JPS61279678A - Control device for flow rate - Google Patents

Control device for flow rate

Info

Publication number
JPS61279678A
JPS61279678A JP60121726A JP12172685A JPS61279678A JP S61279678 A JPS61279678 A JP S61279678A JP 60121726 A JP60121726 A JP 60121726A JP 12172685 A JP12172685 A JP 12172685A JP S61279678 A JPS61279678 A JP S61279678A
Authority
JP
Japan
Prior art keywords
gas
raw material
flow rate
flow path
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60121726A
Other languages
Japanese (ja)
Other versions
JPH0535225B2 (en
Inventor
Sukeyuki Ito
祐之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP60121726A priority Critical patent/JPS61279678A/en
Publication of JPS61279678A publication Critical patent/JPS61279678A/en
Publication of JPH0535225B2 publication Critical patent/JPH0535225B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components

Abstract

PURPOSE:To control the flow rate of a gaseous raw material with high accuracy and controlling the partial pressure of the gaseous raw material to the specified pressure by regulating respectively the flow rates of the carrier gas flow and reference gas flow and detecting the concn. of the gaseous mixture with thermal sensors. CONSTITUTION:The carrier gas is passed via the 1st flow rate regulator 4 to a raw material tank 8 in a thermostatic chamber 6 to be mixed with the evaporated raw material 7. The gaseous mixture is fed via a pressure regulating valve 14 into a reaction furnace 15 in a vacuum state. The reference gas of the same kind as the above-mentioned carrier gas is joined with the above- mentioned gaseous mixture in a confluent flow passage 13 via the 2nd flow rate regulator 5. The concns. of the above-mentioned gaseous mixture and reference gas are detected by the thermal sensors 11, 12 and the concn. of the gaseous raw material after joining is measured. The flow rates of the carrier gas and reference gas are respectively regulated by the 1st and 2nd flow rate regulators 4, 5. The partial pressure of the gaseous raw material is thereby controlled with the high accuracy and the reproducibility of the reaction of the furnace 15 is improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はキャリアガスと原料ガスとの混合ガス、例えば
CvD装置における反応ガスの流儀を制御する装置に係
り、特にキャリアガスおよび原料ガスの流山を個別に制
御できる流山制御装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a device for controlling the flow of a mixed gas of a carrier gas and a raw material gas, such as a reaction gas in a CvD device, and particularly to a device for controlling the flow of a mixed gas of a carrier gas and a raw material gas, for example, a reaction gas in a CvD device. This invention relates to a flow mountain control device that can be individually controlled.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

CVD法は、原料ガスをキャリアガスに乗せて反応炉に
導き、菖温下での化学反応により試料上に薄膜を形成す
る技術であり、半導体装置およびその関連装置において
多用される膜形成技術の一つである。CVD法において
は液体または固体状の原料をガス化して反応炉に供給す
る場合、安定な流量制御を行なうことが重要であり、そ
のための種々の方式が考案されている。その一つとして
キャリアガスの流量および原料加熱温度を一定に保つこ
とで、一定流量の蒸発ガス(キャリアガスと原料ガスと
の混合ガス)を得るキャリアガス制御方式がある。しか
し、この方式では原料の経時変化、蒸発に伴う温度変化
等により、蒸発量を一定に制御することができない。
The CVD method is a technology in which raw material gas is carried on a carrier gas and introduced into a reactor to form a thin film on a sample through a chemical reaction at iris temperature. There is one. In the CVD method, when a liquid or solid raw material is gasified and supplied to a reactor, it is important to perform stable flow control, and various methods have been devised for this purpose. One of them is a carrier gas control method that obtains a constant flow rate of evaporated gas (mixed gas of carrier gas and raw material gas) by keeping the carrier gas flow rate and raw material heating temperature constant. However, with this method, it is not possible to control the amount of evaporation to a constant level due to changes in the raw material over time, temperature changes accompanying evaporation, and the like.

この欠点を解消すべく、原料ガスの濃度を直接検出し、
それに基いて原料ガス流量を高精度にIIJ御する方式
が開発されている。具体的には、恒温槽内にキャリアガ
スを導き、ガスの熱伝導率の変化を利用したいわゆる熱
動センサを用いてキャリアガスの濃度を検出した襖、原
料を蒸発させてキャリアガスと原料ガスとの混合ガスを
作り、この混合ガスの濃度を同様に熱動センサを通して
検出する。これらの熱動センサを2辺に接続してホイー
トストン・ブリッジ回路を構成することにより、キャリ
アガスと混合ガスとの濃度比信号を求め、この濃度比信
号から原料ガスの流lを算出する。
In order to eliminate this drawback, we directly detect the concentration of the raw material gas,
Based on this, a system has been developed for controlling the raw material gas flow rate with high precision. Specifically, carrier gas is introduced into a thermostatic chamber, and the concentration of the carrier gas is detected using a so-called thermal sensor that uses changes in the thermal conductivity of the gas. The concentration of this mixed gas is similarly detected through a thermal sensor. By connecting these thermal sensors on two sides to form a Wheatstone bridge circuit, a concentration ratio signal between the carrier gas and the mixed gas is obtained, and a flow l of the raw material gas is calculated from this concentration ratio signal.

そして、この原料ガス流層を設定流量と比較し、両者が
一致するようにキャリアガスの流量を調整するのである
。しかしながら、この方式では次のような問題があった
Then, this source gas flow layer is compared with the set flow rate, and the flow rate of the carrier gas is adjusted so that the two match. However, this method has the following problems.

最近、CVD装置における膜形成原料としては、低蒸気
圧材料の使用が要求される傾向にある。低蒸気圧材料は
材料の高温化によって原料ガスの多量供給を可能とする
反面、高温化によって材料の熱分解が生じ、また固体材
料の場合は粒子の同化が起こる。これを避けるには、材
料を減圧下で蒸     □発させて低温化を図ればよ
い。ところが、上述した流量制御装置は常圧下では特に
問題はないが、20Torr以下というような減圧下で
はガスの熱伝導率が圧力の影響を受ける関係で、上記2
つの熱動センサ間に存在する原料タンク、配管等の圧力
損失により生じる圧力差によって濃度測定値、すなわち
原料ガスの流量測定値に誤差が生じ、高精度なl I 
IIJ illが困難となる。
Recently, there has been a tendency to require the use of low vapor pressure materials as film forming raw materials in CVD apparatuses. Low vapor pressure materials enable the supply of a large amount of raw material gas by increasing the temperature of the material, but the increase in temperature causes thermal decomposition of the material, and in the case of solid materials, assimilation of particles occurs. To avoid this, the material can be evaporated under reduced pressure to lower the temperature. However, although there is no particular problem with the above-mentioned flow rate control device under normal pressure, under reduced pressure such as 20 Torr or less, the thermal conductivity of the gas is affected by the pressure, so the above-mentioned 2.
The pressure difference caused by the pressure loss in the raw material tank, piping, etc. between the two thermal sensors causes an error in the concentration measurement value, that is, the flow rate measurement value of the raw material gas, resulting in a highly accurate l I
IIJ ill becomes difficult.

また、従来の流量制御装置では原料ガスの流量は一定に
保たれるが、キャリアガスの流量が制御により変動する
ため、反応炉内に送り込む混合ガスの原料ガス分圧を一
定化できず、反応の再現性が悪い。
In addition, with conventional flow rate control devices, the flow rate of the raw material gas is kept constant, but because the flow rate of the carrier gas fluctuates due to the control, the raw gas partial pressure of the mixed gas fed into the reactor cannot be kept constant, and the reaction reproducibility is poor.

ざらに、キャリアガスの流量を制御することで混合ガス
の流量を制御しているため、キャリアガスの流量が減少
制御された場合に混合ガス中の原料ガス飽和度が上昇し
過ぎることがあり、反応炉内への配管内での原料ガスの
再液化あるいは再固化が起こる危険性がある。このよう
な場合は当然、原料ガスの安定な供給はできなくなる。
Roughly speaking, since the flow rate of the mixed gas is controlled by controlling the flow rate of the carrier gas, when the flow rate of the carrier gas is controlled to decrease, the saturation level of the raw material gas in the mixed gas may increase too much. There is a risk of reliquefaction or resolidification of the raw material gas within the piping into the reactor. Naturally, in such a case, it becomes impossible to stably supply the raw material gas.

(発明の目的〕 本発明の目的は、キャリアガスと原料ガスとの混合ガス
が供給される系が減圧下にある場合でも高精度な流量制
御が可能で、また混合ガス中における原料ガス分圧を一
定に制御することができ、     1さらに原料ガス
の再液化、再固化を防止できる流     )農制御装
置を提供することにある。
(Object of the Invention) The object of the present invention is to enable highly accurate flow control even when a system to which a mixed gas of a carrier gas and a raw material gas is supplied is under reduced pressure, and to make it possible to control the partial pressure of the raw material gas in the mixed gas. An object of the present invention is to provide an agricultural control device that can control the flow to a constant level, and further prevent re-liquefaction and re-solidification of raw material gas.

〔発明の概要〕[Summary of the invention]

本発明においては上記目的を達成するため、キャリアガ
ス流路および混合ガス流路とは別にキヤ采 リアガスと同種の参照ガスの流路が設けられ、この参@
jj2ffi混合”18共1被”2供給系1供給   
  iされる。また、キャリアガスおよび参照ガスの各
流路にそれぞれ第1および第2の流II調整手段が設け
られる。そして、ガスの熱伝導率の変化を利用して混合
ガスおよび参照ガスの濃度を測定する熱動センサが混合
ガスおよび参照ガスのそれぞれ     1の流路に設
けられ、これらの熱動センサを介して四 混合ガス中の原料ガスの濃度が測定される。この   
  、・i濃度測定値と実際のキャリアガス流lおよび
原料     11′ヵ2.□、い、1.)□□□、よ
、     □;□原料タンクへのキャリアガスの流量
が制御されることにより、原料ガスの流量が一定化され
るとともに、キャリアガス設定流量に基いて第2の流量
調整手段により参照ガスの流量が制御されることにより
、キャリアガスの総流量が一定化される。
In order to achieve the above object, in the present invention, a flow path for a reference gas of the same type as the carrier gas is provided separately from the carrier gas flow path and the mixed gas flow path.
jj2ffi mixture "18 and 1 coat" 2 supply systems 1 supply
I will be treated. Furthermore, first and second flow II adjusting means are provided in each of the carrier gas and reference gas flow paths, respectively. A thermal sensor that measures the concentration of the mixed gas and the reference gas using changes in the thermal conductivity of the gas is installed in each of the flow paths for the mixed gas and the reference gas. The concentration of the raw material gas in the four mixed gases is measured. this
,・i concentration measurement value and actual carrier gas flow l and raw material 11'ka2. □、I、1. ) □□□, yo, □;□ By controlling the flow rate of the carrier gas to the raw material tank, the flow rate of the raw material gas is made constant, and the flow rate is adjusted by the second flow rate adjustment means based on the set flow rate of the carrier gas. By controlling the flow rate of the reference gas, the total flow rate of the carrier gas is made constant.

このようにして、原料ガスおよびキャリアガスの一流量
が個別に制御される。
In this way, the flow rates of source gas and carrier gas are individually controlled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、混合ガス流路および参照ガス流路をそ
れぞれ通過するガスの熱伝導率の変化から混合ガス中の
原料ガスの濃度を測定し、それに基いてキャリアガス流
路から原料タンクへ供給されるキャリアガスの流量を制
御するため、原料ガスの流量制御を高精度に行なうこと
ができる。すなわち、混合ガス流路および参照ガス流路
は共に被ガス供給系に接続されており、被ガス供給系が
減圧下にある場合でもほぼ同圧に保持されることから、
圧力差による濃度測定誤差はほとんど生じない。
According to the present invention, the concentration of the raw material gas in the mixed gas is measured from the change in thermal conductivity of the gas passing through the mixed gas flow path and the reference gas flow path, and the concentration of the raw material gas in the mixed gas is measured from the carrier gas flow path to the raw material tank. Since the flow rate of the supplied carrier gas is controlled, the flow rate of the raw material gas can be controlled with high precision. That is, since both the mixed gas flow path and the reference gas flow path are connected to the gas supply system, and are maintained at approximately the same pressure even when the gas supply system is under reduced pressure,
Concentration measurement errors due to pressure differences hardly occur.

また、原料タンクへのキャリアガスの流量が制御により
変化しても、被ガス供給系に供給されるキャリアガスの
総流量は原料タンクへのキャリアガスと、それと同種で
ある参照ガスとの和の流量であるため、参照ガスの流量
制御によりキャリアガス総流量が一定に保たれる。従っ
て、被ガス供給系に送出される混合ガス中の原料ガス分
圧を一定化することが可能となり、被ガス供給系が反応
炉の場合、反応の再現性が向上する。
Furthermore, even if the flow rate of the carrier gas to the raw material tank is changed by control, the total flow rate of the carrier gas supplied to the gas supply system is the sum of the carrier gas to the raw material tank and the reference gas of the same type. Since this is a flow rate, the total flow rate of the carrier gas is kept constant by controlling the flow rate of the reference gas. Therefore, the partial pressure of the raw material gas in the mixed gas sent to the gas supply system can be made constant, and when the gas supply system is a reactor, the reproducibility of the reaction is improved.

さらに、被ガス供給系に送出される混合ガス中に、原料
タンクへのキャリアガスとは別の流路からの参照ガスも
キャリアガスとして常に含まれるため、該混合ガス中の
原料ガス飽和度を一定値以下に抑制することができ、原
料ガスの再液化、再固化が防止される。
Furthermore, since the mixed gas sent to the target gas supply system always includes a reference gas as a carrier gas from a flow path different from the carrier gas to the raw material tank, the saturation level of the raw material gas in the mixed gas is It can be suppressed to below a certain value, and re-liquefaction and re-solidification of the raw material gas are prevented.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係る流層制御装置の構成を
CVD装置に適用した場合について示したものである。
FIG. 1 shows a case where the configuration of a flow layer control device according to an embodiment of the present invention is applied to a CVD device.

図に示すように、キャリアガス供給源1からのAr、H
e等のガスは二分岐され、一方はキャリアガス流路2に
、また他方は参照ガス流路3に送出される。キャリアガ
ス流路2および参照ガス流路3には、それぞれ第1.第
2の流量調整器4゜5が設けられている。第1の流量調
整器4は流量センサ4a、比較1a4bおよびバルブ4
Gにより構成され、また第2の流量調整器5も同様に流
量センサ5a、比較器5bおよびバルブ5Gにより構成
されている。流all整器4,5を通過したキャリアガ
スおよび参照ガスは、恒温槽6内に導かれる。
As shown in the figure, Ar, H from carrier gas supply source 1
Gases such as e are branched into two branches, one being sent to the carrier gas flow path 2 and the other being sent to the reference gas flow path 3. The carrier gas flow path 2 and the reference gas flow path 3 each have a first. A second flow regulator 4°5 is provided. The first flow regulator 4 includes a flow sensor 4a, a comparison 1a4b and a valve 4.
Similarly, the second flow rate regulator 5 includes a flow rate sensor 5a, a comparator 5b, and a valve 5G. The carrier gas and reference gas that have passed through the flow regulators 4 and 5 are led into a constant temperature chamber 6.

恒温槽6は内部温度が例えば20〜200℃の範囲内の
任意の温度に設定可能に構成されている。この恒温槽6
内には、例えば高純度のWCJ2s。
The constant temperature bath 6 is configured such that its internal temperature can be set to any temperature within the range of, for example, 20 to 200°C. This constant temperature bath 6
Inside, for example, high purity WCJ2s.

ZrCff14.Mocks等の低蒸気圧材料からなる
原料7を収容した原料タンク8が設置されており、恒温
槽6内に導入されたガスのうち、キャリアガスがこの原
料タンク8に導かれる。これにより原料タンク8から原
料ガスとキャリアガスとの混合ガスが蒸発され、この混
合ガスが混合ガス流路9および圧力測定用流路10に導
かれる。
ZrCff14. A raw material tank 8 containing a raw material 7 made of a low vapor pressure material such as Mocks is installed, and a carrier gas among the gases introduced into the thermostatic chamber 6 is guided to this raw material tank 8 . As a result, the mixed gas of the raw material gas and the carrier gas is evaporated from the raw material tank 8, and this mixed gas is guided to the mixed gas flow path 9 and the pressure measurement flow path 10.

恒温槽6内における混合ガス流路9および参照ガス流路
3には、それぞれ熱動センサー1.12     ′が
挿入されている。熱動センサー1.12は具体的にはフ
ィラメントで構成され、混合ガスおよび    □参照
ガスの濃度をそれぞれのガスの熱伝導率の違    )
いを利用して測定し、最終的に混合ガス中の原料   
 。
A thermal sensor 1.12' is inserted into each of the mixed gas flow path 9 and the reference gas flow path 3 in the thermostatic chamber 6. Thermal sensor 1.12 is specifically composed of a filament, which detects the concentration of a mixed gas and a reference gas by measuring the difference in thermal conductivity of each gas.
Finally, the raw material in the mixed gas is
.

ガスの濃度を測定するためのものである。なお、熱動セ
ンサー1.12においてフィラメントを収    納す
るセルは、圧力の影響をより受けにくい、つまりガスの
流量に影響されない拡散型であること    □が望ま
しい。また、濃度測定に当たり熱動センサ    il
、。
It is used to measure the concentration of gas. Note that it is desirable that the cell in which the filament is stored in the thermal sensor 1.12 be of a diffusion type that is less susceptible to the influence of pressure, that is, unaffected by the flow rate of gas. In addition, a thermal sensor is used to measure the concentration.
,.

11.12の温度特性の影響を無視できるように、  
  :jキャリアガス流路2および参照ガス流路3の恒
温    J1槽6内での長さをで、きるだけ長くとる
ことにより、    nそれぞれのガスの温度を等しく
するのが望ましい。    、。
11. In order to ignore the influence of temperature characteristics in 12,
:j It is desirable to make the lengths of carrier gas flow path 2 and reference gas flow path 3 as long as possible in constant temperature J1 tank 6 to equalize the temperature of each gas. ,.

熱動センサー1.12を通過した混合ガスおよ    
[び参照ガスは合流用流路13で合流された後、圧  
  1″1、□1( 力調整用バルブ14を経て恒温槽6外へ送出され、  
  ゛□反応炉15内に導入される。反応炉15はトラ
ン716を介して真空ポンプ17に接続されており、 
   )これにより2Q Torr程度以下の圧力に減
圧される。また、反応炉15にはざらに還元ガス流量セ
ンサ18を介してバルブ19が接続される。
The mixed gas that passed through the thermal sensor 1.12 and
[After the reference gas and the reference gas are combined in the merging channel 13, the pressure is
1″1, □1 (passed through the force adjustment valve 14 to the outside of the constant temperature chamber 6,
゛□Introduced into the reactor 15. The reactor 15 is connected to the vacuum pump 17 via a transformer 716,
) This reduces the pressure to about 2Q Torr or less. Further, a valve 19 is connected to the reactor 15 through a reducing gas flow rate sensor 18 .

一方、圧力測定用流路10に導かれた混合ガスは恒温槽
6外に送出され、圧力センサ20でその圧力が検出され
る。圧力センサ20の出力は演算回路21に入力され、
圧力設定器22で設定された圧力と、圧力センサ20で
検出された圧力とが等しくなるように圧力調整用バルブ
14が制御される。
On the other hand, the mixed gas guided to the pressure measurement channel 10 is sent out of the thermostatic chamber 6, and the pressure thereof is detected by the pressure sensor 20. The output of the pressure sensor 20 is input to the calculation circuit 21,
The pressure adjustment valve 14 is controlled so that the pressure set by the pressure setting device 22 and the pressure detected by the pressure sensor 20 are equal.

熱動センサ11.12は濃度測定器23に接続されてい
る。熱動センサ11.12および濃度測定器23の部分
の詳細な構成を第2図に示す。熱動センサ(フィラメン
ト)11.12と固定抵抗31.32とでホイートスト
ン・ブリッジ回路が構成され、このブリッジ回路に直流
電源33から電圧が印加される。熱動センサ11.12
は電源33からの電流により発熱し、第1図の混合ガス
流路9および参照ガス流路3をそれぞれ通過する混合ガ
スおよび参照ガスによって冷却されるが、そのときの熱
動センサ11,12の温度はそれぞれのガスの熱伝導率
、つまりガスの濃度によって異なり、結局その抵抗値に
差が生じる。従って、この抵抗値の差によりブリッジ回
路の出力に生じる不平衡電圧を増幅器34を介して取出
すことによって、混合ガス中の原料ガスの濃度を表わす
濃度比信号を得ることができる。
The thermal sensor 11.12 is connected to the concentration measuring device 23. The detailed structure of the thermal sensor 11, 12 and the concentration measuring device 23 is shown in FIG. The thermal sensor (filament) 11.12 and the fixed resistor 31.32 constitute a Wheatstone bridge circuit, and a voltage is applied from the DC power supply 33 to this bridge circuit. Thermal sensor 11.12
generates heat due to the current from the power source 33, and is cooled by the mixed gas and reference gas passing through the mixed gas flow path 9 and reference gas flow path 3, respectively, in FIG. The temperature varies depending on the thermal conductivity of each gas, that is, the concentration of the gas, resulting in a difference in the resistance value. Therefore, by extracting the unbalanced voltage generated at the output of the bridge circuit due to the difference in resistance values through the amplifier 34, a concentration ratio signal representing the concentration of the raw material gas in the mixed gas can be obtained.

ここで、熱動センサ11,12が設置された混合ガス流
路9および参照ガス流路3は合流流路13で結合され、
圧力調整用バルブ141反応炉15およびトラップ16
を経て同圧に保持されているため、減圧下にありながら
圧力差による濃度検出誤差はほとんど生じない。すなわ
ち、濃度検出のための2つの熱動センサを原料タンクへ
至るキャリア流路、および原料タンクからの混合ガス流
路にそれぞれ配置した従来装置では、混合ガス流路が減
圧下にある場合、両流路間に生じる圧力差によりガスの
分子密度が変わり、ガスの熱伝導率が影響を受ける。こ
のため、第3図に破線で示すように減圧下ではブリッジ
回路の出力オフセット(零点シフト)が非常に大きくな
り、濃度検出誤差が増大する。
Here, the mixed gas flow path 9 and the reference gas flow path 3 in which the thermal sensors 11 and 12 are installed are connected by a confluence flow path 13,
Pressure adjustment valve 141 reactor 15 and trap 16
Since the pressure is maintained at the same level through the process, there are almost no concentration detection errors due to pressure differences even though the pressure is reduced. In other words, in a conventional device in which two thermal sensors for concentration detection are placed in the carrier flow path leading to the raw material tank and the mixed gas flow path from the raw material tank, when the mixed gas flow path is under reduced pressure, both The pressure difference created between the flow paths changes the molecular density of the gas, which affects the thermal conductivity of the gas. Therefore, as shown by the broken line in FIG. 3, the output offset (zero point shift) of the bridge circuit becomes extremely large under reduced pressure, and the concentration detection error increases.

これに対し、本発明においては熱動センサ11゜12の
圧力差がないため、第3図に実線で示すように減圧下で
もブリッジ回路出力のオフセットは極めて少なく、高い
濃度検出精度が得られる。なお、このオフセットが+、
−側に幅を持っているのは、熱動センサ11.12の温
度特性の違いに起因するものであり、温度特性が同じで
あればオフセットはほとんど発生しない。
In contrast, in the present invention, since there is no pressure difference between the thermal sensors 11 and 12, the offset of the bridge circuit output is extremely small even under reduced pressure, as shown by the solid line in FIG. 3, and high concentration detection accuracy can be obtained. Note that this offset is +,
The width on the - side is due to the difference in temperature characteristics of the thermal sensors 11 and 12, and if the temperature characteristics are the same, almost no offset will occur.

こうして熱動センサ11.12および濃度測定器23を
通して得られた濃度比信号は、第1図に示すように演算
回路24に入力され、この濃度比信号と第1の流量調整
器4における流量センサ4aで得られたキャリアガスの
流量信号に基いて。
The concentration ratio signal thus obtained through the thermal sensor 11, 12 and the concentration measuring device 23 is input to the arithmetic circuit 24 as shown in FIG. Based on the carrier gas flow rate signal obtained in 4a.

混合ガス中の原料ガスの流量が求められる。この演算回
路24からの原料ガス流量信号と、原料ガス流量設定器
25からの原料ガス設定流層信号とが第1の流III整
器4における比較器4bに入力されて両信号の差信号が
求められ、この比較器4bの出力によってバルブ4Cが
調整され、原料がスの流量と原料ガス設定流量との差流
量が零となるように、キャリアガス流路2を通過するキ
ャリアガスの流量が制御される。
The flow rate of the raw material gas in the mixed gas is determined. The raw material gas flow rate signal from the arithmetic circuit 24 and the raw material gas setting flow layer signal from the raw material gas flow rate setter 25 are input to the comparator 4b in the first flow III regulator 4, and a difference signal between the two signals is input. The valve 4C is adjusted based on the output of the comparator 4b, and the flow rate of the carrier gas passing through the carrier gas flow path 2 is adjusted so that the difference flow rate between the flow rate of the raw material gas and the set flow rate of the raw material gas becomes zero. controlled.

このようにして減圧下においても、反応炉15への原料
ガスの安定な供給を行なうことができる。    ′換
言すれば、原料7を減圧下において蒸発させることがで
きるので、原料7として低蒸気圧材料を    □使用
することが可能となる。その結果、低蒸気圧    □
材料がMoCj2sの場合を例にとると、50 T O
rrの減圧下では、常圧(大気圧)下で蒸    □゛
fa8tlja@clt< 10m(DM□3□)71
8   iられ、さらに10Torrの減圧下では40
倍以上    :という極めて多量の原料ガスの安定な
供給が可能    □となる。 一方、第1の流IyA
整器4における流    1曇センサ4aから出力され
るキヤ、Jア流量信号と、    11゛キヤリアガス
総流量設定器26からのキャリアガ    □スの設定
総流員信号との差が減算器27で求めら    [[・ れ・その差流量信号が第2の流量調整器5におけ   
 する比較器5bに入力され、流量センサ5aからの 
   1参照ガス流量信号と比較される。この比較器5
bの出力によってバルブ5cが調整され、合流流路13
へ送出されるガス中のキャリアガスの総流量がキャリア
ガス設定総流量に一致するように参照ガスの流量が制御
される。すなわち、参照ガスはキャリアガスと同種のガ
スであるため、この参照ガス流量を制御することで、合
流部材13を通して反応炉15に供給されるガス中のキ
ャリアガス−の成分の総流量が一定に維持される。
In this way, the raw material gas can be stably supplied to the reactor 15 even under reduced pressure. 'In other words, since the raw material 7 can be evaporated under reduced pressure, it is possible to use a low vapor pressure material as the raw material 7. As a result, low vapor pressure □
Taking the case where the material is MoCj2s as an example, 50 T O
Under reduced pressure of rr, steaming under normal pressure (atmospheric pressure)
8 i, and further under reduced pressure of 10 Torr, 40
It is possible to stably supply an extremely large amount of raw material gas: more than twice as much. On the other hand, the first stream IyA
The subtracter 27 calculates the difference between the carrier gas flow rate signal output from the flow regulator 1 fog sensor 4a and the set total flow signal of the carrier gas □ from the carrier gas total flow rate setting device 26. The difference flow rate signal is sent to the second flow regulator 5.
is input to the comparator 5b, and the output from the flow rate sensor 5a is
1 reference gas flow signal. This comparator 5
The valve 5c is adjusted by the output of b, and the confluence channel 13
The flow rate of the reference gas is controlled so that the total flow rate of the carrier gas in the gas sent to matches the set total flow rate of the carrier gas. That is, since the reference gas is the same type of gas as the carrier gas, by controlling the flow rate of this reference gas, the total flow rate of the carrier gas components in the gas supplied to the reactor 15 through the merging member 13 is kept constant. maintained.

このようにキャリアガスの総流量も安定化される結果、
反応炉15へ送り込まれる混合ガスの原料ガス分圧を一
定にすることができ、反応の再現性が向上する。
As a result of stabilizing the total flow rate of carrier gas in this way,
The raw material gas partial pressure of the mixed gas fed into the reactor 15 can be made constant, and the reproducibility of the reaction is improved.

また、原料ガスの流量制御の過程でキャリアガス流路2
を通過するキャリアガスの流量が大きく減少しても、反
応炉15に送り込まれる混合ガス中に参照ガス流路3の
経路でキャリアガスと同じガスが合流されることにより
、この混合ガスの原料ガス飽和度が低下することはなく
、合流流路13等の配管内での原料ガスの再液化、再固
化といつた問題は生じない。
In addition, in the process of controlling the flow rate of the raw material gas, the carrier gas flow path 2
Even if the flow rate of the carrier gas passing through the reactor 15 is greatly reduced, the same gas as the carrier gas is added to the mixed gas sent to the reactor 15 through the path of the reference gas flow path 3, so that the raw material gas of this mixed gas is The degree of saturation does not decrease, and problems such as reliquefaction and resolidification of the raw material gas within the pipes such as the confluence channel 13 do not occur.

また、上記実施例によれば原料タンク8が恒温槽6内に
配置されており、しかも圧力調整用バルブ14.圧力測
定用流路10.圧力センサ20゜演算回路21および圧
力設定器22を用いて原料タンク8内の圧力も一定に制
御しているため、原料ガス流量をより一層安定化するこ
とが可能である。
Further, according to the above embodiment, the raw material tank 8 is arranged in the thermostatic chamber 6, and the pressure regulating valve 14. Pressure measurement channel 10. Since the pressure inside the raw material tank 8 is also controlled to be constant using the pressure sensor 20° calculation circuit 21 and the pressure setting device 22, it is possible to further stabilize the raw material gas flow rate.

なお、本発明は上記実施例に限定されるものではなく、
例えば第2図におけるブリッジ回路内の固定抵抗31.
32を熱動センサ(フィラメント)に置換え、それぞれ
混合ガス流路9.II照ガス流路3に挿入してもよい。
Note that the present invention is not limited to the above embodiments,
For example, the fixed resistor 31 in the bridge circuit in FIG.
32 is replaced with a thermal sensor (filament), and each mixed gas flow path 9. It may also be inserted into the II gas flow path 3.

このようにすると、減圧によるフィラメントの温度上昇
に伴う濃度検出感度の変動を抑制でき、さらに、高精度
の濃度検出が可能となる。また、フィラメントの温度を
検知し、その結果をブリッジ回路出力にフィードバック
することにより、いわゆる定温度型ブリッジ回路を構成
することも、より高精度の濃度検出を行なう上で有効で
ある。
In this way, it is possible to suppress fluctuations in concentration detection sensitivity due to an increase in the temperature of the filament due to reduced pressure, and furthermore, it is possible to detect concentration with high accuracy. Furthermore, it is also effective to configure a so-called constant temperature bridge circuit by detecting the temperature of the filament and feeding back the result to the bridge circuit output for more accurate concentration detection.

さらに、第1図では混合ガス流路9および参照ガス流路
3が合流流路13で1本の流路となり、両ガスが合流さ
れてから反応炉15に導入されているが、それぞれの流
路9,3を個別に反応炉15に接続し、両ガスを反応炉
15内で混ぜるという構成にしても同様の効果が得られ
る。
Furthermore, in FIG. 1, the mixed gas flow path 9 and the reference gas flow path 3 become one flow path at the merging flow path 13, and both gases are introduced into the reactor 15 after being merged. Similar effects can also be obtained by connecting the lines 9 and 3 to the reactor 15 individually and mixing both gases in the reactor 15.

また、本発明はCVD装置に限定されるものではなく、
キャリアガスと原料ガスとの混合ガスを用いて減圧下で
膜形成を行なう装置一般に適用することができる。その
他、本発明は要旨を逸脱しない範囲で種々変形して実施
することが可能である。
Furthermore, the present invention is not limited to CVD equipment,
It can be applied to general apparatuses that perform film formation under reduced pressure using a mixed gas of a carrier gas and a source gas. In addition, the present invention can be implemented with various modifications without departing from the scope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る流量制御装置の構成を
説明するための図、第2図は第1図における熱動センサ
および濃度測定器の部分を詳細に示す図、第3図は従来
装置および本発明装置におけるガス濃度測定用ブリッジ
回路の出力オフセットのガス圧力依存性を示す図である
。 1・・・キャリアガス供給源、2・・・キャリアガス流
路、3・・・参照ガス流路、4,5・・・第1.第2の
流量調整器、6・・・恒温槽、7・・・原料、8・・・
原料タンク、9・・・混合ガス流路、10・・・圧力測
定用流路、11.1201.□や>+j、13.a)%
E□、14  11・ ・・・圧力調整用バルブ、15・・・反応炉(被ガス供
給    [系)、16・・・トラップ、17・・・真
空ポンプ、18・・・還元ガス流量センサ、19・・・
バルブ、2o・・・圧    トヵtアヶ、2110.
□□、2200.ユカf%1F!、      ’23
・・・濃度測定器、24・・・原料ガス流量演算回路、
    125・・・原料ガス流量設定器、26・・・
キャリアガス総流量設定器、27・・・減算器、31.
32・・・固定抵抗、33・・・直流電源、34・・・
増幅器。         lj出願人代理人 弁理士
 鈴江武彦      矢、:′々 二 1゛・ ′1”・1 ]・:。 ”・、1 j・
FIG. 1 is a diagram for explaining the configuration of a flow rate control device according to an embodiment of the present invention, FIG. 2 is a diagram showing details of the thermal sensor and concentration measuring device in FIG. 1, and FIG. FIG. 2 is a diagram showing the gas pressure dependence of the output offset of the bridge circuit for gas concentration measurement in the conventional device and the device of the present invention. DESCRIPTION OF SYMBOLS 1... Carrier gas supply source, 2... Carrier gas flow path, 3... Reference gas flow path, 4, 5... 1st. Second flow rate regulator, 6... Constant temperature chamber, 7... Raw material, 8...
Raw material tank, 9... Mixed gas flow path, 10... Pressure measurement flow path, 11.1201. □Ya>+j, 13. a)%
E□, 14 11... Pressure adjustment valve, 15... Reactor (gas supply system), 16... Trap, 17... Vacuum pump, 18... Reducing gas flow rate sensor, 19...
Valve, 2o...pressure, 2110.
□□, 2200. Yuka f%1F! , '23
... Concentration measuring device, 24 ... Raw material gas flow rate calculation circuit,
125... Raw material gas flow rate setting device, 26...
Carrier gas total flow rate setting device, 27... subtractor, 31.
32...Fixed resistance, 33...DC power supply, 34...
amplifier. ljApplicant's agent Patent attorney Takehiko Suzue

Claims (4)

【特許請求の範囲】[Claims] (1)原料タンクにキャリアガスを導くキャリアガス流
路と、前記原料タンクから蒸発されるキャリアガスと原
料ガスとの混合ガスを送出する混合ガス流路と、前記キ
ャリアガスと同種の参照ガスを送出する参照ガス流路と
、この参照ガスを前記混合ガスと共に被ガス供給系に送
出する手段と、前記キャリアガス流路に設けられた第1
の流量調整手段と、前記参照ガス流路に設けられた第2
の流量調整手段と、前記混合ガス流路および前記参照ガ
ス流路にそれぞれ挿入され、ガスの熱伝導率の変化を利
用して混合ガスおよび参照ガスの濃度を測定する熱動セ
ンサと、これらの熱動センサを介して前記混合ガス中の
原料ガスの濃度を測定する手段と、この濃度測定値と前
記流量キャリアガス流路を通過するキャリアガス流量お
よび原料ガス設定流量に基いて前記第1の流量調整手段
を制御する手段と、前記キャリアガス流路を通過するキ
ャリアガスの流量とキャリアガス設定総流量に基いて前
記第2の流量調整手段を制御する手段とを備えたことを
特徴とする流量制御装置。
(1) A carrier gas flow path that leads a carrier gas to a raw material tank, a mixed gas flow path that delivers a mixed gas of carrier gas and raw material gas evaporated from the raw material tank, and a reference gas of the same type as the carrier gas. a reference gas flow path to send out, a means for sending out the reference gas together with the mixed gas to the gas supply system, and a first carrier gas flow path provided in the carrier gas flow path.
a second flow rate adjusting means provided in the reference gas flow path;
a thermal sensor that is inserted into the mixed gas flow path and the reference gas flow path and measures the concentrations of the mixed gas and the reference gas using changes in the thermal conductivity of the gas; means for measuring the concentration of the raw material gas in the mixed gas via a thermal sensor; The method is characterized by comprising means for controlling a flow rate adjustment means, and means for controlling the second flow rate adjustment means based on the flow rate of the carrier gas passing through the carrier gas flow path and the set total flow rate of the carrier gas. Flow control device.
(2)前記原料タンクが恒温槽内に設置されていること
を特徴とする特許請求の範囲第1項記載の流量制御装置
(2) The flow rate control device according to claim 1, wherein the raw material tank is installed in a constant temperature bath.
(3)前記混合ガスおよび参照ガスが前記混合ガス流路
および参照ガス流路を通過した後、合流されてから前記
被ガス供給系に供給されることを特徴とする特許請求の
範囲第1項記載の流量制御装置。
(3) The mixed gas and the reference gas pass through the mixed gas flow path and the reference gas flow path, are combined, and then are supplied to the gas target supply system. The flow control device described.
(4)前記混合ガスおよび参照ガスが前記混合ガス流路
および参照ガス流路から前記被ガス供給系に個別に供給
されることを特徴とする特許請求の範囲第1項記載の流
量制御装置。
(4) The flow rate control device according to claim 1, wherein the mixed gas and the reference gas are individually supplied to the gas supply system from the mixed gas flow path and the reference gas flow path.
JP60121726A 1985-06-05 1985-06-05 Control device for flow rate Granted JPS61279678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60121726A JPS61279678A (en) 1985-06-05 1985-06-05 Control device for flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60121726A JPS61279678A (en) 1985-06-05 1985-06-05 Control device for flow rate

Publications (2)

Publication Number Publication Date
JPS61279678A true JPS61279678A (en) 1986-12-10
JPH0535225B2 JPH0535225B2 (en) 1993-05-26

Family

ID=14818356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60121726A Granted JPS61279678A (en) 1985-06-05 1985-06-05 Control device for flow rate

Country Status (1)

Country Link
JP (1) JPS61279678A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048894A (en) * 2008-10-31 2010-05-11 가부시키가이샤 호리바 세이샤쿠쇼 Material gas concentration control system
JP2010109302A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
JP2010109305A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
JP2010109304A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
WO2010106410A1 (en) * 2009-03-16 2010-09-23 Applied Materials, Inc. Evaporator, coating installation, and method for use thereof
KR20100108304A (en) * 2009-03-27 2010-10-06 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. Method and apparatus
JP2013249511A (en) * 2012-05-31 2013-12-12 Tokyo Electron Ltd Source gas supply apparatus, film deposition apparatus, supply method of source gas, and storage medium
JP2014108395A (en) * 2012-12-03 2014-06-12 Air Liquide Japan Ltd Vaporization amount monitoring system for solid material and monitoring method
JP2016040402A (en) * 2014-08-12 2016-03-24 東京エレクトロン株式会社 Raw material gas supply device
JP2019153805A (en) * 2012-07-18 2019-09-12 ケレス テクノロジーズ インコーポレイテッド Vapor delivery device, manufacturing method thereof and method of using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048894A (en) * 2008-10-31 2010-05-11 가부시키가이샤 호리바 세이샤쿠쇼 Material gas concentration control system
JP2010109302A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
JP2010109305A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
JP2010109304A (en) * 2008-10-31 2010-05-13 Horiba Ltd Material gas concentration control system
US8459290B2 (en) 2008-10-31 2013-06-11 Horiba, Ltd. Material gas concentration control system
WO2010106410A1 (en) * 2009-03-16 2010-09-23 Applied Materials, Inc. Evaporator, coating installation, and method for use thereof
KR20100108304A (en) * 2009-03-27 2010-10-06 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨. Method and apparatus
JP2011006779A (en) * 2009-03-27 2011-01-13 Rohm & Haas Electronic Materials Llc Method of depositing film on substrate, and system for delivering of vaporized precursor compound
JP2013249511A (en) * 2012-05-31 2013-12-12 Tokyo Electron Ltd Source gas supply apparatus, film deposition apparatus, supply method of source gas, and storage medium
JP2019153805A (en) * 2012-07-18 2019-09-12 ケレス テクノロジーズ インコーポレイテッド Vapor delivery device, manufacturing method thereof and method of using the same
JP2014108395A (en) * 2012-12-03 2014-06-12 Air Liquide Japan Ltd Vaporization amount monitoring system for solid material and monitoring method
JP2016040402A (en) * 2014-08-12 2016-03-24 東京エレクトロン株式会社 Raw material gas supply device

Also Published As

Publication number Publication date
JPH0535225B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JP5647083B2 (en) Raw material vaporization supply device with raw material concentration detection mechanism
KR100222344B1 (en) Chemical vapor deposition system
US8459290B2 (en) Material gas concentration control system
TW201714207A (en) Gas control system and program for gas control system
JP2006222133A (en) Method of supplying material gas, and apparatus thereof
JPS61279678A (en) Control device for flow rate
TW201308483A (en) Raw material gas supply device for semiconductor manufacturing device
EP1870490A2 (en) Evaporator for CVD and gas flow rate regulator.
TW202043736A (en) Light absorbance analysis apparatus and program record medium for recording programs of light absorbance analysis apparatus
US5190726A (en) Apparatus for measuring the flow rate of water vapor in a process gas including steam
US5213769A (en) Mixture forming method and apparatus
JPH1090033A (en) Method for quickly identifying gas flow or liquid flow and device for executing the method
JP3260800B2 (en) Gas dilution system and gas dilution method
CN111417913B (en) Mass flow control system, semiconductor manufacturing apparatus including the same, and vaporizer
JP3230431B2 (en) Gas measurement device
JPH01321508A (en) Oxygen density controller
JPH0653926B2 (en) Chemical vapor deposition equipment
JP2000045060A (en) Controlling method of nitriding furnace
JPH0518055B2 (en)
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
WO1991003731A1 (en) Method of and device for measuring extremely small quantity of oxygen in gas
JPH0222472A (en) Device for feeding gas of liquid starting material for vapor growth
JPS60244332A (en) Apparatus for gasification supply of condensible material
JPH02268826A (en) Flow rate control device for evaporated gas
JPS61202212A (en) Level controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees