.6〜2
9%、フェライト相;0.5〜30%、マルテンサイト
相;40%以下、残部がオーステナイト相あるいはイプ
シロン相であることを特徴とする耐キャビテーション・
エロージヨン性と耐海水腐食性に優れたステンレス鋳鋼
[Claims] 1, C: 0.05-0.1%, Si: 0.1-1.5%
, Mn; 0.4-5%, Ni; 0.5-4.5%, Cr
; 15-18.5%, Mo; 2-4%, Co; 3.5-
7%, the remainder essentially consists of Fe, and the Ni equivalent [Ni%
+0.65Cr%+0.98Mo%+1.05Mn%+
0.35Si%+12.6C%]; 18-24, Cr+
3.3Mo; 21.6-29%, ferrite phase; 0.5
A stainless steel cast steel with excellent cavitation/erosion resistance and seawater corrosion resistance, characterized by ~30% martensitic phase; 40% or less, the remainder being austenite phase or epsilon phase. 2, C; 0.1-0.22%, Si; 0.1-1.5%
, Mn; 0.4-5%, Ni; 0.5-4.5%, Cr
; 15-18.5%, Mo; 2-4%, Co; 3.5-
7%, the remainder essentially consists of Fe, and the Ni equivalent [Ni%+
0.65Cr%+0.98Mo%+1.05Mn%+0
.. 35Si%+12.6C%]; 18-26, Cr+3
.. 3Mo; 21.6-29%, ferrite phase; 0.5-29%
Stainless steel cast steel with excellent cavitation/erosion resistance and seawater corrosion resistance, characterized by 30% martensitic phase; 40% or less, the remainder being austenite phase or epsilon phase. 3, C; 0.01-0.5%, Si; 0.1-1.5%
, Mn; 0.4-5%, Ni; 0.5-4.5%, Cr
; 15-18.5%, Mo; 2-4%, Co; 3.5-
7%, Ni 0.01-0.15%, remainder substantially Fe
The Ni equivalent [Ni%+0.65Cr%+0.9
8Mo%+1.05Mn%+0.35Si%+12.6
C%]; 18-26, Cr+3.3Mo; 21.6-2
9%, ferrite phase; 0.5-30%, martensitic phase; 40% or less, the remainder being austenite phase or epsilon phase.
Cast stainless steel with excellent erosion and seawater corrosion resistance.
JP14940484A 1984-07-20 1984-07-20 Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater Granted JPS6130655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14940484A JPS6130655A (en) 1984-07-20 1984-07-20 Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14940484A JPS6130655A (en) 1984-07-20 1984-07-20 Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater

Publications (2)

Publication Number Publication Date
JPS6130655A true JPS6130655A (en) 1986-02-12
JPH0517301B2 JPH0517301B2 (en) 1993-03-08

Family

ID=15474388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14940484A Granted JPS6130655A (en) 1984-07-20 1984-07-20 Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater

Country Status (1)

Country Link
JP (1) JPS6130655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189284A (en) * 1986-02-17 1987-08-19 日産自動車株式会社 Window regulator of sashless door for car
US6943317B1 (en) 2004-07-02 2005-09-13 Advanced Energy Industries, Inc. Apparatus and method for fast arc extinction with early shunting of arc current in plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054515A (en) * 1973-09-14 1975-05-14
JPS5170120A (en) * 1974-12-16 1976-06-17 Mitsubishi Steel Mfg KOCHORYOKUSUTENRESUKO
JPS5837162A (en) * 1981-08-31 1983-03-04 Toshiba Corp Pump and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054515A (en) * 1973-09-14 1975-05-14
JPS5170120A (en) * 1974-12-16 1976-06-17 Mitsubishi Steel Mfg KOCHORYOKUSUTENRESUKO
JPS5837162A (en) * 1981-08-31 1983-03-04 Toshiba Corp Pump and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189284A (en) * 1986-02-17 1987-08-19 日産自動車株式会社 Window regulator of sashless door for car
US6943317B1 (en) 2004-07-02 2005-09-13 Advanced Energy Industries, Inc. Apparatus and method for fast arc extinction with early shunting of arc current in plasma

Also Published As

Publication number Publication date
JPH0517301B2 (en) 1993-03-08

Similar Documents

Publication Publication Date Title
JPS6256556A (en) High nitrogent content duplex stainless steel having high corrosion resistance and good structural stability and its use
JP5137934B2 (en) Ferritic heat resistant steel
JP5890330B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2968844B2 (en) High hardness martensitic stainless steel with excellent pitting resistance
JP2002161343A (en) Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
EP0769077B1 (en) Cavitation resistant fluid impellers and method of making same
JPS6130655A (en) Stainless cast steel having superior resistance to cavitation erosion and corrosion by seawater
JPS6344815B2 (en)
US4406698A (en) Martensitic stainless cast steel having high cavitation erosion resistance
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP4502239B2 (en) Ferritic heat resistant steel
JPH0425344B2 (en)
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JPS597347B2 (en) High strength austenitic ferrite duplex stainless steel
JPH0152466B2 (en)
JPS6111312B2 (en)
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JPH0312136B2 (en)
GB2128632A (en) Stainless steel
JPS61104056A (en) High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion
KR100263770B1 (en) A ferrite stainless steel with a good local action resistance and restraing of sigma phase
KR810001803B1 (en) Austenite stainless steel
JPH0146585B2 (en)
JPS6366381B2 (en)
JP3214829B2 (en) Precipitation hardened stainless steel with excellent strength, toughness, fatigue properties and seawater resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term