JPH02268826A - Flow rate control device for evaporated gas - Google Patents

Flow rate control device for evaporated gas

Info

Publication number
JPH02268826A
JPH02268826A JP9029089A JP9029089A JPH02268826A JP H02268826 A JPH02268826 A JP H02268826A JP 9029089 A JP9029089 A JP 9029089A JP 9029089 A JP9029089 A JP 9029089A JP H02268826 A JPH02268826 A JP H02268826A
Authority
JP
Japan
Prior art keywords
flow rate
mass flow
gas
carrier gas
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9029089A
Other languages
Japanese (ja)
Other versions
JPH0642938B2 (en
Inventor
Mayumi Arai
荒井 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP1090290A priority Critical patent/JPH0642938B2/en
Publication of JPH02268826A publication Critical patent/JPH02268826A/en
Publication of JPH0642938B2 publication Critical patent/JPH0642938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To precisely carry out the flow rate control of evaporated gas by detecting the flow rate of carrier gas flowing into an evaporation means and the flow rate of the carrier gas contg. the evaporated gas of raw liquid flowing out from the evaporation means as mass flow rate. CONSTITUTION:The carrier gas sent from a carrier gas source is introduced into a liquid raw material 102, and the carrier gas contg. evaporated gas of raw liquid to the saturated vapor pressure is sent out from the space free from the liquid raw material 102 in a vessel 101 to introduce to a reaction furnace. A mass flow rate sensor 103 and a valve 104 are provided in the flow passage between the carrier gas source and the vessel 101, and a mass flow rate sensor 105 is provided in the flow passage between the vessel 101 and the reaction furnace. The outputs F1, F2 of the mass flow rate sensors 103, 105 are sent to an arithmetic unit 106. The output Q of the arithmetic unit 106 is given to a comparing and controlling circuit 107, and the comparing and controlling circuit 107 controls the valve 104 so that the source flow rate Q0 of the liquid raw material 102 coincides with the output Q of the arithmetic unit 106.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体や光ファイバー等の製造工程で、液
体原料を気化して供給を行う場合に用いられる気化ガス
の流量制御装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a vaporized gas flow rate control device used when vaporizing and supplying liquid raw materials in the manufacturing process of semiconductors, optical fibers, etc. .

(従来の技術) 半導体製造における薄膜作成やエツチング、または、光
フアイバー母材の製造は、ガス種の反応により行われる
。ここで、反応のガス種は常温で気体であるものばかり
でなく、液体のものも用いられる。常温で液体のガス種
を用いる場合、不活性ガスであるキャリアガスを用い、
キャリアガス中に飽和蒸気圧まで原料の液体を気化させ
てガス種を含ませ、反応炉へ供給する手法が一般的であ
る。
(Prior Art) Thin film formation and etching in semiconductor manufacturing or optical fiber base material manufacturing are performed by reactions between gas species. Here, the gas species used for the reaction is not only gaseous at room temperature, but also liquid. When using a gas species that is liquid at room temperature, use a carrier gas that is an inert gas,
A common method is to vaporize a raw material liquid to a saturated vapor pressure in a carrier gas to include gas species, and then supply the carrier gas to a reactor.

この場合、従来においては第5図に示すような装置によ
る流量制御が行われていた。容器501に適量の液体原
料502を入れ、液体原料502内にHe  (ヘリウ
ム)、N2 (、水素)等の原料ガスに対して不活性な
ガスであるキャリアガスを導びく。
In this case, conventionally, flow rate control has been performed using a device as shown in FIG. An appropriate amount of liquid raw material 502 is placed in a container 501, and a carrier gas such as He (helium), N2 (hydrogen), etc. that is inert to the raw material gas is introduced into the liquid raw material 502.

