JPS597347B2 - High strength austenitic ferrite duplex stainless steel - Google Patents

High strength austenitic ferrite duplex stainless steel

Info

Publication number
JPS597347B2
JPS597347B2 JP7095076A JP7095076A JPS597347B2 JP S597347 B2 JPS597347 B2 JP S597347B2 JP 7095076 A JP7095076 A JP 7095076A JP 7095076 A JP7095076 A JP 7095076A JP S597347 B2 JPS597347 B2 JP S597347B2
Authority
JP
Japan
Prior art keywords
stainless steel
austenite
present
corrosion resistance
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7095076A
Other languages
Japanese (ja)
Other versions
JPS52153821A (en
Inventor
幸重 深瀬
浩一郎 遅沢
力男 根本
正臣 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP7095076A priority Critical patent/JPS597347B2/en
Publication of JPS52153821A publication Critical patent/JPS52153821A/en
Publication of JPS597347B2 publication Critical patent/JPS597347B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は遠心分離機、送風機等の主要構成部分の回転体
に適したオーステナイトフェライト2相ステンレス鋼で
あり、機械的性質とくに0001%耐力が40kg/m
7l¥以上で且つ海水等に対する耐食性もSUS329
J1高Nと同等の特性を有するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an austenitic ferrite duplex stainless steel suitable for rotating parts of main components such as centrifuges and blowers, and has mechanical properties particularly 0001% yield strength of 40 kg/m.
SUS329 with a capacity of 7l or more and corrosion resistance against seawater, etc.
It has the same characteristics as J1 high N.

従来、食塩水等に対する耐食性を有する遠心分離機は、
食品工業あるいは船舶の油水分離装置に用いられている
Conventionally, centrifuges with corrosion resistance against salt water, etc.
It is used in the food industry and oil/water separation equipment on ships.

しかしながら、近年遠心分離機の性能を高めるためにそ
の回転数を従来より高める方向に進んでいる。このよう
な回転数の高速化にともない回転体を形成する材料に優
れた機械的性質とくに0.01%耐力が40kg/yn
lt以上で且つ食塩水中における耐食性すなわち、3%
NaCl(30℃)におげる孔食電位がO、28V以上
であることが必要条件とされている。これらの遠心分離
機、送風機等の材料には、SUS316、SUS630
(17−4PH)、SUS329J1法が使用されてい
るが、SUS316では、上記の機械的性質及び耐食性
が不充分であり、SUS630等の析出硬化型ステンレ
ス鋼では上記の機械的性質が充分満足するが耐食性は著
しく劣り、SUS329J1では、耐食性は充分満足す
るが、機械的性質が劣るため、実際の使用に際しては種
々の問題点がある。
However, in recent years, in order to improve the performance of centrifugal separators, there has been a trend towards increasing the rotational speed of centrifugal separators. As the rotation speed increases, the material forming the rotating body has excellent mechanical properties, especially the 0.01% yield strength of 40 kg/yn.
Corrosion resistance above lt and in saline, i.e. 3%
A necessary condition is that the pitting potential in NaCl (30° C.) is O, 28V or higher. Materials for these centrifuges, blowers, etc. include SUS316 and SUS630.
(17-4PH), SUS329J1 method is used, but SUS316 has insufficient mechanical properties and corrosion resistance, whereas precipitation hardening stainless steels such as SUS630 fully satisfy the above mechanical properties. Corrosion resistance is extremely poor, and although SUS329J1 satisfies corrosion resistance, it has poor mechanical properties, which causes various problems in actual use.

すなわち軽量化をはかり原材料費を安く出来ない等であ
る。本発明の目的は、上記条件すなわち0001%耐力
が40kg/一以上で、且つ海水等に対する耐食性もS
US329J1高N並みであることとし、その上靭性が
確保されているステンレス鋼を提供しようとするもので
ある。
In other words, it is not possible to reduce the cost of raw materials by reducing weight. The purpose of the present invention is to satisfy the above conditions, that is, the 0001% yield strength is 40 kg/1 or more, and the corrosion resistance against seawater etc. is also S.
The objective is to provide a stainless steel that is equivalent to US329J1 high N and has ensured toughness.

本発明ステンレス鋼は、約24〜40%のオーステナイ
トを有するオーステナイトフエライト2相組織であり、
Si,Nb,P及びNを積極的に添加することにより,
主としてフエライト相を強化し、副次的にオーステナイ
ト相を強化したものである。
The stainless steel of the present invention has an austenite-ferrite two-phase structure having about 24 to 40% austenite,
By actively adding Si, Nb, P and N,
It mainly strengthens the ferrite phase and secondarily strengthens the austenite phase.

本発明ステンレス鋼の化学成分及びその範囲は、炭素0
.12%以下、硅素0.2〜3.0%、マンガン0.1
〜5.0%、ニッケル3.0〜7.0%、クロム22.
0〜30.0%、モリブデン0.5〜5.0%、窒素0
.08〜0.3%、燐0.05〜0.3%、銅0.5〜
3.0%含有し、残余鉄および不純物からなるものであ
るとともに上記記載のステンレス鋼にニオブ、タンタル
、チタン、ボロン、ジルコニウム、コバルト、タングス
テン、バナジウム、アルミニウムの内から選んだ1種又
は2種以上の元素を0.01〜1.0%添加することが
できるものである。
The chemical composition and range of the stainless steel of the present invention are as follows:
.. 12% or less, silicon 0.2-3.0%, manganese 0.1
~5.0%, nickel 3.0-7.0%, chromium 22.
0-30.0%, molybdenum 0.5-5.0%, nitrogen 0
.. 08-0.3%, phosphorus 0.05-0.3%, copper 0.5-0.
3.0%, consisting of residual iron and impurities, and one or two selected from the above stainless steels, niobium, tantalum, titanium, boron, zirconium, cobalt, tungsten, vanadium, and aluminum. The above elements can be added in an amount of 0.01 to 1.0%.

本発明ステンレス鋼の成分組成の限定理由を次に述べる
。炭素は、オーステナイト生成元素として作用するが、
0.12%を超えて向目するとオーステナイト量が本発
明ステンレス鋼の強化に最適なオーステナイト量より多
くなるとともに炭化物を析出しやすくなり耐食性を劣化
させるので0.12%以下とした。
The reason for limiting the composition of the stainless steel of the present invention will be described below. Carbon acts as an austenite-forming element,
If it exceeds 0.12%, the amount of austenite becomes larger than the optimal amount of austenite for strengthening the stainless steel of the present invention, and carbides tend to precipitate, resulting in deterioration of corrosion resistance, so the content is set to 0.12% or less.

硅素は、フエライト生成元素として作用し、フエライト
相に固溶し、強化に寄与するが、0.2%未満ではその
効果が認められず、3,0%を超えるとフエライト量を
増加させ、衝撃特性を劣化させるとともに同一のオース
テナイト量であっても3.0%を超えるとシグマ相が析
出しやすくなり、衝撃特性及び耐食性を劣化させるので
、その組成範囲を0.2〜3.0%とした。
Silicon acts as a ferrite-forming element, solidly dissolves in the ferrite phase, and contributes to strengthening. However, if it is less than 0.2%, no effect is observed, and if it exceeds 3.0%, it increases the amount of ferrite and causes impact resistance. In addition to deteriorating the properties, even if the austenite content is the same, if it exceeds 3.0%, the sigma phase tends to precipitate, which deteriorates the impact properties and corrosion resistance, so the composition range is set to 0.2 to 3.0%. did.

マンガンは製鋼上0.1%未満にすることはむずかしく
、5.0%を超え向目するとオーステナイト量が増加し
、本発明ステンレス鋼の強化に寄与しなくなるとともに
、熱間加工性が悪くなり、高温酸化抵抗も低下するので
、その組成範囲を0.1〜5.0%とした。
It is difficult to reduce manganese to less than 0.1% in terms of steel manufacturing, and if it exceeds 5.0%, the amount of austenite will increase and it will no longer contribute to the strengthening of the stainless steel of the present invention, and hot workability will deteriorate. Since high temperature oxidation resistance also decreases, the composition range is set to 0.1 to 5.0%.

ニッケルはオーステナイト生成元素であるが、3.0%
未満ではオーステナイト量がきわめて少なくなり、本発
明ステンレス鋼に必要な最適オーステナイト量が得られ
ないし靭性の確保が出来なくなり、7.0%を超えると
最適オーステナイト量より多くなり強度が低下するので
、その組成範囲を3.0〜7.0%とした。
Nickel is an austenite forming element, but 3.0%
If it is less than 7.0%, the austenite content will be extremely small, making it impossible to obtain the optimum austenite content required for the stainless steel of the present invention and ensuring toughness. The composition range was 3.0 to 7.0%.

