JPH0518055B2 - - Google Patents

Info

Publication number
JPH0518055B2
JPH0518055B2 JP60121725A JP12172585A JPH0518055B2 JP H0518055 B2 JPH0518055 B2 JP H0518055B2 JP 60121725 A JP60121725 A JP 60121725A JP 12172585 A JP12172585 A JP 12172585A JP H0518055 B2 JPH0518055 B2 JP H0518055B2
Authority
JP
Japan
Prior art keywords
gas
flow path
gas flow
concentration
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60121725A
Other languages
Japanese (ja)
Other versions
JPS61280556A (en
Inventor
Sukeyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TYLAN KK
Original Assignee
NIPPON TYLAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TYLAN KK filed Critical NIPPON TYLAN KK
Priority to JP12172585A priority Critical patent/JPS61280556A/en
Publication of JPS61280556A publication Critical patent/JPS61280556A/en
Publication of JPH0518055B2 publication Critical patent/JPH0518055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は第1のガスと第2のガスとの混合ガス
における第2のガスの濃度、例えばキヤリアガス
と膜形成に供される原料ガスとの混合ガスにおけ
る原料ガスの濃度を測定する装置に係り、特にガ
スの熱伝導率の変化を利用して測定を行なうガス
濃度測定装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to the concentration of the second gas in a mixed gas of the first gas and the second gas, for example, the concentration of the carrier gas and the raw material gas used for film formation. The present invention relates to a device for measuring the concentration of a raw material gas in a mixed gas, and particularly to a gas concentration measuring device that performs measurement using changes in the thermal conductivity of the gas.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原料ガスをキヤリアガスに乗せて反応炉に導
き、高温下での化学反応により試料上に薄膜を形
成するCVD法は、半導体装置およびその関連装
置において多用される膜形成技術の一つである。
CVD法においては液体または固体状の原料をガ
ス化して反応炉に供給する場合、安定な流量制御
を行なうことが重要であり、そのための種々の方
式が考案されている。その一つとしてキヤリアガ
スの流量および原料加熱温度を一定に保つこと
で、一定流量の蒸発ガス(キヤリアガスと原料ガ
スとの混合ガス)を得るキヤリアガス制御方式が
ある。しかし、この方式では原料の経時変化、蒸
発に伴う温度変化等により、蒸発量を一定に制御
することができない。
The CVD method, in which a raw material gas is carried on a carrier gas and introduced into a reactor to form a thin film on a sample through a chemical reaction at high temperatures, is one of the film formation techniques often used in semiconductor devices and related equipment.
In the CVD method, when a liquid or solid raw material is gasified and supplied to a reactor, it is important to perform stable flow control, and various methods have been devised for this purpose. One of them is a carrier gas control method that obtains a constant flow rate of evaporated gas (mixed gas of carrier gas and raw material gas) by keeping the carrier gas flow rate and raw material heating temperature constant. However, with this method, it is not possible to control the amount of evaporation to a constant level due to changes in the raw material over time, temperature changes accompanying evaporation, and the like.

この欠点を解消すべく、混合ガス中の原料ガス
の濃度を直接検出し、それに基いて原料ガス流量
を高精度に制御する方式が開発されている。具体
的には、第4図に示すようにキヤリアガス流路1
および混合ガス流路5にフイラメント2,4をそ
れぞれ挿入し、フイラメント2によりガスの熱伝
導率の変化を利用してキヤリアガスの濃度を検出
した後、キヤリアガスを原料タンク3に導びき原
料を蒸発させてキヤリアガスと原料ガスとの混合
ガスを作り、この混合ガス中の原料ガスの濃度を
同様にフイラメント4により検出する。これらの
フイラメント2,4を2辺に接続してホイートス
トン・ブリツジ回路を構成することにより、原料
ガスについての濃度比信号を求め、この濃度比信
号から原料ガスの流量を算出する。そして、この
原料ガス流量を設定流量と比較し、両者が一致す
るようにキヤリアガスの流量を調整するのであ
る。しかしながら、この方式では次のような問題
があつた。
In order to overcome this drawback, a method has been developed in which the concentration of the raw material gas in the mixed gas is directly detected and the flow rate of the raw material gas is controlled with high precision based on the detected concentration. Specifically, as shown in FIG.
After inserting the filaments 2 and 4 into the mixed gas flow path 5 and detecting the concentration of the carrier gas using the change in thermal conductivity of the gas using the filament 2, the carrier gas is led to the raw material tank 3 to evaporate the raw material. A mixed gas of the carrier gas and the raw material gas is produced, and the concentration of the raw material gas in this mixed gas is similarly detected by the filament 4. By connecting these filaments 2 and 4 on two sides to form a Wheatstone bridge circuit, a concentration ratio signal for the source gas is obtained, and the flow rate of the source gas is calculated from this concentration ratio signal. This raw material gas flow rate is then compared with the set flow rate, and the carrier gas flow rate is adjusted so that the two match. However, this method has the following problems.

最近、CVD装置における膜形成原料としては、
低蒸気圧材料の使用が要求される傾向にある。低
蒸気圧材料は材料の高温化によつて原料ガスの多
量供給を可能とする反面、高温化によつて材料の
熱分解が生じ、また固体材料の場合は粒子の固化
が起こる。これを避けるには、材料を減圧下で蒸
発させて低温化を図ればよい。ところが、上述し
た流量制御装置は常圧下では特に問題はないが、
20Torr以下というような減圧下ではガスの熱伝
導率が圧力の影響を受ける関係で、上記2つのフ
イラメント2,4間に存在する原料タンク3、配
管等の圧力損失により生じる圧力差によつて原料
ガスの濃度測定値に誤差が生じ、高精度な流量制
御が困難となる。
Recently, as a film forming raw material in CVD equipment,
The trend is to require the use of low vapor pressure materials. Low vapor pressure materials enable the supply of a large amount of raw material gas by increasing the temperature of the material, but the increase in temperature causes thermal decomposition of the material, and in the case of solid materials, solidification of particles occurs. To avoid this, the material can be evaporated under reduced pressure to lower the temperature. However, although there is no particular problem with the above-mentioned flow control device under normal pressure,
Under reduced pressure, such as 20 Torr or less, the thermal conductivity of gas is affected by the pressure, so the raw material is Errors occur in the gas concentration measurements, making it difficult to control the flow rate with high accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、混合ガス中の所望のガスの濃
度をガス流路が減圧下にある場合でも、圧力によ
る影響を受けることなく高精度に測定できるガス
濃度測定装置を提供することにある。
An object of the present invention is to provide a gas concentration measuring device that can measure the concentration of a desired gas in a mixed gas with high precision without being affected by pressure even when the gas flow path is under reduced pressure.

〔発明の概要〕[Summary of the invention]