キャリアガスのガス源と容器501との間に、ガスの熱
伝導率を検出するセンサ503、ガス流量を調整するバ
ルブ504、質量流量計505を設け、また、容器50
1と反応炉との間に、ガスの熱伝導率を検出するセンサ
506を設ける。容器501の気体の部分からキャリア
ガスに飽和蒸気圧まで含まれる液体原料502の気化ガ
スを反応炉へ導びく。センサ503とセンサ506とか
ら得られる熱伝導率の検出信号をブリッジ回路507へ
導出し、容器501から送出されるガス中の液体原料5
02の気化ガスの濃度Rを検出する。濃度Rの信号は、
ブリッジ回路507から演算回路508へ送出される。
A sensor 503 that detects the thermal conductivity of the gas, a valve 504 that adjusts the gas flow rate, and a mass flow meter 505 are provided between the carrier gas source and the container 501.
A sensor 506 for detecting the thermal conductivity of the gas is provided between the reactor 1 and the reactor. The vaporized gas of the liquid raw material 502 contained in the carrier gas up to the saturated vapor pressure is led from the gas portion of the container 501 to the reactor. The thermal conductivity detection signals obtained from the sensor 503 and the sensor 506 are led to the bridge circuit 507, and the liquid raw material 5 in the gas sent out from the container 501 is
The concentration R of the vaporized gas of 02 is detected. The concentration R signal is
It is sent from the bridge circuit 507 to the arithmetic circuit 508.

演算回路50Bには質量流量計505からキャリアガス
の質量流量Cの信号が与えられ、演算回路508は所定
の演算を行って濃度Rと質量流量Cとにより液体原料5
02の気化ガスが容器501から送出されるソース流量
Sを算出する。ソース流量Sの信号は比較制御部509
へ与えられ、外部から入力された設定流量S1の信号と
比較される。比較制御部509は比較結果に基づきバル
ブ504の開度制御を行ってキャリアガスの雪量流量C
を変化させて設定流量S1とソース流量Sとの一致を図
る。
The calculation circuit 50B is given a signal of the mass flow rate C of the carrier gas from the mass flow meter 505, and the calculation circuit 508 performs a predetermined calculation to calculate the liquid raw material 5 based on the concentration R and the mass flow rate C.
The source flow rate S at which the vaporized gas No. 02 is sent out from the container 501 is calculated. The signal of the source flow rate S is the comparison control unit 509
and is compared with a signal of the set flow rate S1 inputted from the outside. The comparison control unit 509 controls the opening degree of the valve 504 based on the comparison result to adjust the snow amount flow rate C of the carrier gas.
The set flow rate S1 and the source flow rate S are made to match by changing the flow rate S1.

(発明が解決しようとする課H) しかしながら上記の気化ガスの流量制御装置によると、
熱伝導率のセンサを用いているため、キャリアガスと液
体原料との熱伝導率は大きく異なるほどよく、キャリア
ガスとしてはHeやN2などのような他のガスと比べて
著しく熱伝導率が高いガスが使用され、熱伝導率があま
り高くないガス(例えば、N2やAr等)を用いると検
出精度が悪くなり、低蒸気圧のソース流量Sを的確に検
出できない問題点があった。
(Problem H to be solved by the invention) However, according to the above vaporized gas flow rate control device,
Since a thermal conductivity sensor is used, the larger the difference in thermal conductivity between the carrier gas and the liquid raw material, the better.As a carrier gas, the thermal conductivity is significantly higher than that of other gases such as He and N2. When a gas is used, and a gas whose thermal conductivity is not very high (for example, N2, Ar, etc.) is used, the detection accuracy deteriorates, and there is a problem that the source flow rate S with low vapor pressure cannot be accurately detected.

また、熱伝導率はガスの圧力により変化するものである
から、センサ付近のガス圧が減圧または加圧となると誤
差を生じる。即ち、キャリアガス源を高圧とした場合や
反応炉側を減圧した場合には誤差が大きくなり使用でき
ないという問題点があった。
Furthermore, since the thermal conductivity changes depending on the pressure of the gas, an error occurs if the gas pressure near the sensor is reduced or increased. That is, when the pressure of the carrier gas source is set to high or when the pressure on the reactor side is reduced, the error becomes large and there is a problem that the method cannot be used.

本発明はこのような従来の気化ガスの流量制御装置の問
題点を解決せんとしてなされたもので、その目的は、キ
ャリアガスの種類に係りなく、気化ガスの流量制御を精
度よく行うことができるとともに、ガス源とガス供給先
との圧力状態に係りなく、的確な気化ガスの流量制御を
行うことのできる気化ガスの流量制御装置を提供するこ
とである。
The present invention was made to solve the problems of the conventional vaporized gas flow rate control device, and its purpose is to be able to accurately control the vaporized gas flow rate regardless of the type of carrier gas. Another object of the present invention is to provide a vaporized gas flow rate control device that can accurately control the vaporized gas flow rate regardless of the pressure state between the gas source and the gas supply destination.

(課題を解決するための手段) 本発明では、液体原料を気化させる気化手段と、 この気化手段へキャリアガスを送出する流路に設けられ
る第1の質量流量センサと、 前記気化手段からキャリアガスとともに気化ガスが送ら
れる流路に設けられる第2の質量流量センサと、 前記第1の質量流量センサへ到るキャリアガス入出路と
前記第2の質量流量センサへ到るキャリアガス及び気化
ガスの入出路とのうち少なくとも一箇所に設けられるガ
ス流量調整用のバルブと、前記第1の質量流量センサに
より得られるキャリアガスの質量流量データと、前記第
2の質量流量センサにより得られるキャリアガス及び気
化ガスの質量流量データとに基づき前記気化手段から送
られる気化ガスの質量流量を算出する演算手段と、 外部から設定された前記気化手段から送られる気化ガス
の質量流量データと、前記演算手段により得られた質量
流量データとの比較を行い、この比較結果に基づき前記
バルブの制御を行う流量調整手段とを備えさせて気化ガ
スの流量制御装置を構成した。
(Means for Solving the Problems) The present invention includes a vaporizing means for vaporizing a liquid raw material, a first mass flow sensor provided in a flow path for sending carrier gas to the vaporizing means, and a carrier gas from the vaporizing means. and a second mass flow rate sensor provided in a flow path through which vaporized gas is sent, a carrier gas inlet/output path leading to the first mass flow sensor, and a carrier gas and vaporized gas flow path leading to the second mass flow sensor. a gas flow rate adjustment valve provided at at least one location of the inlet/outlet passage, carrier gas mass flow rate data obtained by the first mass flow sensor, and carrier gas and carrier gas obtained by the second mass flow sensor. calculation means for calculating the mass flow rate of the vaporized gas sent from the vaporization means based on the mass flow rate data of the vaporization gas; and the mass flow rate data of the vaporization gas sent from the vaporization means set from the outside, A vaporized gas flow rate control device was constructed by comprising a flow rate adjustment means for comparing the obtained mass flow rate data and controlling the valve based on the comparison result.

(作用) 上記構成によると、気化手段へ流入するキャリアガスの
流量と、気化手段から送出される液体原料の気化ガスを
含んだキャリアガスの流量とが質量流量として検出され
るため、ガス種別やガス圧力に関係なく流量の検出が可
能であり、この質量流量を用いて流量制御を行うため的
確な制御ができる。
(Function) According to the above configuration, the flow rate of the carrier gas flowing into the vaporization means and the flow rate of the carrier gas containing the vaporized gas of the liquid raw material sent out from the vaporization means are detected as mass flow rates. The flow rate can be detected regardless of the gas pressure, and since the mass flow rate is used to control the flow rate, accurate control is possible.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。第
1図は本発明の一実施例のブロック図である。同図にお
いて、101は気化手段を構成する容器を示し、液体原
料102が適量入れられている。液体原料102内には
キャリアガス源から送られたキャリアガスが導入される
。容器101の液体原料102がない空間からは、液体
原料102の気化ガスを飽和蒸気圧まで含んだキャリア
ガスが送出され反応炉へ導びかれる。キャリアガス源と
容器101との間の流路には質量流量センサ103及び
バルブ104が設けられている。また、容器101と反
応炉との間の流路には質量流量センサ105が設けられ
ている。質量流量センサ103.105の出力F1゜F
2は演算手段を構成する演算器106へ送出される。こ
こに、質量流量センサ103.105は例えば、特願昭
59−227844号に開示されている熱式の質量流量
センサである。ところで、この種の質量流量センサが検
出した質量流量Fは、流体の物性値(C3;比熱、ρ(
密度))により検出感度を異にし、 F(Xρ・Cp なる関係がある。従って、質量流量センサ103の場合
にはキャリアガスの比熱と密度とにより校正すると質量
流量が求められるが、質量流量センサ105の場合には
混合ガスについての質量流量であり、物性値が不定であ
り上記のような校正を行えない。即ち、混合ガスの混合
比は容器101内の圧力Pによって、 混合比= (P  Pb): Pb となる。なお、Pbは容器101内の温度における液体
原料102の飽和蒸気圧を示す。また、上記混合比は、
Pbが温度に依存するため容器101内の温度によって
も変化する。このように混合比の異なるガスについて、
物性値が不定になることが判る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention. In the figure, reference numeral 101 indicates a container constituting the vaporizing means, into which an appropriate amount of liquid raw material 102 is placed. A carrier gas sent from a carrier gas source is introduced into the liquid raw material 102 . From the space in the container 101 where the liquid raw material 102 is not present, a carrier gas containing the vaporized gas of the liquid raw material 102 up to the saturated vapor pressure is sent out and guided to the reactor. A mass flow sensor 103 and a valve 104 are provided in the flow path between the carrier gas source and the container 101 . Furthermore, a mass flow sensor 105 is provided in the flow path between the container 101 and the reactor. Output F1°F of mass flow sensor 103.105
2 is sent to the arithmetic unit 106 constituting the arithmetic means. Here, the mass flow rate sensors 103 and 105 are, for example, thermal mass flow rate sensors disclosed in Japanese Patent Application No. 59-227844. By the way, the mass flow rate F detected by this type of mass flow sensor is determined by the physical property value of the fluid (C3; specific heat, ρ(
The detection sensitivity differs depending on the density), and the relationship is F(Xρ・Cp. Therefore, in the case of the mass flow sensor 103, the mass flow rate can be found by calibrating with the specific heat and density of the carrier gas, but the In the case of 105, it is the mass flow rate of the mixed gas, and the physical property value is indefinite, so the above calibration cannot be performed.In other words, the mixing ratio of the mixed gas is determined by the pressure P in the container 101, and the mixing ratio = (P Pb): Pb. Note that Pb indicates the saturated vapor pressure of the liquid raw material 102 at the temperature inside the container 101.The above mixing ratio is
Since Pb depends on temperature, it also changes depending on the temperature inside the container 101. For gases with different mixing ratios,
It can be seen that the physical property values become undefined.

そこで、本実施例では、質量流量センサ105について
もキャリアガスが100%であるガスを検出しているも
のとして校正を行うと、以下の式が成立することから、
演算器106に演算を行わせて混合ガス中の液体原料1
02の気化ガスの質量流量Qを求める。−設面に、質量
流量センサにおいて、Q = F−K N /Cp・ρ
      ・・・(1)ここで、Fは質量流量センサ
の出力、Nはコレクションファクター(ガスによる定数
)、Kは定数、ρはガスの密度、Cpはガスの比熱であ
る。
Therefore, in this embodiment, if the mass flow sensor 105 is also calibrated on the assumption that it is detecting a gas containing 100% carrier gas, the following equation holds true.
The liquid raw material 1 in the mixed gas is calculated by the calculation unit 106.
The mass flow rate Q of the vaporized gas of 02 is determined. - On the design surface, in the mass flow sensor, Q = F-K N /Cp・ρ
...(1) Here, F is the output of the mass flow sensor, N is the collection factor (constant depending on the gas), K is a constant, ρ is the density of the gas, and Cp is the specific heat of the gas.

さて、混合ガスの場合、混合モル比をx:yとすると、
混合ガスの質量流量Q。1Xは質量流量センサの出力を
FMIXとして、(1)式は次式のように変形できる。
Now, in the case of a mixed gas, if the mixing molar ratio is x:y,
Mass flow rate Q of mixed gas. 1X is the output of the mass flow sensor as FMIX, and equation (1) can be transformed as shown in the following equation.

QHIX =FHIX ′K (xN1+yN2 ) 
/(XρI Cp1+3’ρ2 Cp2)  ”°(2
)サフィックスはx:yの夫々のガスに対応することを
示す。
QHIX = FHIX 'K (xN1+yN2)
/(XρI Cp1+3'ρ2 Cp2) ”°(2
) The suffix indicates that it corresponds to each gas in x:y.

全質量流量センサ103.105の出力をFl、F2と
する。このとき、混合ガスのモル比はFl:Qであるか
ら、(2)式は、 Q + F = F 2・K(N1F1+N2Q)/(
F1ρI CP1+Qρ2CP2)・・・(3)となる
。このQについての二次方程式を解いて、正の根を求め
るように演算器106は動作する。
Let the outputs of the total mass flow rate sensors 103 and 105 be Fl and F2. At this time, since the molar ratio of the mixed gas is Fl:Q, equation (2) is: Q + F = F 2 · K (N1F1 + N2Q) / (
F1ρI CP1+Qρ2CP2) (3). The arithmetic unit 106 operates to solve this quadratic equation regarding Q and find a positive root.

演算器10Bの出力Qは、流量調整手段を構成する比較
制御回路107へ与えられる。比較制御回路107には
、外部から液体原料102の気化ガスのソース流量Q。
The output Q of the arithmetic unit 10B is given to a comparison control circuit 107 that constitutes a flow rate adjustment means. The comparison control circuit 107 receives a source flow rate Q of the vaporized gas of the liquid raw material 102 from the outside.

が与えられる。比較制御回路107はQQとQとが一致
するようにバルブ104を制御する。
is given. Comparison control circuit 107 controls valve 104 so that QQ and Q match.

このように構成された気化ガスの流量制御装置は、第2
図に示すようなフローチャートに基づき動作する。キャ
リアガス源からキャリアガスの供給が開始され、装置の
電源が投入されてスタートとなると、設定されたソース
流量Q。を比較制御回路107が取込む(201)。次
に、演算器106は雪量流量センサ103.105の出
力Fl、F2を取込み(202)、(3)式の正の根を
求める演算を行って<203)、結果を比較制御回路1
07へ送る。演算器106は、例えば、マイクロコンピ
ュータで構成され、(3)式の正の根を求めるプログラ
ム、各定数データを予め有しているものとする。演算器
106からQを受は取った比較制御回路107はQがQ
The vaporized gas flow rate control device configured in this way has a second
It operates based on the flowchart shown in the figure. When the supply of carrier gas is started from the carrier gas source and the device is powered on, the set source flow rate Q is started. is taken in by the comparison control circuit 107 (201). Next, the calculator 106 takes in the outputs Fl and F2 of the snow flow rate sensors 103 and 105 (202), calculates the positive root of equation (3) (<203), and compares the results with the control circuit 1.
Send to 07. It is assumed that the arithmetic unit 106 is composed of, for example, a microcomputer, and has in advance a program for finding the positive root of equation (3) and constant data. The comparison control circuit 107, which received Q from the arithmetic unit 106,
.

と等しいか検出しく204)、等しくなければその大小
関係を検出して(205)、Qo>Qであればバルブ1
04を開き(206)、Q>Q。であれば、バルブ10
4を閉じる(20γ)ようにして、再び、ステップ20
2からの動作を続ける。このようにして、設定されたソ
ース流量QQの液体原料102の気化ガスが反応炉へ供
給される。
204), and if not, the magnitude relationship is detected (205), and if Qo>Q, valve 1
04 (206), Q>Q. If so, valve 10
4 (20γ) and repeat step 20.
Continue the operation from 2. In this way, the vaporized gas of the liquid raw material 102 at the set source flow rate QQ is supplied to the reactor.

第3図には第1図の装置のより詳細な構成図が示されて
いる。譬x流量センサ103.105には、2つの抵抗
発熱体とブリッジ回路の2つの抵抗とによるブリッジが
備えられ、このブリッジへ電源301から直流電圧を与
える。ブリッジのab間の電圧を増幅器302で増幅し
て演算器106及び表示器303へ送出する。表示器3
03は例えば7セグメントのLCDを所要桁だけ並べて
、表示制御を行う構成であり、質量流量センサ103.
105から出力された出力によるキャリアガスと混合ガ
スとの流量のほか、演算器106の出力による混合ガス
中のソース流量が表示される。304は設定器であって
例えば、ポテンショメータ等で構成され、設定により電
圧値としてソース流iQQが与えられる。バルブ104
は公知のサーマルバルブであり、比較制御回路107よ
り与えられる電圧で、弁棒に装着された発熱線の発熱を
制御して弁棒を伸縮させる。
FIG. 3 shows a more detailed block diagram of the apparatus shown in FIG. The flow rate sensors 103 and 105 are equipped with a bridge made up of two resistance heating elements and two resistors of a bridge circuit, and a DC voltage is applied from the power supply 301 to this bridge. The voltage between AB of the bridge is amplified by an amplifier 302 and sent to the arithmetic unit 106 and the display 303. Display 3
03 is a configuration in which, for example, 7-segment LCDs are arranged in the required number of digits to control the display, and the mass flow sensor 103.
In addition to the flow rate of the carrier gas and mixed gas based on the output output from the calculator 105, the source flow rate in the mixed gas based on the output of the calculator 106 is displayed. Reference numeral 304 denotes a setting device, which is composed of, for example, a potentiometer, and the source current iQQ is given as a voltage value by setting. Valve 104
is a known thermal valve, and the voltage applied from the comparison control circuit 107 controls the heat generation of the heating wire attached to the valve stem to expand and contract the valve stem.

第4図にはバルブ104の設置位置を、容器101と質
量流量センサ105との間とした他の実施例が示されて
いる。他の構成は第1図の場合と同様であるから、その
詳細は説明せぬが、同様な流量制御が行われる。バルブ
104の設置位置としては上記2例以外に、キャリアガ
ス源と質量流量センサ103との間、質量流量センサ1
05と反応炉との間があり、これら4箇所の少なくとも
1箇所に設けられる。ここで、バルブ104の設置位置
及び個数と関連して、混合ガス中の液体原料の気化ガス
の流量を所定とする手法について考察する。この手法と
して、(1)容器内の圧力Pを制御する手法、(2)容
器内の温度Tを制御する手法、(3)キャリアガスの流
量を制御する手法が考えられる。(1)では容器の二次
側にもバルブが必要となり、制御が煩雑となり易い。(
2)ではヒータが必要でしかも容器の温度を均一とじか
つ、流路においても加熱が必要で構成が大型化する。(
3)の場合には、キャリアガスの流量制御のバルブが1
つあればよく、(1)(2)のような問題点を除去でき
る。
FIG. 4 shows another embodiment in which the valve 104 is installed between the container 101 and the mass flow sensor 105. Since the other configurations are the same as in the case of FIG. 1, similar flow rate control is performed although the details will not be explained. In addition to the above two examples, the valve 104 may be installed between the carrier gas source and the mass flow sensor 103, or between the mass flow sensor 1
05 and the reactor, and is provided at at least one of these four locations. Here, a method for setting the flow rate of the vaporized gas of the liquid raw material in the mixed gas in relation to the installation position and number of valves 104 will be considered. Possible methods for this include (1) a method of controlling the pressure P inside the container, (2) a method of controlling the temperature T inside the container, and (3) a method of controlling the flow rate of the carrier gas. In (1), a valve is also required on the secondary side of the container, which tends to make control complicated. (
In the case of 2), a heater is required to keep the temperature of the container uniform, and heating is also required in the flow path, which increases the size of the structure. (
In the case of 3), the carrier gas flow rate control valve is
It is sufficient to have one, and problems such as (1) and (2) can be eliminated.

また、本実施例のように熱式質1流量センサを用いた場
合には、比熱Cpは約3000種のガスについて公知で
あり、新らたに作られたガス等でない限り実際の計測な
しで装置の動作が可能である。
In addition, when a thermal quality 1 flow rate sensor is used as in this example, the specific heat Cp is known for about 3000 types of gases, and unless it is a newly created gas, actual measurement is not required. Operation of the device is possible.

この点、熱伝導率のセンサを用いた従来例では、熱伝導
率が公知であるガスの種類が約70種と少なく、半導体
や光ファイバの製造に用いられるガスでは、熱伝導率の
計測を当該ガスを用いて行わねばならず、本実施例が優
れていると言える。
In this regard, in conventional methods using thermal conductivity sensors, there are only about 70 types of gases whose thermal conductivities are known. Since the gas must be used, this embodiment can be said to be superior.

なお、本実施例では、演算器106をマイクロコンピュ
ータとしたが、(3)式で示されるQについての二次方
程式を解く回路(電子回路によって近似的に求めるもの
も含む)を用いてもよい。特に、近似回路を用いると構
成が簡単となる。
In this embodiment, the arithmetic unit 106 is a microcomputer, but a circuit for solving the quadratic equation for Q expressed by equation (3) (including one approximately obtained using an electronic circuit) may also be used. . In particular, using an approximation circuit simplifies the configuration.

「発明の効果] 以上説明したように本発明によれば、気化手段へ流入す
るキャリアガスの流量と、気化手段から送出される液体
原料の気化ガスを含んだキャリアガスの流量とが質量流
量として検出されるため、ガス種別やガス圧力に関係な
く流量の検出が可能であり、キャリアガスを液体原料と
の関係で選択する必要がなく、また、キャリアガス源と
ガス供給先との圧力関係がどのようであっても用いるこ
とができる。そして、上記で検出された買置流量により
流量制御が行われて、的確な制御が保証される。
[Effects of the Invention] As explained above, according to the present invention, the flow rate of the carrier gas flowing into the vaporization means and the flow rate of the carrier gas containing the vaporized gas of the liquid raw material sent out from the vaporization means are expressed as mass flow rates. Since the flow rate is detected, it is possible to detect the flow rate regardless of the gas type or gas pressure, there is no need to select the carrier gas in relation to the liquid raw material, and there is no need to select the carrier gas depending on the relationship between the carrier gas source and the gas supply destination. Any method can be used.The flow rate control is performed based on the purchase flow rate detected above, and accurate control is guaranteed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は本発
明の一実施例の動作を説明するためのフローチャート、
第3図は本発明の一実施例の詳細な構成図、第4図は本
発明の他の実施例のブロック図、第5図は従来の気化ガ
スの流量制御装置のブロック図である。 101・・・容器       102・・・液体原料
103、105・・・質量流量センサ 104−3.バルブ      106・・・演算器1
07・・・比較制御回路   301・・・電源302
3.3025・・・増幅器 303・・・表示器304
・・・設定器 代理人 弁理士  本 1)  崇 W文−+窄に室 第2 図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a flowchart for explaining the operation of an embodiment of the present invention.
FIG. 3 is a detailed configuration diagram of one embodiment of the present invention, FIG. 4 is a block diagram of another embodiment of the present invention, and FIG. 5 is a block diagram of a conventional vaporized gas flow rate control device. 101... Container 102... Liquid raw material 103, 105... Mass flow sensor 104-3. Valve 106...computer 1
07... Comparison control circuit 301... Power supply 302
3.3025... Amplifier 303... Display 304
...Setting device agent Patent attorney Book 1) Takashi W text - + Narrow room Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)液体原料を気化させる気化手段と、 この気化手段へキャリアガスを送出する流路に設けられ
る第1の質量流量センサと、 前記気化手段からキャリアガスとともに気化ガスが送ら
れる流路に設けられる第2の質量流量センサと、 前記第1の質量流量センサへ到るキャリアガス入出路と
前記第2の質量流量センサへ到るキャリアガス及び気化
ガスの入出路とのうち少なくとも一箇所に設けられるガ
ス流量調整用のバルブと、前記第1の質量流量センサに
より得られるキャリアガスの質量流量データと、前記第
2の質量流量センサにより得られるキャリアガス及び気
化ガスの質量流量データとに基づき前記気化手段から送
られる気化ガスの質量流量を算出する演算手段と、 外部から設定された前記気化手段から送られる気化ガス
の質量流量データと、前記演算手段により得られた質量
流量データとの比較を行い、この比較結果に基づき前記
バルブの制御を行う流量調整手段とを備えたことを特徴
とする気化ガスの流量制御装置。
(1) A vaporizing means for vaporizing a liquid raw material; a first mass flow sensor provided in a flow path for sending carrier gas to the vaporizing means; and a first mass flow sensor provided for a flow path for sending the vaporized gas together with the carrier gas from the vaporizing means. a second mass flow rate sensor provided in at least one of a carrier gas inlet/output path leading to the first mass flow rate sensor and a carrier gas and vaporized gas inlet/outlet path leading to the second mass flow rate sensor; the gas flow rate adjustment valve, the mass flow rate data of the carrier gas obtained by the first mass flow sensor, and the mass flow rate data of the carrier gas and vaporized gas obtained by the second mass flow sensor. A calculation means for calculating the mass flow rate of the vaporized gas sent from the vaporization means, and a comparison between the mass flow rate data of the vaporized gas sent from the vaporization means set from the outside and the mass flow rate data obtained by the calculation means. and a flow rate adjusting means for controlling the valve based on the comparison result.
(2)前記演算手段は、前記第1の質量流量センサによ
り得られるキャリアガスの質量流量データと前記第2の
質量流量センサにより得られるキャリアガス及び気化ガ
スの質量流量データとを含み前記気化手段から送出され
る気化ガスの質量流量を未知数とする二次方程式の解を
求める演算を行うことを特徴とする請求項(1)記載の
気化ガスの流量制御装置。
(2) The calculation means includes the mass flow rate data of the carrier gas obtained by the first mass flow sensor and the mass flow rate data of the carrier gas and vaporized gas obtained by the second mass flow sensor. 2. The vaporized gas flow rate control device according to claim 1, wherein the vaporized gas flow rate control device performs an operation to find a solution to a quadratic equation in which the mass flow rate of vaporized gas sent from the vaporized gas is an unknown quantity.
JP1090290A 1989-04-10 1989-04-10 Vaporized gas flow controller Expired - Lifetime JPH0642938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090290A JPH0642938B2 (en) 1989-04-10 1989-04-10 Vaporized gas flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090290A JPH0642938B2 (en) 1989-04-10 1989-04-10 Vaporized gas flow controller

Publications (2)

Publication Number Publication Date
JPH02268826A true JPH02268826A (en) 1990-11-02
JPH0642938B2 JPH0642938B2 (en) 1994-06-08

Family

ID=13994400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090290A Expired - Lifetime JPH0642938B2 (en) 1989-04-10 1989-04-10 Vaporized gas flow controller

Country Status (1)

Country Link
JP (1) JPH0642938B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329357A (en) * 1992-05-28 1993-12-14 Shin Etsu Handotai Co Ltd Gas supply device
JPH08203832A (en) * 1993-12-30 1996-08-09 Tokyo Electron Ltd Semiconductor manufacturing equipment
JP2014145115A (en) * 2013-01-29 2014-08-14 Tokyo Electron Ltd Raw gas supply apparatus, film deposition apparatus, flow rate measuring method, and memory medium
WO2019065611A1 (en) * 2017-09-29 2019-04-04 日立金属株式会社 Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
CN114184446A (en) * 2021-12-21 2022-03-15 中国计量科学研究院 Volatile organic gas standard substance preparation system capable of weighing on line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222472A (en) * 1988-07-12 1990-01-25 Nec Corp Device for feeding gas of liquid starting material for vapor growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222472A (en) * 1988-07-12 1990-01-25 Nec Corp Device for feeding gas of liquid starting material for vapor growth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329357A (en) * 1992-05-28 1993-12-14 Shin Etsu Handotai Co Ltd Gas supply device
JPH08203832A (en) * 1993-12-30 1996-08-09 Tokyo Electron Ltd Semiconductor manufacturing equipment
JP2014145115A (en) * 2013-01-29 2014-08-14 Tokyo Electron Ltd Raw gas supply apparatus, film deposition apparatus, flow rate measuring method, and memory medium
WO2019065611A1 (en) * 2017-09-29 2019-04-04 日立金属株式会社 Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
CN111417913A (en) * 2017-09-29 2020-07-14 日立金属株式会社 Mass flow control system, semiconductor manufacturing apparatus including the same, and vaporizer
US11550341B2 (en) 2017-09-29 2023-01-10 Hitachi Metals, Ltd. Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
CN114184446A (en) * 2021-12-21 2022-03-15 中国计量科学研究院 Volatile organic gas standard substance preparation system capable of weighing on line

Also Published As

Publication number Publication date
JPH0642938B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4341107A (en) Calibratable system for measuring fluid flow
US6631334B2 (en) Pressure-based mass flow controller system
US8800589B2 (en) Material gas concentration control system
US5868159A (en) Pressure-based mass flow controller
TWI444799B (en) Calibration method for flow rate controller and flow rate measuring device, calibration system for flow rate controller, and semiconductor production apparatus
US6439253B1 (en) System for and method of monitoring the flow of semiconductor process gases from a gas delivery system
WO2013035232A1 (en) Material vaporization supply device equipped with material concentration detection mechanism
US5968588A (en) In-situ liquid flow rate estimation and verification by sonic flow method
US5575854A (en) Semiconductor treatment apparatus
CN100462887C (en) Semiconductor production system and semiconductor production process
CN101048643A (en) Attitude error self-correction for thermal sensors of mass flow meters and controllers
CN101019007A (en) Attitude insensitive flow device system and method
US5190726A (en) Apparatus for measuring the flow rate of water vapor in a process gas including steam
JP2004264881A (en) Flow control method of hydrogen fluoride gas, and flow control device for hydrogen fluoride gas used therefor
TW202124920A (en) Low temperature thermal flow ratio controller
JPS5934420B2 (en) chemical vapor distribution system
US11550341B2 (en) Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
JPH02268826A (en) Flow rate control device for evaporated gas
JPH02217474A (en) Chemical metallizing apparatus
JPH0535225B2 (en)
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
JPH08203832A (en) Semiconductor manufacturing equipment
SU1089460A1 (en) Device for measuring and adjusting amount of reagent in gas mixture
JPH02273535A (en) Gas flow control device
JP3311762B2 (en) Mass flow controller and semiconductor device manufacturing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 15

EXPY Cancellation because of completion of term