クロムは耐食性を維持するための基本成分であるが、2
2.0%未満では本発明ステンレス鋼に必要な最適オー
ステナイト量が得られず、30.0%を超えるとオース
テナイト量がきわめて少くなり、靭性と強度が前記条件
を満足しがたくなるので、その組成範囲を22.0〜3
0.0%とした。
Chromium is a basic component for maintaining corrosion resistance, but 2
If it is less than 2.0%, the optimum amount of austenite required for the stainless steel of the present invention cannot be obtained, and if it exceeds 30.0%, the amount of austenite becomes extremely small, making it difficult for the toughness and strength to satisfy the above conditions. composition range from 22.0 to 3
It was set to 0.0%.

モリブデンはフエライト生成元素として作用し、オース
テナイト量とフエライト量との比をコントロールする上
で重要な元素であるとともに、耐食性を確保する上で重
要な元素であり、0.5%未満では前記条件の耐食性の
確保がむずかしく、5.0%を超え添加すると耐食性は
優れるがそれに見合う経済的効果が少ないので、その組
成範囲を0.5〜5.0%とした。ニオブ、タンタル、
チタン、ボロン、ジルコニウム、コバルト、タングステ
ン、バナジウム、アルミニウムは炭化物、窒化物形成元
素であり、本発明ステンレス鋼の材料強化にもつとも効
果があるとともに、結晶粒を微細化する作用があるが、
0.01%未満ではその効果が期待されず、1.0%を
超えて添加すると炭素、窒素を固定し、マトリックスに
固溶する炭素、窒素が減少しマトリックス強度が低下す
るので、上記各元素の内から選んだ1種又は2種以上の
元素の組成範囲を0.01〜1.0%とした。
Molybdenum acts as a ferrite-forming element, and is an important element in controlling the ratio between the amount of austenite and the amount of ferrite, and is also an important element in ensuring corrosion resistance. It is difficult to ensure corrosion resistance, and if it is added in excess of 5.0%, the corrosion resistance is excellent, but the economic effect commensurate with it is small, so the composition range is set to 0.5 to 5.0%. Niobium, tantalum,
Titanium, boron, zirconium, cobalt, tungsten, vanadium, and aluminum are carbide- and nitride-forming elements, which are effective in strengthening the material of the stainless steel of the present invention and also have the effect of refining crystal grains.
If it is less than 0.01%, the effect cannot be expected, and if it is added in excess of 1.0%, carbon and nitrogen will be fixed, and the carbon and nitrogen dissolved in the matrix will decrease, resulting in a decrease in matrix strength. The composition range of one or more elements selected from the following was set to 0.01 to 1.0%.

窒素はオーステナイト生成元素として作用し、オーステ
ナイト相中に固溶し本発明ステンレス鋼の強化に寄与す
るが、0.08%未満ではその効果が認められず、0.
3%を超え添加するとその製造過程で鋼塊にブローホー
ルが生じ健全な鋼塊が得られないのでその組成範囲を0
.08〜0.3%とした。
Nitrogen acts as an austenite-forming element, dissolves in the austenite phase, and contributes to strengthening the stainless steel of the present invention, but if it is less than 0.08%, no effect is observed;
If more than 3% is added, blowholes will occur in the steel ingot during the manufacturing process, making it impossible to obtain a healthy steel ingot, so the composition range should be reduced to 0.
.. 08 to 0.3%.

銅は耐食性の向上に有効な元素であるが、0.5%未満
ではその効果は認められず、3.0%を超え添加すると
赤熱脆性をひきおこし、熱間加工性を悪くするのでその
組成範囲を0.5〜3.0%とした。
Copper is an effective element for improving corrosion resistance, but if it is less than 0.5%, no effect will be observed, and if it is added in excess of 3.0%, it will cause red-hot brittleness and worsen hot workability, so the composition range should be determined. was set at 0.5 to 3.0%.

燐は一般に鋼中に混入して好ましくない元素と考えられ
ているが、本発明ステンレス鋼では、フエライト生成元
素の作用を利用し、フエライト中に固溶させ、フエライ
ト相を著しく強化する作用がある。そのため燐0.05
%未満ではそのフエライト相の強化が不充分であり、0
.3%を超え添加するとシグマ相を生成しやすくなり、
衝撃値の低下、伸び、絞りの低下をひきおこすようにな
るのでその組成範囲を0.05〜0.3%とした。本発
明ステンレス鋼は固溶化処理状態でオーステナイトフエ
ライト2相組織であり、前記機械的性質、耐食性も優れ
、送風機、遠心分離機等各種回転体材料としての要件を
十分満している。次に本発明ステンレス鋼の実施例とし
て、第1−1表、第1−2表に本発明ステンレス鋼及び
公知合金の化学成分及びオーステナイト量を示し、第2
−1表、第2−2表にこれらの機械的性質及び腐食試験
結果を示す。機械的性質の内公知合金の0.01%耐力
が27.6〜32.8kg/一であるのに対して、本発
明ステンレス鋼は40.3〜49.9kg/r/LIt
ときわめて高い値を示している。
Phosphorus is generally considered to be an undesirable element that mixes into steel, but in the stainless steel of the present invention, it utilizes the action of ferrite-forming elements to form a solid solution in ferrite, which has the effect of significantly strengthening the ferrite phase. . Therefore, phosphorus 0.05
If it is less than 0%, the reinforcement of the ferrite phase is insufficient;
.. Adding more than 3% tends to generate sigma phase,
Since this causes a decrease in impact value, elongation, and reduction in area of area, the composition range is set to 0.05 to 0.3%. The stainless steel of the present invention has an austenite-ferrite two-phase structure in the solution treatment state, has excellent mechanical properties and corrosion resistance, and satisfies the requirements for various rotating body materials such as blowers and centrifuges. Next, as an example of the stainless steel of the present invention, Tables 1-1 and 1-2 show the chemical components and austenite content of the stainless steel of the present invention and known alloys, and
The mechanical properties and corrosion test results are shown in Table-1 and Table 2-2. Among the mechanical properties, the 0.01% yield strength of known alloys is 27.6 to 32.8 kg/l, whereas the stainless steel of the present invention has a 0.01% proof stress of 40.3 to 49.9 kg/r/LIt.
This shows an extremely high value.

0.2%耐力も公知合金が25.0〜60.0kg/一
に対し、本発明ステンレス鋼は63.8〜73.0ky
/7rtiLとなっており、引張強さも公知合金が67
.5〜81.7kg/M4に対し、本発明ステンレス鋼
は84.2〜94.1kg/Mmと高い値を示している
The 0.2% yield strength of the stainless steel of the present invention is 63.8 to 73.0 ky compared to 25.0 to 60.0 kg/1 for known alloys.
/7rtiL, and the tensile strength of known alloys is 67.
.. 5 to 81.7 kg/M4, the stainless steel of the present invention shows a high value of 84.2 to 94.1 kg/Mm.

また伸びも公知合金が28.0〜57.1%に対し、本
発明ステンレス鋼は27.6〜34.1%であり実用上
ほとんど問題にならない。腐食試験で5%H2SO4試
験値は公知合金よりもやや高めであるが、3%NaCl
( 30℃)中における孔食電位は0.28V以上必要
であるという前記条件を満足し、優れた耐食性を示した
Further, the elongation of the stainless steel of the present invention is 27.6 to 34.1%, whereas the elongation of the known alloy is 28.0 to 57.1%, which poses almost no problem in practice. In the corrosion test, the 5% H2SO4 test value is slightly higher than that of known alloys, but the 3% NaCl
(30°C) satisfies the above-mentioned condition that the pitting potential should be 0.28 V or more, and exhibited excellent corrosion resistance.

Claims (1)

【特許請求の範囲】 1 炭素0.12%以下、シリコン0.2〜3.0%、
マンガン0.1〜5.0%、ニッケル3.0〜7.0%
、クロム22.0〜30.0%、モリブデン0.5〜5
.0%、窒素0.08〜0.3%、燐0.05〜0.3
%、銅0.5〜3.0%を含有し、残余鉄および不純物
からなることを特徴とする高強度オーステナイトフェラ
イト2相ステンレス鋼。 2 炭素0.12%以下、シリコン0.2〜3.0%、
マンガン0.1〜5.0%、ニッケル3.0〜7.0%
、クロム22.0〜30.0%、モリブデン0.5〜5
.0%、窒素0.08〜0.3%、燐0.05〜0.3
%、銅0.5〜3.0%を含むとともにニオブ、タンタ
ル、チタン、ボロン、ジルコニウム、コバルト、タング
ステン、バナジウム、アルミニウムの内から選んだ1種
又は2種以上の元素を0.01〜1.0%含有し、残余
鉄および不純物からなることを特徴とする高強度オース
テナイトフェライト2相ステンレス鋼。
[Claims] 1. 0.12% or less of carbon, 0.2 to 3.0% of silicon,
Manganese 0.1-5.0%, Nickel 3.0-7.0%
, chromium 22.0-30.0%, molybdenum 0.5-5
.. 0%, nitrogen 0.08-0.3%, phosphorus 0.05-0.3
%, copper 0.5 to 3.0%, and is characterized by consisting of residual iron and impurities. 2 Carbon 0.12% or less, silicon 0.2-3.0%,
Manganese 0.1-5.0%, Nickel 3.0-7.0%
, chromium 22.0-30.0%, molybdenum 0.5-5
.. 0%, nitrogen 0.08-0.3%, phosphorus 0.05-0.3
%, copper 0.5-3.0%, and one or more elements selected from niobium, tantalum, titanium, boron, zirconium, cobalt, tungsten, vanadium, and aluminum 0.01-1 A high-strength austenitic ferrite duplex stainless steel characterized by containing .0% of residual iron and impurities.
JP7095076A 1976-06-17 1976-06-17 High strength austenitic ferrite duplex stainless steel Expired JPS597347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7095076A JPS597347B2 (en) 1976-06-17 1976-06-17 High strength austenitic ferrite duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7095076A JPS597347B2 (en) 1976-06-17 1976-06-17 High strength austenitic ferrite duplex stainless steel

Publications (2)

Publication Number Publication Date
JPS52153821A JPS52153821A (en) 1977-12-21
JPS597347B2 true JPS597347B2 (en) 1984-02-17

Family

ID=13446283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7095076A Expired JPS597347B2 (en) 1976-06-17 1976-06-17 High strength austenitic ferrite duplex stainless steel

Country Status (1)

Country Link
JP (1) JPS597347B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165363A (en) * 1984-02-07 1985-08-28 Kubota Ltd Highly corrosion resistant and high yield strength two- phase stainless steel
JPS60165362A (en) * 1984-02-07 1985-08-28 Kubota Ltd Highly corrosion resistant and high yield strength two- phase stainless steel
WO1985005129A1 (en) * 1984-04-27 1985-11-21 Bonar Langley Alloys Limited High chromium duplex stainless steel
JPH0788556B2 (en) * 1987-07-28 1995-09-27 ニダック株式会社 High yield strength and high corrosion resistance duplex stainless cast steel
JPH03146641A (en) * 1989-11-01 1991-06-21 Taiheiyo Tokushu Chuzo Kk Duplex stainless cast steel for manufacturing apparatus for wet type phosphoric acid
JP6809414B2 (en) * 2017-08-29 2021-01-06 Jfeスチール株式会社 Duplex stainless steel sheet with excellent corrosion resistance and hydrogen brittleness
JP6720942B2 (en) * 2017-08-29 2020-07-08 Jfeスチール株式会社 Duplex stainless steel with excellent corrosion resistance and hydrogen embrittlement resistance

Also Published As

Publication number Publication date
JPS52153821A (en) 1977-12-21

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US5746843A (en) Low Mn-low Cr ferritic heat resistant steel excellent in strength at elevated temperatures
US5061440A (en) Ferritic heat resisting steel having superior high-temperature strength
EP1194606A1 (en) Heat resistant austenitic stainless steel
US4101347A (en) Ferrite-austenite stainless steel castings having an improved erosion-corrosion resistance
JPS597347B2 (en) High strength austenitic ferrite duplex stainless steel
JPS6119767A (en) Austenite stainless steel for low temperature
JPS626634B2 (en)
US3347663A (en) Precipitation hardenable stainless steel
JPH11209851A (en) Gas turbine disk material
JPS6037182B2 (en) High strength austenitic stainless steel with excellent corrosion resistance
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPH02197550A (en) High purity heat-resistant steel
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPH0120222B2 (en)
JPH04308058A (en) Steel having superior wear resistance
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JPS59211556A (en) Ferritic-austenitic two-phase stainless steel
JP3079294B2 (en) Precipitation hardened stainless steel with excellent corrosion resistance
JP3214829B2 (en) Precipitation hardened stainless steel with excellent strength, toughness, fatigue properties and seawater resistance
JPS625988B2 (en)
JPS6121304B2 (en)
JPH0380865B2 (en)
JPH0788556B2 (en) High yield strength and high corrosion resistance duplex stainless cast steel
US2523838A (en) Metal alloy