本発明はこの目的を達成するため、第1のガス
と第2のガスとの混合ガス中の第2のガスの濃度
を測定するガス濃度測定装置において、前記混合
ガスを通過させる混合ガス流路と、前記第1のガ
スと同種のガスを参照ガスとして通過させる参照
ガス流路と、前記混合ガス流路および参照ガス流
路にそれぞれ挿入されたフイラメントと、これら
のフイラメントを少なくとも二辺に含み、前記第
2のガスの濃度に対応した不平衡電圧を出力する
ブリツジ回路と、前記混合ガス流路および参照ガ
ス流路にそれぞれの挿入された圧力センサと前記
混合ガス流路および参照ガス流路のいずれか一方
または両方に挿入された圧力調整部材を有し、前
記混合ガス流路および参照ガス流路を同圧に保持
する手段とを備えたことを特徴とする。
In order to achieve this object, the present invention provides a gas concentration measuring device that measures the concentration of a second gas in a mixed gas of a first gas and a second gas, which includes a mixed gas flow path through which the mixed gas passes. , a reference gas flow path through which a gas of the same type as the first gas passes as a reference gas, a filament inserted into the mixed gas flow path and the reference gas flow path, and at least two sides thereof include these filaments. , a bridge circuit that outputs an unbalanced voltage corresponding to the concentration of the second gas, a pressure sensor inserted into the mixed gas flow path and the reference gas flow path, and the mixed gas flow path and the reference gas flow path. The method is characterized in that it has a pressure adjustment member inserted into either or both of the gas flow paths and means for maintaining the mixed gas flow path and the reference gas flow path at the same pressure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同圧に保持された混合ガスの
流路および参照ガス流路にそれぞれの濃度を測定
するためのフイラメントが挿入されており、これ
らのフイラメントを用いたブリツジ回路によつて
第2のガスの濃度を測定するため、圧力差に起因
する濃度測定誤差が著しく減少し、高精度の濃度
測定が可能となる。
According to the present invention, filaments for measuring the respective concentrations are inserted into the mixed gas flow path and the reference gas flow path that are maintained at the same pressure, and a bridge circuit using these filaments is used to measure the concentration of each gas. Since the concentration of the second gas is measured, concentration measurement errors due to pressure differences are significantly reduced, and highly accurate concentration measurement is possible.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係るガス濃度測定
装置の構成をCVD装置等におけるガス供給系に
適用した場合について示したものである。
FIG. 1 shows a case where the configuration of a gas concentration measuring device according to an embodiment of the present invention is applied to a gas supply system in a CVD device or the like.

図において示すように、キヤリアガス供給源1
1からのAr、He等のガスは二分岐され、一方は
キヤリアガス流路12に、また他方は参照ガス流
路13に送出される。キヤリアガス流路12を通
過したキヤリアガスは、例えば高純度のWCl6
ZrCl4,MoCl5等の低蒸気圧材料からなる原料を
収容した原料タンク14に導入される。これによ
り原料タンク14から原料ガスとキヤリアガスと
の混合ガスが蒸発され、この混合ガスが混合ガス
流路15に導かれる。
As shown in the figure, carrier gas supply source 1
Gases such as Ar and He from 1 are branched into two branches, one being sent to the carrier gas flow path 12 and the other to the reference gas flow path 13. The carrier gas that has passed through the carrier gas flow path 12 contains, for example, high-purity WCl 6 ,
The raw material is introduced into a raw material tank 14 containing raw materials made of low vapor pressure materials such as ZrCl 4 and MoCl 5 . As a result, the mixed gas of the raw material gas and the carrier gas is evaporated from the raw material tank 14, and this mixed gas is guided to the mixed gas flow path 15.

混合ガス流路15および参照ガス流路13に
は、それぞれフイラメント16,17が挿入され
ている。これらのフイラメント16,17は、混
合ガスおよび参照ガスの濃度をそれぞれのガスの
熱伝導率の違いを利用して検出するためのもので
ある。なお、フイラメントを収納するセルは圧力
の影響をより受けにくい、つまりガスの流量に影
響されない拡散型であることが望ましい。
Filaments 16 and 17 are inserted into the mixed gas flow path 15 and the reference gas flow path 13, respectively. These filaments 16 and 17 are used to detect the concentrations of the mixed gas and the reference gas by utilizing the difference in thermal conductivity of the respective gases. Note that it is desirable that the cell that houses the filament be of a diffusion type that is less susceptible to the influence of pressure, that is, that is not influenced by the flow rate of gas.

ここで、混合ガス流路15および参照ガス流路
13の出口側は合流流路18に共通に接続されて
いる。そして、混合ガス流路15および参照ガス
流路13に図示しない圧力センサを挿入すると共
に、混合ガス流路15および参照ガス流路13の
いずれか一方または両方に図示しない圧力調整部
材、例えば圧力調整用バルブを挿入して、両流路
15,13が同圧になるように保持している。す
なわち、フイラメント16,17を通過した混合
ガスおよび参照ガスは、合流用流路18で合流さ
れた後、被ガス供給系19、例えばCVD装置に
おける反応炉内に導入される。被ガス供給系19
は真空ポンプ20に接続されており、これにより
例えば20Torr程度以下の圧力に減圧されている。
Here, the outlet sides of the mixed gas flow path 15 and the reference gas flow path 13 are commonly connected to the merging flow path 18 . Then, a pressure sensor (not shown) is inserted into the mixed gas flow path 15 and the reference gas flow path 13, and a pressure adjustment member (not shown), for example, a pressure adjustment member (not shown) is inserted into either or both of the mixed gas flow path 15 and the reference gas flow path 13. A valve is inserted to maintain both channels 15 and 13 at the same pressure. That is, the mixed gas and reference gas that have passed through the filaments 16 and 17 are combined in a merging channel 18 and then introduced into a gas supply system 19, such as a reactor in a CVD apparatus. Gas supply system 19
is connected to a vacuum pump 20, which reduces the pressure to, for example, about 20 Torr or less.

フイラメント16,17は第2図に示すように
固定抵抗21,22とによりホイートストン・ブ
リツジ回路23を構成しており、このブリツジ回
路23に直流電源24から電圧が印加される。フ
イラメント16,17は電源24からの電流によ
り発熱し、第1図の混合ガス流路15および参照
ガス流路13をそれぞれ通過する混合ガスおよび
参照ガスによつて冷却されるが、そのときのフイ
ラメント16,17の温度はそれぞれのガスの熱
伝導率、つまりガスの濃度によつて異なり、結局
その抵抗値に差が生じる。従つて、この抵抗値の
差によりブリツジ回路23の出力に生ずる不平衡
電圧を増幅器25を介して取出すことによつて、
混合ガス中の原料ガスの濃度を表わす濃度比信号
を得ることができる。
As shown in FIG. 2, the filaments 16 and 17 constitute a Wheatstone bridge circuit 23 with fixed resistors 21 and 22, and a voltage is applied to this bridge circuit 23 from a DC power supply 24. The filaments 16 and 17 generate heat due to the current from the power source 24, and are cooled by the mixed gas and reference gas passing through the mixed gas flow path 15 and the reference gas flow path 13 in FIG. 1, respectively. The temperatures of 16 and 17 differ depending on the thermal conductivity of each gas, that is, the concentration of the gas, resulting in a difference in their resistance values. Therefore, by extracting the unbalanced voltage generated at the output of the bridge circuit 23 due to the difference in resistance values through the amplifier 25,
A concentration ratio signal representing the concentration of source gas in the mixed gas can be obtained.

ここで、フイラメント16,17が設置された
混合ガス流路15および参照ガス流路13は合流
流路18で結合され、被ガス供給系19を経て真
空ポンプ20により規定される同じ圧力に保持さ
れているため、減圧下にありながら圧力差による
濃度検出誤差はほとんど生じない。
Here, the mixed gas flow path 15 in which the filaments 16 and 17 are installed and the reference gas flow path 13 are connected by a merging flow path 18, and are maintained at the same pressure prescribed by a vacuum pump 20 via a gas supply system 19. Therefore, there is almost no concentration detection error due to the pressure difference even though it is under reduced pressure.

すなわち、濃度検出のための2つフイラメント
を原料タンクへ至るキヤリア流路、および原料タ
ンクからの混合ガス流路にそれぞれ配置した第4
図に示すような従来装置では、混合ガス流路が減
圧下にある場合、両流路間に生じる圧力差により
ガスの分子密度が変わり、ガスの熱伝導率が影響
を受ける。このため、第3図に破線で示すように
減圧下ではブリツジ回路の出力オフセツト(零点
シフト)が非常に大きくなり、濃度検出誤差が増
大する。
That is, two filaments for concentration detection are placed in the carrier flow path leading to the raw material tank and the fourth filament located in the mixed gas flow path from the raw material tank.
In the conventional device shown in the figure, when the mixed gas flow path is under reduced pressure, the molecular density of the gas changes due to the pressure difference generated between the two flow paths, and the thermal conductivity of the gas is affected. Therefore, as shown by the broken line in FIG. 3, the output offset (zero point shift) of the bridge circuit becomes extremely large under reduced pressure, and the concentration detection error increases.

これに対し、本発明においてはフイラメント1
6,17での圧力差がないため、第3図に実線で
示すように減圧下でもブリツジ回路23の出力の
オフセツトは極めて少なく、高い濃度検出精度が
得られる。なお、このオフセツトが+、−側に幅
を持つているのは、フイラメント16,17の温
度特性の違いに起因するものであり、温度特性が
同じであればオフセツトはほとんど発生しない。
On the other hand, in the present invention, the filament 1
Since there is no pressure difference between 6 and 17, the offset of the output of the bridge circuit 23 is extremely small even under reduced pressure, as shown by the solid line in FIG. 3, and high concentration detection accuracy can be obtained. The reason why this offset has a width on the + and - sides is due to the difference in the temperature characteristics of the filaments 16 and 17; if the temperature characteristics are the same, almost no offset will occur.

こうしてフイラメント16,17およびブリツ
ジ回路23を通して得られた濃度比信号は、例え
ばキヤリアガスの流量信号に基いて混合ガス中の
原料ガスの流量信号に変換され、その原料ガス流
量信号と予め設定された原料ガス設定流量信号と
の差流量信号が零となるようにキヤリアガスの流
量が制御されることになる。
The concentration ratio signal thus obtained through the filaments 16, 17 and the bridge circuit 23 is converted into a flow rate signal of the raw material gas in the mixed gas based on, for example, the flow rate signal of the carrier gas, and the raw material gas flow rate signal and the preset raw material The flow rate of the carrier gas is controlled so that the difference flow rate signal from the gas set flow rate signal becomes zero.

このようにして減圧下においても、被ガス供給
系19に対し例えば膜形成に供される原料ガスの
安定な供給を行なうことができる。換言すれば、
原料を減圧下において蒸発させることができるの
で、原料として低蒸気圧材料を使用することが可
能となる。その結果、低蒸気圧材料がMoCl5の場
合を例にとると、50Torrの減圧下では、常圧
(大気圧)下で蒸発させる場合に比べ10倍の蒸発
量(流量)が得られ、さらに10Torrの減圧下で
は40倍以上という極めて多量の原料ガスの安定な
供給が可能となる。
In this way, even under reduced pressure, it is possible to stably supply, for example, the raw material gas used for film formation to the gas supply system 19. In other words,
Since the raw material can be evaporated under reduced pressure, it is possible to use a low vapor pressure material as the raw material. As a result, taking MoCl 5 as a low vapor pressure material as an example, under a reduced pressure of 50 Torr, the amount of evaporation (flow rate) is 10 times greater than when evaporating under normal pressure (atmospheric pressure). Under a reduced pressure of 10 Torr, it is possible to stably supply an extremely large amount of raw material gas, which is more than 40 times larger.

なお、本発明は上記実施例に限定されるもので
はなく、例えば第2図におけるブリツジ回路内の
固定抵抗21,22をフイラメントに置換え、そ
れぞれ混合ガス流路15、参照ガス流路13に挿
入してもよい。このようにすると、減圧によるフ
イラメントの温度上昇に伴う濃度検出感度の変動
を抑制でき、さらに高精度の濃度検出が可能とな
る。また、フイラメントの温度を検知し、その結
果をブリツジ回路出力にフイードバツクする、い
わゆる定温度型ブリツジ回路を構成することも、
より高精度の濃度検出を行なう上で有効である。
Note that the present invention is not limited to the above-mentioned embodiment, and for example, the fixed resistors 21 and 22 in the bridge circuit in FIG. 2 may be replaced with filaments and inserted into the mixed gas flow path 15 and reference gas flow path 13, respectively. It's okay. In this way, it is possible to suppress fluctuations in concentration detection sensitivity due to an increase in the temperature of the filament due to reduced pressure, and it is possible to detect concentration with higher accuracy. It is also possible to configure a so-called constant temperature bridge circuit that detects the filament temperature and feeds the result back to the bridge circuit output.
This is effective in performing more accurate concentration detection.

さらに、第1図では混合ガス流路15および参
照ガス流路13が合流流路18で1本の流路とな
り、両ガスが合流されてから被ガス供給系19に
導入されているが、それぞれの流路15,13を
個別に被ガス供給系19に接続し、両ガスを被ガ
ス供給系19で混ぜるという構成にしても同様の
効果が得られる。
Furthermore, in FIG. 1, the mixed gas flow path 15 and the reference gas flow path 13 become one flow path at the merging flow path 18, and both gases are introduced into the target gas supply system 19 after being merged. A similar effect can be obtained by connecting the flow paths 15 and 13 individually to the gas supply system 19 and mixing both gases in the gas supply system 19.

また、本発明はCVD装置に限定されるもので
はなく、キヤリアガスと原料ガスとの混合ガスを
用いて減圧下で膜形成を行なうような装置一般に
有効である。
Furthermore, the present invention is not limited to CVD apparatuses, but is effective for general apparatuses that perform film formation under reduced pressure using a mixed gas of carrier gas and raw material gas.

さらに、本発明の主旨は混合ガスの濃度と、混
合ガス流路と同圧に保持された参照ガス流路を通
過する参照ガスの濃度をガスの熱伝導率の変化を
利用して検出し、ブリツジ回路を用いて混合ガス
中の濃度を測定することにあるので、参照ガスは
必ずしも混合ガスと合流される必要はない。
Furthermore, the gist of the present invention is to detect the concentration of a mixed gas and the concentration of a reference gas passing through a reference gas flow path maintained at the same pressure as the mixed gas flow path using changes in the thermal conductivity of the gas, Since the purpose is to measure the concentration in a mixed gas using a bridge circuit, the reference gas does not necessarily need to be combined with the mixed gas.

その他、本発明は要旨を逸脱しない範囲で種々
変形して実施することが可能である。
In addition, the present invention can be implemented with various modifications without departing from the scope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るガス濃度測定
装置の構成を説明するための図、第2図は第1図
におけるフイラメントを含むブリツジ回路の構成
を示す図、第3図は従来装置および本発明装置に
おけるガス濃度測定用ブリツジ回路の出力オフセ
ツトのガス圧力依存性を示す図、第4図は従来の
ガス濃度測定装置の概略を説明するための図であ
る。 11…キヤリアガス供給源、12…キヤリアガ
ス流路、13…参照ガス流路、14…原料タン
ク、15…混合ガス流路、16,17…フイラメ
ント、18…合流流路、19…被ガス供給系、2
0…真空ポンプ、21,22…固定抵抗、23…
ブリツジ回路、24…直流電源、25…増幅器。
FIG. 1 is a diagram for explaining the configuration of a gas concentration measuring device according to an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a bridge circuit including the filament in FIG. 1, and FIG. 3 is a diagram of a conventional device. FIG. 4 is a diagram for explaining the outline of a conventional gas concentration measuring device. DESCRIPTION OF SYMBOLS 11... Carrier gas supply source, 12... Carrier gas flow path, 13... Reference gas flow path, 14... Raw material tank, 15... Mixed gas flow path, 16, 17... Filament, 18... Merging flow path, 19... Target gas supply system, 2
0... Vacuum pump, 21, 22... Fixed resistance, 23...
Bridge circuit, 24...DC power supply, 25...Amplifier.

Claims (1)

【特許請求の範囲】 1 第1のガスを第2とガスとの混合ガス中の第
2のガスの濃度を測定するガス濃度測定装置にお
いて、 前記混合ガスを通過させるガス流路と、 前記第1のガスと同種のガスを参照ガスとして
通過させる参照ガス流路と、 前記混合ガス流路および参照ガス流路にそれぞ
れ挿入されたフイラメントと、 これらのフイラメントを少なくとも二辺に含
み、前記第2のガスの濃度に対応した不平衡電圧
を出力するブリツジ回路と、 前記混合ガス流路および参照ガス流路にそれぞ
れ挿入された圧力センサと前記混合ガス流路およ
び参照ガス流路のいずれか一方または両方に挿入
された圧力調整部材を有し、前記混合ガス流路お
よび参照ガス流路を同圧に保持する手段と を備えたことを特徴とするガス濃度測定装置。 2 前記第1のガスがキヤリアガスであり、前記
第2のガスが膜形成に供される原料ガスであるこ
とを特徴とする特許請求の範囲第1項記載のガス
濃度測定装置。
[Scope of Claims] 1. A gas concentration measuring device for measuring the concentration of a second gas in a mixed gas of a first gas and a second gas, comprising: a gas flow path through which the mixed gas passes; a reference gas flow path through which a gas of the same type as the first gas passes as a reference gas; a filament inserted into the mixed gas flow path and the reference gas flow path, respectively; a bridge circuit that outputs an unbalanced voltage corresponding to the concentration of gas; a pressure sensor inserted into the mixed gas flow path and the reference gas flow path, and either one of the mixed gas flow path and the reference gas flow path; A gas concentration measuring device comprising: a pressure adjustment member inserted in both, and means for maintaining the mixed gas flow path and the reference gas flow path at the same pressure. 2. The gas concentration measuring device according to claim 1, wherein the first gas is a carrier gas, and the second gas is a raw material gas used for film formation.
JP12172585A 1985-06-05 1985-06-05 Apparatus for measuring concentration of gas Granted JPS61280556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172585A JPS61280556A (en) 1985-06-05 1985-06-05 Apparatus for measuring concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12172585A JPS61280556A (en) 1985-06-05 1985-06-05 Apparatus for measuring concentration of gas

Publications (2)

Publication Number Publication Date
JPS61280556A JPS61280556A (en) 1986-12-11
JPH0518055B2 true JPH0518055B2 (en) 1993-03-10

Family

ID=14818333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172585A Granted JPS61280556A (en) 1985-06-05 1985-06-05 Apparatus for measuring concentration of gas

Country Status (1)

Country Link
JP (1) JPS61280556A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126293U (en) * 1974-03-30 1975-10-16

Also Published As

Publication number Publication date
JPS61280556A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
US4341107A (en) Calibratable system for measuring fluid flow
KR0163608B1 (en) Calibration system for ultra high purity gas analysis
US3650151A (en) Fluid flow measuring system
US4852389A (en) System for controlled humidity tests
US5265463A (en) Apparatus for measuring the transmission rate of volatile organic chemicals through a barrier material
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
US2960870A (en) Method and apparatus for determination of surface areas
JPH0535225B2 (en)
JPH03262926A (en) Steam flow rate measuring instrument
JPH1090033A (en) Method for quickly identifying gas flow or liquid flow and device for executing the method
US3460909A (en) Catalytic combustion detector for gas chromatography
US4464925A (en) Hydrogen, deuterium thermal conductivity detector
Ackelid et al. How a limited mass transfer in the gas phase may affect the steady-state response of a Pd-MOS hydrogen sensor
JPH11512175A (en) Apparatus and method for removal and quantification of liquid or gaseous volatile or dissolved components
JPH0518055B2 (en)
JP3230431B2 (en) Gas measurement device
JPH08505468A (en) Method for measuring calorific value of gas and / or Wobbe index of natural gas
US5312761A (en) Method for measuring trace quantity of oxygen in gas
US3435678A (en) Apparatus for flow monitoring
JP2946800B2 (en) Carbon dioxide measuring device
JPH0110579Y2 (en)
CN111013415A (en) Standard gas generation system based on temperature control
SU1045083A1 (en) Polymer membrane permeability determination method
JPH02268826A (en) Flow rate control device for evaporated gas
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees