JP4502239B2 - Ferritic heat resistant steel - Google Patents

Ferritic heat resistant steel Download PDF

Info

Publication number
JP4502239B2
JP4502239B2 JP2000382261A JP2000382261A JP4502239B2 JP 4502239 B2 JP4502239 B2 JP 4502239B2 JP 2000382261 A JP2000382261 A JP 2000382261A JP 2000382261 A JP2000382261 A JP 2000382261A JP 4502239 B2 JP4502239 B2 JP 4502239B2
Authority
JP
Japan
Prior art keywords
resistant steel
heat resistant
ferritic heat
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000382261A
Other languages
Japanese (ja)
Other versions
JP2002180208A5 (en
JP2002180208A (en
Inventor
利夫 藤田
吉輝 阿部
恭 佐藤
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18850120&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4502239(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000382261A priority Critical patent/JP4502239B2/en
Publication of JP2002180208A publication Critical patent/JP2002180208A/en
Publication of JP2002180208A5 publication Critical patent/JP2002180208A5/ja
Application granted granted Critical
Publication of JP4502239B2 publication Critical patent/JP4502239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys

Description

【0001】
【発明の属する技術分野】
本発明はフェライト系耐熱鋼に係り、特に超々臨界圧火力プラントに好適なボイラ鋼管用高強度鋼に関するものである。
【0002】
【従来の技術】
近年、火力発電プラントではCO排出量削減等、地球規模の環境問題を背景としてプラント効率向上のために蒸気条件の高温高圧化が進められており、現在得られる最高の蒸気温度である600℃程度の蒸気温度から、さらに究極的には650℃程度の蒸気温度を達成できるプラントの開発研究が種々進められている。このような蒸気温度の上昇に伴い、ボイラ高温耐圧部の伝熱管には従来使用されてきたフェライト系耐熱鋼より耐食性と高温強度の優れたオーステナイト系耐熱鋼が多く使われるようになってきた。しかし、これらオーステナイト系耐熱鋼はフェライト系耐熱鋼に比べて線膨張係数が高く、熱伝達率が小さいことから、伝熱管の管寄せや配管等大径厚肉管の場合は大きな熱応力が発生して熱疲労による損傷を受けやすいという問題があり、また材料費や加工費の上昇による経済性の問題もあった。このため高温強度が高く、耐食性も良好な新しいフェライト系耐熱鋼の開発が望まれていた。
このようなフェライト系耐熱鋼の例としては、従来の9%Cr1%MoNbV鋼をベースにCrを増加し、WとCo等の合金元素を添加して高温強度の改善を図った特許第2528767号の発明がある。
【0003】
【発明が解決しようとする課題】
しかしながら、650℃付近の蒸気温度となるボイラで使用することを考えた場合、フェライト系耐熱鋼は多くのWを含有するため、長時間使用していると脆弱な金属間化合物を形成し、長時間クリープ破断強度を低下させる。そのため、前記提案された合金ではまだ不十分であり、さらに高温強度が高く、しかも高温長時間にわたって強度の安定したフェライト系耐熱鋼が必要である。
本発明の課題は、従来よりさらに長時間クリープ破断強度の優れた高強度フェライト系耐熱鋼を提供することにある。
【0004】
【課題を解決するための手段】
本発明の上記課題は次の構成により解決される。
すなわち、一つの発明は、質量%で、炭素(C)0.08〜0.13%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.02〜0.5%、クロム(Cr)9.0〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)2.4%〜3.0%、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.04〜0.2%、コバルト(Co)0.5〜1.2%、窒素(N)0.01〜0.1%、ホウ素(B)0.001〜0.030%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下に成分が制限され、調質熱処理により得られる焼戻しマルテンサイト単層組織からなることを特徴とするフェライト系耐熱鋼である。
【0005】
また、もう一つの発明は、質量%で、炭素(C)0.08〜0.13%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.02〜0.5%、クロム(Cr)9.0〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)2.4%〜3.0%、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.04〜0.2%、コバルトCo0.5〜1.2%、窒素(N)0.01〜0.1%、ホウ素(B)0.001〜0.030%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下に成分が制限され、Cr+6Si+4Mo+1.5W+11V+5Nb+12Al−40C−30N−4Ni−2Mn−Cu−2Coで求められるCr当量が10%超14%以下になるように成分が調整された、焼戻しマルテンサイト組織と、体積率で1〜15%のδフェライト組織との2相組織からなることを特徴とするフェライト系耐熱鋼である。
【0006】
【作用】
以下、本発明におけるフェライト系耐熱鋼の各成分の含有率の限定理由について説明する。
Alは本発明では最も重要なフェライト系耐熱鋼の構成元素であり、脱酸剤及び結晶粒微細化剤として添加される。しかし、Alは強窒化物形成元素であり、余剰のAlはクリープ強度に有効に働く窒素を固着させることにより、フェライト系耐熱鋼の長時間クリープ強度を低下させる作用がある。特にAlの含有率が0.002wt%を超えると650℃付近の高温域での10時間以上のフェライト系耐熱鋼の長時間クリープ強度を低下させる作用がある。また、Alの含有率が高くなると、Wを主体とする脆弱な金属間化合物であるラーベス相の析出を促進し、結晶粒界への析出を招いてフェライト系耐熱鋼の長時間側のクリープ破断強度を低下させる。特に極度に結晶粒を微細化することにより粒界にラーベス相が連続的に析出する。
【0007】
したがって、Alの含有率の上限を0.002wt%とする。Alの含有率をこのように極低レベルに抑えることは脱酸材としての効果が不足して介在物生成の原因となりやすいため従来は避けられてきた。しかし本発明ではフェライト系耐熱鋼の耐食性向上のためSiを多めに添加することにより、Siの脱酸作用も利用できることから、前記介在物生成の懸念は回避できる。
【0008】
SiはAlと同様に脱酸材としての効果を有し、介在物の生成を回避し、耐水蒸気酸化性を確保するために最低0.20wt%は必要であるが、Siを多量に添加するとラーベス相の生成が促され、また粒界偏析等によって延性を低下させるために、上限を1.0wt%とするが、望ましい含有率は0.25〜0.55wt%である。
【0009】
Coは本発明のフェライト系耐熱鋼を特徴づける重要な構成元素である。Coはオーステナイト形成元素であって、δフェライトの生成を抑制するとともに、析出物を安定化させるので、本発明においては0.5wt%以上のCoを添加することで合金の高温強度が著しく改善される。これはWとの相互作用によるものと考えられ、Wを0.5wt%以上含む本発明の合金において特徴的な現象である。一方、5.0wt%を超える過度のCoを添加すると、得られる合金の延性が低下する等の悪影響が生じるので0.5〜5.0wt%とするが、望ましくは0.5〜3.0wt%の含有率とする。
【0010】
Cは焼入れ性を確保し、また焼戻し過程でM23型炭化物を過度に析出させて高温強度を高めるために不可欠の構成元素であり、最低0.05wt%の含有率にする必要があるが、0.20wt%を超えるとM23型炭化物を過度に析出させ、マトリックスの強度を低下させて、かえってフェライト系耐熱鋼の長時間側の高温強度を損なうので、実用上0.08〜0.13wt%に含有率を限定する。
【0011】
Mnはδフェライトの生成を抑制し、M23型炭化物の析出を促進する構成元素であり、最低0.05wt%の含有率にする必要があるが、1.5wt%を超えると耐酸化性を劣化させるので、0.05〜1.5wt%に含有率を限定する。
【0012】
Niはδフェライトの生成を抑制して靭性を付与する構成元素であり、最低0.02wt%必要であるが、0.5wt%を超えて添加すると600℃以上のクリープ破断強度を低下させるので、0.02〜0.5wt%に含有率を限定する。
【0013】
Crは耐酸化性を付与し、M23型炭化物を析出させて高温強度を高めるために不可欠の構成元素であり、最低9.0wt%を必要とするが、13.0wt%を超えるとδフェライトを生成し、高温強度および靭性を低下させるので9.0〜13.0%に含有率を限定する。
【0014】
MoはM23型炭化物の微細析出を促進して凝集を妨げる作用があり、このため高温強度を長時間保持するのに有効であり、最低0.05wt%の添加を必要とするが、2.0wt%以上になるとδフェライトを生成しやすくするので0.05〜2.0wt%に含有率を限定する。望ましい含有率は0.05〜0.5wt%で、より好ましくは0.1〜0.3wt%である。
【0015】
WはMo以上にM23型炭化物の凝集粗大化を抑制する作用が強く、またマトリックスを固溶強化するので高温強度の向上に有効であり、最低0.5wt%の添加を必要とするが、3.0wt%を超えるとδフェライトやラーベス相を生成しやすくなり、逆に高温強度を低下させるので、0.5〜3.0wt%の含有率で使用する。
【0016】
Vは、Vの炭窒化物を析出して高温強度を高めるのに有効であり、最低0.05wt%の添加を必要とするが、0.3wt%を超えると炭素を過度に固定し、M23型炭化物の析出量を減じて逆に高温強度を低下させるので、実用上0.1〜0.3wt%に含有率を限定する。
【0017】
Nbは、NbCを生成して結晶粒の微細化に役立ち、また一部は焼入れの際に固溶して焼戻し過程でNbCを析出し、高温強度を高める作用があり、最低0.01wt%必要であるが、0.20wt%を超えるとVと同様に炭素を過度に固定してM23型炭化物の析出量を減少させ、高温強度の低下を招くので、0.04〜0.20wt%の含有率で使用する。またNbは、実用上、望ましくは0.04〜0.13wt%の含有率で使用される。
【0018】
NはVの窒化物を析出したり、また固溶した状態でMoやWと共同で侵入型固溶元素と置換型固溶元素の相互作用によって高温強度を高める作用があり、最低0.01wt%は必要であるが、0.1wt%を超えると延性を低下させるので、0.01〜0.1wt%に含有率を限定する。
【0019】
CuはCoと同様にδフェライトの生成を抑制する作用を有するが、600℃以上で長時間クリープ破断強度を低下させる場合があるので、含有率を0.01wt%以下に制限する。
【0020】
Bは粒界強化作用とM23中に固溶し、M23型炭化物の凝集粗大化を妨ぐ作用により高温強度を高める効果があり、最低0.001wt%添加すると有効であるが、0.030wt%を超えると溶接性や鍛造性を阻害するので、0.001〜0.030wt%に含有率を限定する。
【0021】
本発明のフェライト系耐熱鋼は溶解、鍛造後に1030〜1050℃の温度での焼きならし及び780〜800℃での焼戻しを行い、焼戻しマルテンサイト組織として使用する。靱性確保の観点からは焼戻しマルテンサイト組織単相とすることが望ましいが、高温用ボイラ部材として用いる際にある程度の靱性低下が許容される場合は、CrやSi等のフェライト形成元素を上記制限範囲内で多めに設定してδフェライトを析出させてもよい。この場合、靱性とクリープ破断強度の点からもδフェライトは体積率で15%以下になるようにその使用量を限定する。
【0022】
本発明はクリープ破断強度の高いフェライト系耐熱鋼を提供するものであって、本発明の鋼の使用目的に応じて種々の製造方法を採ることが可能であり、鋼管のみならず鋼板としても使用できる。
【0023】
【発明の実施の形態】
本発明の実施の形態を説明する。
表1に示す化学組成を有する本発明の実施の形態の鋼を真空誘導溶解炉にて溶製し、各々20kgのインゴットに鋳造した。熱間鋳造によって厚さ20mmの板とした後、1050℃×60分の焼きならし及び800℃×60分の焼戻しを施し、クリープ破断試験を実施した。
【0024】
【表1】

Figure 0004502239
【0025】
クリープ破断試験の結果から推定した650℃における10万時間クリープ破断強度を表2に示す。本発明の実施の形態のフェライト系耐熱鋼はW、Co、Niほか合金元素の含有率の最適化に加え、Alの含有率を極低レベルに制限している結果、既存のW及びCo添加鋼(Al量40ppm以上)に比して著しくクリープ破断強度が改善されている。
【0026】
【表2】
Figure 0004502239
【0027】
本実施の形態におけるフェライト系耐熱鋼は、小径の伝熱管材のみならず厚肉大径管材としても用いることができ、特に蒸気温度が650℃前後の超々臨界圧ボイラの過熱器管寄せや主蒸気管材に好適である。
【0028】
【発明の効果】
本発明によるフェライト系耐熱鋼は従来のフェライト系耐熱鋼に比べて著しく高温強度を高め、かつ長時間の使用においても安定した強度を有することから、超々臨界圧ボイラの高温耐圧部に適用すれば蒸気温度を650℃前後に高めることが可能となって火力発電のプラント効率を向上でき、石炭焚火力発電プラントの石炭消費量低減及びCO排出量削減に顕著な効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic heat resistant steel, and more particularly to a high strength steel for boiler steel pipes suitable for an ultra-supercritical thermal power plant.
[0002]
[Prior art]
In recent years, high-temperature and high-pressure steam conditions have been promoted in order to improve plant efficiency against the background of global environmental problems such as CO 2 emission reduction in thermal power plants, and the highest steam temperature currently available is 600 ° C. Various researches are underway to develop plants that can achieve a steam temperature of about 650 ° C. from a steam temperature of about 650 ° C. As the steam temperature rises, austenitic heat-resistant steels having higher corrosion resistance and high-temperature strength than conventional ferritic heat-resistant steels have come to be used more frequently for heat transfer tubes in boiler high-temperature pressure-resistant parts. However, these austenitic heat resistant steels have a higher coefficient of linear expansion than ferritic heat resistant steels and a low heat transfer coefficient. In addition, there is a problem that it is easily damaged by thermal fatigue, and there is also a problem of economy due to an increase in material cost and processing cost. For this reason, development of a new ferritic heat-resistant steel having high high-temperature strength and good corrosion resistance has been desired.
As an example of such a ferritic heat resistant steel, Japanese Patent No. 2528767, which is based on the conventional 9% Cr 1% MoNbV steel, increases Cr, and adds alloying elements such as W and Co to improve high temperature strength. There is an invention.
[0003]
[Problems to be solved by the invention]
However, when considering use in a boiler having a steam temperature near 650 ° C., ferritic heat-resistant steel contains a lot of W, and forms a brittle intermetallic compound when used for a long time. Reduces the time creep rupture strength. Therefore, the proposed alloy is still insufficient, and there is a need for a ferritic heat resistant steel having high high temperature strength and stable strength over a long period of time at high temperatures.
An object of the present invention is to provide a high-strength ferritic heat-resistant steel having an excellent creep rupture strength for a longer time than before.
[0004]
[Means for Solving the Problems]
The above-described problems of the present invention are solved by the following configuration.
That is, in one invention, carbon (C) 0.08-0.13%, silicon (Si) 0.20-1.0%, manganese (Mn) 0.05-1.5%, nickel (Ni) 0.02-0.5%, chromium (Cr ) 9.0 to 13.0%, molybdenum (Mo) 0.05 to 0.5%, tungsten (W) 2.4% to 3.0 %, vanadium (V) 0.10 to 0.30%, niobium (Nb) 0.04 to 0.2%, cobalt (Co) 0.5 to 1.2 %, Nitrogen (N) 0.01 to 0.1%, Boron (B) 0.001 to 0.030%, Copper (Cu) 0.01% or less and Aluminum (Al) 0.002% or less, tempered martensite obtained by tempering heat treatment It is a ferritic heat resistant steel characterized by comprising a single layer structure.
[0005]
In another invention, carbon (C) 0.08 to 0.13%, silicon (Si) 0.20 to 1.0%, manganese (Mn) 0.05 to 1.5%, nickel (Ni) 0.02 to 0.5%, chromium ( cr) from 9.0 to 13.0%, molybdenum (Mo) 0.05~0.5%, tungsten (W) 2.4% ~ 3.0% , vanadium (V) 0.10~0.30%, niobium (Nb) 0.04~0.2%, cobalt Co0.5~ 1.2 %, Nitrogen (N) 0.01-0.1%, boron (B) 0.001-0.030%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb + 12Al-40C-30N-4Ni A two-phase structure consisting of a tempered martensite structure and a delta ferrite structure having a volume ratio of 1 to 15%, the components of which are adjusted so that the Cr equivalent calculated by −2Mn—Cu-2Co is more than 10% and 14% or less. Fe characterized by consisting of Light heat resistant steel.
[0006]
[Action]
Hereinafter, the reasons for limiting the content of each component of the ferritic heat resistant steel in the present invention will be described.
Al is the most important constituent element of ferritic heat-resistant steel in the present invention, and is added as a deoxidizer and a grain refiner. However, Al is a strong nitride-forming element, and excess Al has the effect of reducing the long-term creep strength of ferritic heat-resistant steel by fixing nitrogen that works effectively on the creep strength. In particular an effect of the content reduces the long-term creep strength of 10 4 hours or more heat resistant ferritic steel in a high temperature range in the vicinity of exceeding the 650 ° C. to 0.002 wt% of Al. In addition, when the Al content is increased, the precipitation of Laves phase, which is a brittle intermetallic compound mainly composed of W, is promoted, leading to precipitation at the grain boundary, and creep rupture on the long time side of ferritic heat resistant steel. Reduce strength. In particular, the Laves phase is continuously precipitated at the grain boundaries by extremely miniaturizing the crystal grains.
[0007]
Therefore, the upper limit of the Al content is set to 0.002 wt%. In the past, it has been avoided to suppress the Al content to such an extremely low level because the effect as a deoxidizing material is insufficient and the inclusion tends to be generated. However, in the present invention, by adding a large amount of Si to improve the corrosion resistance of the ferritic heat resistant steel, the deoxidation action of Si can be used, so that the above-mentioned inclusion formation can be avoided.
[0008]
Si has an effect as a deoxidizing material like Al, avoids the formation of inclusions, and at least 0.20 wt% is necessary to ensure steam oxidation resistance. However, when Si is added in a large amount, In order to promote generation of a Laves phase and to reduce ductility by grain boundary segregation or the like, the upper limit is set to 1.0 wt%, but a desirable content is 0.25 to 0.55 wt%.
[0009]
Co is an important constituent element characterizing the ferritic heat resistant steel of the present invention. Co is an austenite forming element and suppresses the formation of δ ferrite and stabilizes precipitates. In the present invention, the addition of 0.5 wt% or more of Co significantly improves the high temperature strength of the alloy. The This is considered to be due to the interaction with W, and is a characteristic phenomenon in the alloy of the present invention containing 0.5 wt% or more of W. On the other hand, if excessive Co exceeding 5.0 wt% is added, adverse effects such as a decrease in ductility of the resulting alloy occur, so 0.5 to 5.0 wt%, but preferably 0.5 to 3.0 wt%. % Content.
[0010]
C is an indispensable constituent element for ensuring hardenability and excessively precipitating M 23 C 6 type carbide in the tempering process to increase the high temperature strength, and it is necessary to make the content at least 0.05 wt%. but excessively by precipitating the M 23 C 6 type carbides exceeds 0.20 wt%, reduce the strength of the matrix, since rather impairs high-temperature strength long side of the ferritic heat-resistant steel, practically 0.08 The content is limited to ˜0.13 wt%.
[0011]
Mn is a constituent element that suppresses the formation of δ ferrite and promotes precipitation of M 23 C 6 type carbide, and it is necessary to have a content of at least 0.05 wt%. Since the property is deteriorated, the content is limited to 0.05 to 1.5 wt%.
[0012]
Ni is a constituent element that suppresses the formation of δ ferrite and imparts toughness, and at least 0.02 wt% is necessary. However, if added over 0.5 wt%, the creep rupture strength at 600 ° C. or higher is reduced. The content is limited to 0.02 to 0.5 wt%.
[0013]
Cr is an indispensable constituent element for imparting oxidation resistance and precipitating M 23 C 6 type carbide to increase the high-temperature strength. At least 9.0 wt% is required, but when it exceeds 13.0 wt% Since δ ferrite is generated and high temperature strength and toughness are lowered, the content is limited to 9.0 to 13.0%.
[0014]
Mo has an action of promoting the fine precipitation of M 23 C 6 type carbide and preventing aggregation, and is therefore effective for maintaining high temperature strength for a long time, and requires addition of at least 0.05 wt%. If it is 2.0 wt% or more, δ ferrite is easily generated, so the content is limited to 0.05 to 2.0 wt%. A desirable content rate is 0.05 to 0.5 wt%, more preferably 0.1 to 0.3 wt%.
[0015]
W has a stronger effect of suppressing the aggregation and coarsening of M 23 C 6 type carbide than Mo, and is effective in improving the high temperature strength because it strengthens the solid solution, and requires the addition of at least 0.5 wt%. However, if it exceeds 3.0 wt%, δ ferrite and Laves phase are likely to be formed, and conversely, the high temperature strength is lowered. Therefore, it is used at a content of 0.5 to 3.0 wt%.
[0016]
V is effective for precipitating the carbonitride of V and increasing the high temperature strength, and requires addition of at least 0.05 wt%. However, if it exceeds 0.3 wt%, carbon is excessively fixed, and M Since the amount of precipitation of 23 C 6 type carbide is reduced and the high temperature strength is lowered, the content is practically limited to 0.1 to 0.3 wt%.
[0017]
Nb generates NbC to help refine crystal grains, and partly dissolves during quenching and precipitates NbC in the tempering process, increasing the high-temperature strength and requires a minimum of 0.01 wt% However, if it exceeds 0.20 wt%, carbon is excessively fixed in the same manner as V to reduce the amount of precipitation of M 23 C 6 type carbide, leading to a decrease in high temperature strength, so 0.04 to 0.20 wt. % Content is used. Further, Nb is practically desirably used at a content of 0.04 to 0.13 wt%.
[0018]
N precipitates V nitride, and has the effect of increasing the high-temperature strength by the interaction between the interstitial solid solution element and the substitutional solid solution element in cooperation with Mo and W in a solid solution state. % Is necessary, but if it exceeds 0.1 wt%, the ductility is lowered, so the content is limited to 0.01 to 0.1 wt%.
[0019]
Cu, like Co, has the effect of suppressing the formation of δ ferrite, but may reduce the creep rupture strength for a long time at 600 ° C. or higher, so the content is limited to 0.01 wt% or less.
[0020]
B is a solid solution in the grain boundary strengthening effect and M 23 C 6, has the effect of enhancing the high temperature strength by妨Gu action aggregation coarsening of M 23 C 6 type carbide, it is effective to add a minimum 0.001 wt% However, since it will inhibit weldability and forgeability when it exceeds 0.030 wt%, the content is limited to 0.001 to 0.030 wt%.
[0021]
The ferritic heat resistant steel of the present invention is used as a tempered martensite structure after melting and forging, normalizing at a temperature of 1030 to 1050 ° C. and tempering at 780 to 800 ° C. From the viewpoint of securing toughness, it is desirable to use a tempered martensite structure single phase, but when using a high-temperature boiler member as long as a certain degree of toughness reduction is allowed, ferrite-forming elements such as Cr and Si are limited to the above range The δ ferrite may be precipitated by setting a larger amount. In this case, from the viewpoint of toughness and creep rupture strength, the amount of use of δ ferrite is limited so that the volume ratio is 15% or less.
[0022]
The present invention provides a ferritic heat resistant steel having a high creep rupture strength, and various manufacturing methods can be adopted depending on the intended use of the steel of the present invention, and it can be used not only as a steel pipe but also as a steel sheet. it can.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
The steel of the embodiment of the present invention having the chemical composition shown in Table 1 was melted in a vacuum induction melting furnace and cast into 20 kg ingots. After a 20 mm thick plate was formed by hot casting, normalization at 1050 ° C. × 60 minutes and tempering at 800 ° C. × 60 minutes were performed, and a creep rupture test was performed.
[0024]
[Table 1]
Figure 0004502239
[0025]
Table 2 shows the 100,000 hour creep rupture strength at 650 ° C. estimated from the result of the creep rupture test. In addition to optimizing the content of W, Co, Ni and other alloy elements, the ferritic heat-resistant steel of the embodiment of the present invention limits the Al content to an extremely low level. The creep rupture strength is remarkably improved as compared with steel (Al content of 40 ppm or more).
[0026]
[Table 2]
Figure 0004502239
[0027]
The ferritic heat resistant steel according to the present embodiment can be used not only as a small diameter heat transfer tube material but also as a thick large diameter tube material. In particular, the superheater head of a super supercritical pressure boiler having a steam temperature of around 650 ° C. Suitable for steam pipe material.
[0028]
【The invention's effect】
The ferritic heat resistant steel according to the present invention significantly increases the high temperature strength compared to the conventional ferritic heat resistant steel and has a stable strength even when used for a long time. The steam temperature can be increased to around 650 ° C., the plant efficiency of thermal power generation can be improved, and a remarkable effect can be obtained in reducing coal consumption and CO 2 emission of the coal-fired thermal power plant.

Claims (2)

質量%で、炭素(C)0.08〜0.13%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.02〜0.5%、クロム(Cr)9.0〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)2.4%〜3.0%、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.04〜0.2%、コバルト(Co)0.5〜1.2%、窒素(N)0.01〜0.1%、ホウ素(B)0.001〜0.030%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下に成分が制限され、調質熱処理により得られる焼戻しマルテンサイト単層組織からなることを特徴とするフェライト系耐熱鋼。By mass%, carbon (C) 0.08-0.13%, silicon (Si) 0.20-1.0%, manganese (Mn) 0.05-1.5%, nickel (Ni) 0.02-0.5%, chromium (Cr) 9.0-13.0%, molybdenum (Mo) 0.05 to 0.5%, Tungsten (W) 2.4% to 3.0 %, Vanadium (V) 0.10 to 0.30%, Niobium (Nb) 0.04 to 0.2%, Cobalt (Co) 0.5 to 1.2%, Nitrogen (N) 0.01 ~ 0.1%, boron (B) 0.001-0.030%, copper (Cu) 0.01% or less and aluminum (Al) 0.002% or less, the component is limited, and consists of a tempered martensite single layer structure obtained by tempering heat treatment Featuring ferritic heat resistant steel. 質量%で、炭素(C)0.08〜0.13%、ケイ素(Si)0.20〜1.0%、マンガン(Mn)0.05〜1.5%、ニッケル(Ni)0.02〜0.5%、クロム(Cr)9.0〜13.0%、モリブデン(Mo)0.05〜0.5%、タングステン(W)2.4%〜3.0%、バナジウム(V)0.10〜0.30%、ニオブ(Nb)0.04〜0.2%、コバルトCo0.5〜1.2%、窒素(N)0.01〜0.1%、ホウ素(B)0.001〜0.030%、銅(Cu)0.01%以下及びアルミニウム(Al)0.002%以下に成分が制限され、Cr+6Si+4Mo+1.5W+11V+5Nb+12Al−40C−30N−4Ni−2Mn−Cu−2Coで求められるCr当量が10%超14%以下になるように成分が調整された、焼戻しマルテンサイト組織と、体積率で1〜15%のδフェライト組織との2相組織からなることを特徴とするフェライト系耐熱鋼。By mass%, carbon (C) 0.08-0.13%, silicon (Si) 0.20-1.0%, manganese (Mn) 0.05-1.5%, nickel (Ni) 0.02-0.5%, chromium (Cr) 9.0-13.0%, molybdenum (Mo) 0.05 to 0.5%, Tungsten (W) 2.4% to 3.0 %, Vanadium (V) 0.10 to 0.30%, Niobium (Nb) 0.04 to 0.2%, Cobalt Co 0.5 to 1.2%, Nitrogen (N) 0.01 to The components are limited to 0.1%, boron (B) 0.001 to 0.030%, copper (Cu) 0.01% or less, and aluminum (Al) 0.002% or less. A ferrite characterized by comprising a two-phase structure of a tempered martensite structure and a δ ferrite structure having a volume ratio of 1 to 15%, the components of which are adjusted so that the Cr equivalent is more than 10% and not more than 14% Heat resistant steel.
JP2000382261A 2000-12-15 2000-12-15 Ferritic heat resistant steel Expired - Fee Related JP4502239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382261A JP4502239B2 (en) 2000-12-15 2000-12-15 Ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382261A JP4502239B2 (en) 2000-12-15 2000-12-15 Ferritic heat resistant steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009276249A Division JP5137934B2 (en) 2009-12-04 2009-12-04 Ferritic heat resistant steel

Publications (3)

Publication Number Publication Date
JP2002180208A JP2002180208A (en) 2002-06-26
JP2002180208A5 JP2002180208A5 (en) 2008-11-27
JP4502239B2 true JP4502239B2 (en) 2010-07-14

Family

ID=18850120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382261A Expired - Fee Related JP4502239B2 (en) 2000-12-15 2000-12-15 Ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP4502239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182913A (en) * 2018-10-26 2019-01-11 上海电气电站设备有限公司 A kind of steam turbine casings heat resisting steel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090007991A1 (en) * 2006-02-06 2009-01-08 Toshio Fujita Ferritic Heat-Resistant Steel
KR20090130334A (en) * 2007-06-04 2009-12-22 수미도모 메탈 인더스트리즈, 리미티드 Ferrite heat resistant steel
JP2009074179A (en) * 2008-11-14 2009-04-09 Babcock Hitachi Kk HIGH Cr FERRITIC HEAT RESISTANT STEEL
CN108823488A (en) * 2018-05-29 2018-11-16 哈尔滨工程大学 The ferrite heat resistant steel and its heat treatment process of a kind of resistance to high temperature oxidation and resistance to salt hot corrosion
EP4112762A1 (en) * 2021-06-28 2023-01-04 Technische Universität Graz Ferritic steel for service temperatures from 650 to 700 °c

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088291A (en) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd Heat resistant cast steel with high strength and high toughness

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735548B2 (en) * 1989-06-19 1995-04-19 新日本製鐵株式会社 Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength
JP4212132B2 (en) * 1997-09-22 2009-01-21 独立行政法人物質・材料研究機構 Ferritic heat resistant steel having martensitic structure and method for producing the same
JP4221518B2 (en) * 1998-08-31 2009-02-12 独立行政法人物質・材料研究機構 Ferritic heat resistant steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088291A (en) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd Heat resistant cast steel with high strength and high toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182913A (en) * 2018-10-26 2019-01-11 上海电气电站设备有限公司 A kind of steam turbine casings heat resisting steel

Also Published As

Publication number Publication date
JP2002180208A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
CA2604428C (en) Low alloy steel
JP5501434B2 (en) Heat resistant steel
CN102453843B (en) Ferrite heat resistant steel
JP5137934B2 (en) Ferritic heat resistant steel
JPH0830251B2 (en) High temperature strength ferritic heat resistant steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JP4502239B2 (en) Ferritic heat resistant steel
JP3492969B2 (en) Rotor shaft for steam turbine
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
JP4615196B2 (en) High Cr ferritic heat resistant steel
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JP2716807B2 (en) High strength low alloy heat resistant steel
US20090214376A1 (en) Creep-resistant steel
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP3775371B2 (en) Low alloy steel
JPH0753898B2 (en) High strength austenitic heat resistant alloy
JP3177633B2 (en) Extremely low Mn and low Cr ferrite heat resistant steel with excellent high temperature strength
JP2009074179A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3787212B2 (en) High Cr ferritic heat resistant steel
JP3565155B2 (en) High strength low alloy heat resistant steel
JPH0639659B2 (en) High strength high chromium steel with excellent oxidation resistance and weldability
JP2003231953A (en) Heat resistant high-chromium ferritic steel with excellent strength at elevated temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees