JPS61254082A - Power generator utilizing exhaust heat - Google Patents

Power generator utilizing exhaust heat

Info

Publication number
JPS61254082A
JPS61254082A JP60093385A JP9338585A JPS61254082A JP S61254082 A JPS61254082 A JP S61254082A JP 60093385 A JP60093385 A JP 60093385A JP 9338585 A JP9338585 A JP 9338585A JP S61254082 A JPS61254082 A JP S61254082A
Authority
JP
Japan
Prior art keywords
conversion element
exhaust gas
thermoelectric conversion
heat
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60093385A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawai
良和 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP60093385A priority Critical patent/JPS61254082A/en
Publication of JPS61254082A publication Critical patent/JPS61254082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects

Abstract

PURPOSE:To improve the generating efficiency by forming a conduit for forming a holder through a thermoelectric converter in a double structure. CONSTITUTION:The titled generator is composed of thermoelectric converter for converting thermal energy into electric energy, a DC/DC converter, and output reverse current preventing means. The converter 4 is formed of a thermoelectric conversion element 10, and its holder 12. The holder 12 is formed of a cylindrical cooling conduit 12A having a hollow part, and a heat absorbing conduit 12B. In this case, the conduit 12B is inserted into the conduit 12A of smaller concentric circle than the outer conduit 12A, and the ends of the both are secured integrally by a heat insulating and electrically insulating packing material 14. Further, the inner electrode plate 10C of the element 10 is contacted with the conduit 12B, and the outer electrode plate 10D is contacted with the conduit 12A, and spirally wound. Thus, temperature difference between the conduits 12A and 12B increases, with the result that the element 10 preferably generates a thermoelectromotive force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気熱発電装置に係り、特に自動車等の排気
ガス中の熱を利用し熱電変換素子を用いて発電する排気
熱発電装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust heat power generation device, and more particularly to an exhaust heat power generation device that utilizes heat in exhaust gas from an automobile or the like to generate electricity using a thermoelectric conversion element. .

〔従来の技術〕[Conventional technology]

自動車等のエンジンや工場の炉等から排気されるガスは
、通常多くの熱エネルギ及び運動エネルギを備えたまま
排気されてしまう現状にあり、このため、近年省エネル
ギの観点からも、この排気ガスの排気エネルギの有効利
用の研究、開発が行われている。
The current situation is that gases exhausted from automobile engines, factory furnaces, etc. are usually exhausted with a large amount of thermal energy and kinetic energy. Research and development is being carried out on the effective use of exhaust energy.

そして、この排気ガスの有効利用の一つとして、排気ガ
スが有する熱エネルギを電気エネルギとして取り出す排
気熱発電装置が注目されている。
As one of the effective uses of this exhaust gas, an exhaust heat power generation device that extracts the thermal energy contained in the exhaust gas as electrical energy is attracting attention.

この排気熱発電装置の内、熱エネルギを電気エネルギに
変換せしめる熱電変換素子を利用したものとしては、■
実開昭57−164208号、■特公昭58−4484
2号等の各公報記載の提案が既に行われている。
Among these exhaust heat power generation devices, those that use thermoelectric conversion elements that convert thermal energy into electrical energy include:
Utility Model No. 57-164208, Special Publication No. 58-4484
Proposals for publication in various publications such as No. 2 have already been made.

この内、前記■の公報記載のものにあっては、熱電対を
排熱通路を形成する円筒断熱材に装着して、熱起電力で
バッテリを充電せしめる手法が開示されている。
Among these, the one described in the above-mentioned publication (2) discloses a method in which a thermocouple is attached to a cylindrical heat insulating material forming a heat exhaust passage and a battery is charged by thermoelectromotive force.

また、前記■の公報記載のものにあっては、排気筒の吐
出口付近に熱発電素子を設け、該、排気筒の内側では高
温ガスの熱を吸熱フィンで吸熱して前記熱発電素子に伝
達するとともに、前記吐出口付近に設けられた外筒を通
ってベンチエリ効果により導入される外気を冷却フィン
を介し前記熱発電素子に伝達して温度差を生ぜしめ、こ
れにより発電を行うとされている。
In addition, in the case described in the above-mentioned publication, a thermoelectric generating element is provided near the discharge port of the exhaust stack, and inside the exhaust stack, the heat of the high temperature gas is absorbed by heat absorbing fins, and the heat is transferred to the thermoelectric generating element. At the same time, outside air introduced by the Benchelli effect through an outer cylinder provided near the discharge port is transmitted to the thermoelectric power generating element via cooling fins to create a temperature difference, thereby generating electricity. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述した各公報記載の提案の内、例えば
■の熱電対のみを使用したものでは、電力として有効に
利用し得るだけの容量のものを取り出すのが困難であり
、しかも一方の接点を排気ガス中に露出せしめているこ
とから耐久性にも難点があり、しかも、開示内容の如く
直接バッテリへ接続すると、逆にバッテリを放電せしめ
るおそれがあり実用性に欠けるという不都合があった。
However, among the proposals described in each of the above-mentioned publications, for example, using only the thermocouple shown in (■), it is difficult to extract enough capacity to effectively use it as electric power, and one of the contacts is exhausted. Since it is exposed to gas, there is a problem in its durability, and furthermore, if it is connected directly to a battery as disclosed, there is a risk that the battery will be discharged, making it impractical.

また、前記■の提案においては、ベンチュリ効果による
冷却フィン側の冷却手法に発明のポイントがあるが故に
、殆どの場合、その装着位置が排気筒の吐出口付近に必
然的に限定されることから、装備の自由度が減少し、ま
た高温ガスも出口付近の低下した熱エネルギしか利用で
きないという事態を招来し、その熱起電力が゛減少する
ことから発電効率があまり良くないという不都合があっ
た。
In addition, in the proposal (2) above, since the key point of the invention lies in the cooling method on the cooling fin side using the venturi effect, in most cases, the mounting position is inevitably limited to the vicinity of the exhaust port. This resulted in the inconvenience that the degree of freedom in equipment was reduced, and that only the reduced thermal energy near the outlet of high-temperature gas could be used, and that the thermoelectromotive force was reduced, resulting in poor power generation efficiency. .

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来技術の有する不都合を勘案し、特
に、排気ガス通路であれば殆どの位置に適合可能であり
、且つ充分使用に供し得る電力を取り出すことが可能な
排気熱発電装置を提供することを、その目的とする。
In view of the disadvantages of the prior art, the present invention provides an exhaust heat power generation device that can be adapted to almost any position in an exhaust gas passage and that can extract enough usable power. Its purpose is to.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では、排気ガスの熱エネルギを電気エネ
ルギに変換する熱電変換素子と、この熱電変換素子を前
記排気ガスの流路の側壁に保持する保持部とを備えた排
気熱発電装置において、前記保持部を、前記排気ガス側
に位置せしめる吸熱部材と、この吸熱部材の外側に所定
間隔をおいて配設した冷却部材とにより形成し、この冷
却部材と前記吸熱部材との間に前記熱変換素子を装備す
る等の構成を採用し、これによって前記目的を達成しよ
うとするものである。
Therefore, in the present invention, an exhaust heat power generation device includes a thermoelectric conversion element that converts thermal energy of exhaust gas into electrical energy, and a holding part that holds this thermoelectric conversion element on the side wall of the exhaust gas flow path. The holding portion is formed by a heat absorbing member located on the exhaust gas side and a cooling member disposed at a predetermined interval outside the heat absorbing member, and the heat is disposed between the cooling member and the heat absorbing member. The purpose is to achieve the above object by adopting a configuration such as being equipped with a conversion element.

〔作 用〕 保持部を形成する内側の吸熱部材及び外側の冷却部材と
して、例えば熱伝導性及び電気絶縁性を有するファイン
セラミック等の部材を使用すると、高温の排気ガスが前
記吸熱部材内を流通するに伴って、外気ぐより冷却され
る前記冷却部材との間に大きな温度差(実験では650
℃)を生せしめる。
[Function] When a member such as a fine ceramic having thermal conductivity and electrical insulation is used as the inner heat absorbing member and the outer cooling member forming the holding part, high temperature exhaust gas flows through the heat absorbing member. As the cooling temperature increases, a large temperature difference (650°C in the experiment) occurs between the cooling member and the
℃).

従って、前記吸熱部材と冷却部材との間に介装して設け
られている熱電変換素子は、この温度差を利用して発電
を行うことができる。
Therefore, the thermoelectric conversion element interposed between the heat absorbing member and the cooling member can generate electricity by utilizing this temperature difference.

これによると、単に排気ガスを流通させるだけでよいか
ら排気熱発電装置の装備可能な位置の自由度が高められ
る。
According to this, since it is sufficient to simply circulate the exhaust gas, the degree of freedom in the location where the exhaust heat power generation device can be installed is increased.

また、上述の排気熱発電装置において、その出力段にD
C−DCコンバータを装備すると、熱電変換素子の出力
電圧が昇圧し且つ平滑化され、充分使用に供し得る大き
な電力を取り出すことができる。
In addition, in the above-mentioned exhaust heat power generation device, D
When equipped with a C-DC converter, the output voltage of the thermoelectric conversion element is boosted and smoothed, and it is possible to extract a large amount of power that can be used sufficiently.

更に、上述の排気熱発電装置において、逆流防止手段を
装備することによって、DC−DCコンバータの出力が
低下した場合でも、負荷(例えばバッテリ)からの逆流
を防止することができる。
Furthermore, by equipping the above-mentioned exhaust heat power generation device with a backflow prevention means, even if the output of the DC-DC converter decreases, backflow from the load (for example, a battery) can be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第4図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図において、2は排気熱発電装置を示す。In FIG. 1, 2 indicates an exhaust heat power generation device.

この排気熱発電装置2は、高温の排気ガスの保有する熱
エネルギを電気エネルギに変換する熱電変換部4と、こ
の熱電変換部4の出力電圧を昇圧し平滑化するDC−D
Cコンバータ6と、このDC−DCコンバータ6の出力
を負荷へ供給した場合に逆流を防止せしめる逆流防止手
段8とから構成されている。
This exhaust heat power generation device 2 includes a thermoelectric conversion section 4 that converts thermal energy possessed by high-temperature exhaust gas into electrical energy, and a DC-D converter that boosts and smoothes the output voltage of the thermoelectric conversion section 4.
It is comprised of a C converter 6 and a backflow prevention means 8 that prevents backflow when the output of the DC-DC converter 6 is supplied to a load.

この内、前記熱電変換部4は、第2図ないし第3図に示
すように、熱エネルギを電気エネルギに変換せしめる半
導体素子から成る熱電変換素子10と、この熱電変換素
子10を高温の排気ガスの流路外周に保持する保持部1
2とから構成されている。
As shown in FIGS. 2 and 3, the thermoelectric conversion section 4 includes a thermoelectric conversion element 10 made of a semiconductor element that converts thermal energy into electrical energy, and a thermoelectric conversion element 10 that converts the thermoelectric conversion element 10 into high-temperature exhaust gas. Holding part 1 held on the outer periphery of the flow path
It is composed of 2.

そして、前記保持部12は、中空部を有する筒状に形成
された冷却部材としての冷却管路12A。
The holding portion 12 is a cooling pipe line 12A as a cooling member formed in a cylindrical shape having a hollow portion.

及び吸熱部材としての吸熱管路12Bより構成されてい
る。これらの管路12A、12Bの材質としては、耐熱
性を有し且つ高い熱伝導度と電気絶縁性とを兼ね備えた
ファインセラミックス(例えばBeQを添加した5iC
)が使用されている。ここで、前記吸熱管路12Bは、
外側の冷却管路12Aより小さい同心円を有し、該冷却
管路12Aに貫挿する形で配設されている。この冷却管
路12Aと吸熱管路12Bとは、その端部に設けられた
断熱性で且つ電気絶縁性のバッキング材14(第3図参
照)によって固着され一体化されている。
and a heat-absorbing pipe 12B as a heat-absorbing member. The material for these conduits 12A and 12B is fine ceramics (for example, 5iC with BeQ added) that is heat resistant and has both high thermal conductivity and electrical insulation.
) is used. Here, the endothermic pipe line 12B is
It has a smaller concentric circle than the outer cooling pipe 12A, and is disposed so as to penetrate through the cooling pipe 12A. The cooling pipe line 12A and the endothermic pipe line 12B are fixed and integrated by a heat-insulating and electrically insulating backing material 14 (see FIG. 3) provided at their ends.

そして、前記吸熱管路12Bは軸方向に幾分長く形成さ
れて端部12Ba、l 2Baを有しており、この端部
12Ba、12Baを利用して、エンジンからの排気パ
イプ16中の途中の所定位置に装備されている。
The heat absorption pipe line 12B is formed to be somewhat long in the axial direction and has end portions 12Ba and 12Ba.Using these end portions 12Ba and 12Ba, the end portions 12B and 12B are used to connect the exhaust pipe 16 from the engine. Equipped in place.

一方、前記熱電変換素子10としては、本実施例では、
第4図に示す如くP形半導体10AとN形半導体10B
とが両極板10C2−・−・、ioc。
On the other hand, in this embodiment, the thermoelectric conversion element 10 is as follows:
As shown in FIG. 4, a P-type semiconductor 10A and an N-type semiconductor 10B
and bipolar plates 10C2--, ioc.

及び10 D、−、10D間に対を成し、これらの対の
複数組が直列に接続された構造のものが採用されている
。そして、内側の極板10C2・−110Cが前記吸熱
管路12Bに、また外側の極板10D、−,100が前
記冷却管路12Aに当接し、全体的には保持部12の軸
に沿って螺旋状に巻装されている。そして、直列に接続
された熱電変換素子10の両端にはリード線18.18
が設けられるように成っている。
, 10D, -, 10D, and a structure in which a plurality of these pairs are connected in series is adopted. Then, the inner electrode plates 10C2 and -110C abut on the heat absorption pipe line 12B, and the outer electrode plates 10D, -, and 100 abut on the cooling pipe line 12A, and the entire structure is moved along the axis of the holding part 12. It is wrapped in a spiral. Lead wires 18 and 18 are connected to both ends of the thermoelectric conversion elements 10 connected in series.
It is designed so that it can be set up.

そして、前記熱電変換部4の直流出力は、最終的には前
記リード線18.18から取り出され、この直流電圧は
前記DC−DCコンバータ6及び逆流防止手段としての
ダイオード8を介してバッテリ20やその他の電気負荷
に至るように構成されている。
The DC output of the thermoelectric converter 4 is finally taken out from the lead wire 18.18, and this DC voltage is passed through the DC-DC converter 6 and the diode 8 as a backflow prevention means to the battery 20 and and other electrical loads.

次に、本発明の全体的動作を説明する。Next, the overall operation of the present invention will be explained.

まず、図示しないエンジンからの排気ガスEが排気パイ
プ16を伝わって矢印の如く流入する。
First, exhaust gas E from an engine (not shown) travels through the exhaust pipe 16 and flows in as shown by the arrow.

この排気ガスEは自動車の場合で数百度にも達する高温
ガスである。この高温ガスの熱エネルギは、前記吸熱管
路12Bによって吸熱され伝達されて、前記熱電変換素
子lO内側の極板10C,−・。
This exhaust gas E is a high-temperature gas that reaches several hundred degrees in the case of an automobile. Thermal energy of this high-temperature gas is absorbed and transferred by the heat-absorbing pipe line 12B to the electrode plates 10C, -, inside the thermoelectric conversion element IO.

10Gに達する。同時に、前記冷却管路10Aは外気或
いは走行風によって冷却されており、このため、前記熱
電変換素子10の外側の極板10D。
Reaches 10G. At the same time, the cooling pipe line 10A is cooled by the outside air or the running wind, so that the outer electrode plate 10D of the thermoelectric conversion element 10.

−・、10Dは冷点となり、両極板間に温度差を生じる
-., 10D becomes a cold spot, creating a temperature difference between the two electrode plates.

従って、前記熱電変換素子10は、前記温度差を基に熱
エネルギを電気エネルギに変換し、熱起電力を生ぜしめ
る。
Therefore, the thermoelectric conversion element 10 converts thermal energy into electrical energy based on the temperature difference, and generates a thermoelectromotive force.

前記排気ガスEの流れは、実際にはエンジン駆動と伴に
脈動しているため、前記熱起電力も脈動することになる
が、この脈動起電力の中でも所定範囲の電圧は次段のD
C−DCコンバータ6により充分使用に供し得る程度に
昇圧され平滑化される。このDC−DCコンバータ6の
出力はダイオード8を介して、バフテリ20を充電する
ことになる。また、熱電変換素子IOからの出力電圧が
小さすぎて、DC−DCコンバータ6の出力電圧が前記
バッテリ20の端子電圧以下であっても、ダイオード8
が介挿されているために、該バッテリ20からDC−D
Cコンバータ6側に逆流し放電するという事態が防止さ
れることになる。即ち、ダイオード8の作用によってD
C−DCコンバータ6の出力電圧が充分高い場合にのみ
バフテリ20への充電が選択的に自動的に行われること
となる。
Since the flow of the exhaust gas E actually pulsates as the engine is driven, the thermal electromotive force also pulsates, but within this pulsating electromotive force, a voltage within a predetermined range is applied to the next stage D.
The voltage is boosted and smoothed by the C-DC converter 6 to a sufficient level for use. The output of the DC-DC converter 6 charges the buffer battery 20 via the diode 8. Furthermore, even if the output voltage from the thermoelectric conversion element IO is too small and the output voltage of the DC-DC converter 6 is below the terminal voltage of the battery 20, the diode 8
DC-D is inserted from the battery 20.
This will prevent a situation where the discharge flows backward to the C converter 6 side. That is, due to the action of the diode 8, D
Charging of the battery 20 is selectively and automatically performed only when the output voltage of the C-DC converter 6 is sufficiently high.

実験によると、約500個の熱電変換素子を用い、これ
に約650(’C)の温度差を与えたところ、約50(
W)の電力が取り出せることが確認されている。
According to experiments, when approximately 500 thermoelectric conversion elements were used and a temperature difference of approximately 650 ('C) was applied to them, the temperature difference was approximately 50 ('C).
It has been confirmed that electric power of W) can be extracted.

このように、従来全く無駄に放出されていた排気ガスの
熱エネルギを電気エネルギとして有効利用できるのみな
らず、この電気エネルギをバッテリ充電のための補助手
段として使用することによって、従来からの充電装置の
小容量化を図ることができ、従って、この小容量化に伴
ってエンジン負荷の軽減や燃費の改善を図り得るという
二次的な利点を有している。
In this way, not only can the thermal energy of exhaust gas, which was previously released completely wastefully, be effectively used as electrical energy, but also this electrical energy can be used as an auxiliary means for charging the battery, making it possible to This has the secondary advantage of reducing the engine load and improving fuel efficiency as a result of reducing the capacity.

また、従来技術のように装着位置が限定されることもな
く、排気通路内であれば殆どの位置に取付は可能である
Further, unlike the prior art, the mounting position is not limited, and it can be mounted at almost any position within the exhaust passage.

また、DC−DCコンバータ6を介挿させていることか
ら安定した高出力が得られ、装備しなければならない熱
電変換素子10の数を減らすことが可能になり、全体的
には小型化・軽量化を図り得ることとなる。
In addition, by inserting the DC-DC converter 6, stable high output can be obtained, and the number of thermoelectric conversion elements 10 that must be installed can be reduced, making the overall size smaller and lighter. As a result, it will be possible to achieve this goal.

更に、逆流防止手段を負荷側に至る最終段に設けている
ことから、発電能力が低い場合であっても負荷側から電
流が逆流するという不都合を回避することができる。
Furthermore, since the backflow prevention means is provided at the final stage leading to the load side, it is possible to avoid the inconvenience of current backflowing from the load side even when the power generation capacity is low.

尚、本実施例では熱電変換素子10を保持部12に対し
て螺旋状に装備した場合を例示したが、本発明は必ずし
もこれに限定されることなく、例えば第5図の矢印Aに
示す如く、軸方向に対して平行に装備したり、或いは同
図中の矢印Bの如く、軸方向に対して垂直に装備し、取
り付けの簡略化を図ってもよい。
Although this embodiment exemplifies the case where the thermoelectric conversion element 10 is spirally mounted on the holding part 12, the present invention is not necessarily limited to this, and for example, as shown by arrow A in FIG. , it may be installed parallel to the axial direction, or it may be installed perpendicular to the axial direction as shown by arrow B in the same figure to simplify the installation.

また、熱電変換素子IOの個々の素子間の接続方法も・
必ずしも全て直列に接続する必要もなく、設計の都合に
応じて並列或いは直並列接続としてもよい。
In addition, the connection method between individual elements of the thermoelectric conversion element IO is also
It is not necessarily necessary to connect them all in series, and they may be connected in parallel or in series-parallel depending on the convenience of the design.

また、熱電変換素子100個々の素子の空間は、断熱性
を有する絶縁物を充填し、冷却管路12A側と吸熱管路
12B側の熱交流を防止し、温度差を確実に確保する構
成としてもよい。
In addition, the space of each element of the thermoelectric conversion element 100 is filled with an insulator having heat insulation properties to prevent heat exchange between the cooling pipe line 12A side and the endothermic pipe line 12B side, and to ensure a temperature difference. Good too.

更に、保持部12としては、筒状の管路12A。Furthermore, the holding portion 12 is a cylindrical conduit 12A.

12Bで構成した場合を示したが、これは必ずしも筒状
でなくても他の形状2例えば通路断面が角形であっても
よい。また、排気ガスの通路の一部を排気ガスパイプ1
6の径と異なった径或いはスペースを有する形状とし、
排気ガスの熱の脈動を平均化し、これにより熱起電力の
脈動を減少させるとしてもよい。
12B is shown, but this does not necessarily have to be cylindrical, and may have another shape, for example, the cross section of the passage may be rectangular. In addition, a part of the exhaust gas passage is connected to exhaust gas pipe 1.
The shape has a diameter or space different from the diameter of 6,
The heat pulsations of the exhaust gas may be averaged, thereby reducing the thermoelectromotive force pulsations.

また、上記実施例では、冷却管路12Aおよび吸熱管路
12Bを各々ファインセラミックスを使用する場合を例
示したが、本発明は必ずしもこれに限定されず、例えば
これら各管路を、熱伝導率が良好な鉄やアルミニューム
等の金属で形成するとともに前記熱電変換素子10の装
備に際ルではファインセラミックス板を介して当該各管
路相互間に固着する構成としてもよい。
Further, in the above embodiment, the cooling pipe line 12A and the heat absorption pipe line 12B are each made of fine ceramics, but the present invention is not necessarily limited to this. It may be made of a good metal such as iron or aluminum, and when the thermoelectric conversion element 10 is installed, it may be fixed between each of the pipes through a fine ceramic plate.

また、前記吸熱管路12Bの排気ガスの通路面には、当
該排気ガスの流れに沿って複数の長溝を形成し、これに
よって吸熱管路12Bの吸熱作用を向上せしめる構成と
してもよい。
Further, a plurality of long grooves may be formed along the flow of the exhaust gas on the exhaust gas passage surface of the heat absorption pipe 12B, thereby improving the heat absorption effect of the heat absorption pipe 12B.

更に、本発明は自動車からの排気ガスのみならず必要に
応じて、例えば工場の炉等からの排気ガスに対して適用
してもよい。
Furthermore, the present invention may be applied not only to exhaust gas from automobiles, but also to exhaust gas from, for example, factory furnaces, if necessary.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明では、保持部を構成する管路を熱
電変換素子を介して二重構成としたことから、排気ガス
通路であれば殆どの位置に容易に取付は可能であると伴
に、DC−DCコンバータの装備によって安定した高出
力が得られ、また逆流防止手段の作用によって起電力が
変化した場合であっても負荷側からの逆流を阻止し、充
分高い電力の場合にのみ電源として駆動するという優れ
た排気熱発電装置を提供することができる。
As described above, in the present invention, since the pipe constituting the holding part has a double structure via the thermoelectric conversion element, it can be easily installed in almost any position in the exhaust gas passage. In addition, by equipping the DC-DC converter, stable high output can be obtained, and even if the electromotive force changes, the backflow from the load side is prevented by the action of the backflow prevention means, and only when the power is sufficiently high. It is possible to provide an excellent exhaust heat power generation device that is driven as a power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るブロック化した構成図
、第2図は第1図の熱電変換部を示す斜視図、第3図は
第2図を一部切除した断面図、第4図は熱電変換素子の
配列を示す説明図、第5図は熱電変換素子の他の巻装例
の示す説明図である。 2−−−−−−一排気熱発電装置、6−・−−−−−D
 C−D Cコンバータ、8−−−−−一逆流防止手段
としてのダイオード、10−・−熱電変換素子、12・
・・・・・−保持部、12A−・−・冷却部材としての
冷却管路、12B・・・−・−吸熱部材としての吸熱管
路、E−−−−−・−排気ガスの流れ。 第2図 μL 第3図
FIG. 1 is a block configuration diagram according to an embodiment of the present invention, FIG. 2 is a perspective view showing the thermoelectric conversion section of FIG. 1, FIG. 3 is a sectional view of FIG. FIG. 4 is an explanatory diagram showing an arrangement of thermoelectric conversion elements, and FIG. 5 is an explanatory diagram showing another example of winding of thermoelectric conversion elements. 2-------One exhaust thermal power generation device, 6-・----D
C-DC converter, 8-- diode as backflow prevention means, 10--thermoelectric conversion element, 12--
...-Holding section, 12A-- Cooling pipe line as a cooling member, 12B...- Endothermic pipe line as a heat-absorbing member, E-- Exhaust gas flow. Figure 2 μL Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)、排気ガスの熱エネルギを電気エネルギに変換す
る熱電変換素子と、この熱電変換素子を前記排気ガスの
流路の側壁に保持する保持部とを備えた排気熱発電装置
において、 前記保持部を、前記排気ガス側に位置せしめる吸熱部材
と、この吸熱部材の外側に所定間隔をおいて配設した冷
却部材とにより形成し、 この冷却部材と前記吸熱部材との間に前記熱変換素子を
装備したことを特徴とする排気熱発電装置。
(1) An exhaust gas thermoelectric power generation device comprising a thermoelectric conversion element that converts thermal energy of exhaust gas into electrical energy, and a holding section that holds the thermoelectric conversion element on a side wall of the exhaust gas flow path, a heat absorbing member located on the exhaust gas side and a cooling member disposed at a predetermined interval on the outside of the heat absorbing member, and the heat conversion element is disposed between the cooling member and the heat absorbing member. An exhaust heat power generation device characterized by being equipped with.
(2)、排気ガスの熱エネルギを電気エネルギに変換す
る熱電変換素子と、この熱電変換素子を前記排気ガスの
流路の側壁に保持する保持部とを備えた排気熱発電装置
において、 前記保持部を、前記排気ガス側に位置せしめる吸熱部材
と、この吸熱部材の外側に所定間隔をおいて配設した冷
却部材とにより形成し、 この冷却部材と前記吸熱部材との間に前記熱変換素子を
装備し、 前記熱電変換素子の出力側に該熱電変換素子の出力電圧
を昇圧し平滑化せしめるDC−DCコンバータを備えた
ことを特徴とする排気熱発電装置。
(2) In an exhaust gas thermal power generation device comprising a thermoelectric conversion element that converts thermal energy of exhaust gas into electrical energy, and a holding part that holds this thermoelectric conversion element on a side wall of the exhaust gas flow path, the holding part a heat absorbing member located on the exhaust gas side and a cooling member disposed at a predetermined interval on the outside of the heat absorbing member, and the heat conversion element is disposed between the cooling member and the heat absorbing member. An exhaust heat power generation device comprising: a DC-DC converter on the output side of the thermoelectric conversion element for boosting and smoothing the output voltage of the thermoelectric conversion element.
(3)、排気ガスの熱エネルギを電気エネルギに変換す
る熱電変換素子と、この熱電変換素子を前記排気ガスの
流路の側壁に保持する保持部とを備えた排気熱発電装置
において、 前記保持部を、前記排気ガス側に位置せしめる吸熱部材
と、この吸熱部材の外側に所定間隔をおいて配設した冷
却部材とにより形成し、 この冷却部材と前記吸熱部材との間に前記熱変換素子を
装備し、 前記熱電変換素子の出力側に該熱電変換素子の出力電圧
を昇圧し平滑化せしめるDC−DCコンバータと、この
DC−DCコンバータの出力を負荷方向のみへ通電せし
める逆流防止手段とを装備したことを特徴とする排気熱
発電装置。
(3) In an exhaust gas thermal power generation device comprising a thermoelectric conversion element that converts thermal energy of exhaust gas into electrical energy, and a holding part that holds the thermoelectric conversion element on a side wall of the exhaust gas flow path, the holding part a heat absorbing member located on the exhaust gas side and a cooling member disposed at a predetermined interval on the outside of the heat absorbing member, and the heat conversion element is disposed between the cooling member and the heat absorbing member. and a DC-DC converter for boosting and smoothing the output voltage of the thermoelectric conversion element on the output side of the thermoelectric conversion element, and a backflow prevention means for energizing the output of the DC-DC converter only in the load direction. An exhaust heat power generation device characterized by being equipped with it.
(4)、前記保持部を形成する吸熱部材及び冷却部材は
、熱伝導性及び電気絶縁性を有する部材で形成されてい
ることを特徴とする特許請求の範囲第1項、第2項又は
第3項記載の排気熱発電装置。
(4) The heat absorbing member and the cooling member forming the holding portion are formed of a member having thermal conductivity and electrical insulation properties. The exhaust heat power generation device according to item 3.
JP60093385A 1985-04-30 1985-04-30 Power generator utilizing exhaust heat Pending JPS61254082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093385A JPS61254082A (en) 1985-04-30 1985-04-30 Power generator utilizing exhaust heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093385A JPS61254082A (en) 1985-04-30 1985-04-30 Power generator utilizing exhaust heat

Publications (1)

Publication Number Publication Date
JPS61254082A true JPS61254082A (en) 1986-11-11

Family

ID=14080841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093385A Pending JPS61254082A (en) 1985-04-30 1985-04-30 Power generator utilizing exhaust heat

Country Status (1)

Country Link
JP (1) JPS61254082A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622388U (en) * 1985-06-07 1987-01-08
JPH02119589A (en) * 1988-10-26 1990-05-07 Toto Ltd Power unit
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH03155376A (en) * 1989-11-09 1991-07-03 Japan Atom Power Co Ltd:The Thermoelectric generating element
JPH0936439A (en) * 1995-07-24 1997-02-07 Agency Of Ind Science & Technol Thermoelectric power generation module
WO1999019979A1 (en) * 1997-10-14 1999-04-22 Seiko Instruments Inc. Power generating block provided with thermoelectric generation unit
WO1999044103A1 (en) * 1998-02-27 1999-09-02 Seiko Instruments Inc. Power generation device and electronic timepiece using the device
JP2000035825A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
KR20000056028A (en) * 1999-02-12 2000-09-15 음국배 Self generator using thermoelectric semiconductor and its controlling method in electric-automobile
US6172427B1 (en) 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
KR100386472B1 (en) * 2000-11-16 2003-06-02 한국에너지기술연구원 Thermoelectric Generation System for Automobile Exhaust Heat Recovery
KR100452909B1 (en) * 2001-12-29 2004-10-14 한국동서발전(주) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
WO2005098225A1 (en) 2004-04-07 2005-10-20 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery power generation device and automobile equipped therewith
EP1564822A3 (en) * 2004-02-17 2009-05-20 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and its control method
DE102009033613A1 (en) * 2009-07-17 2011-01-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device with tube bundles
US20110146743A1 (en) * 2009-12-17 2011-06-23 J. Eberspacher GmbH & Co. KG. Exhaust system with thermoelectric generator
JP2012010459A (en) * 2010-06-23 2012-01-12 Ihi Corp Exhaust gas utilization generator and power generation system
WO2012022684A1 (en) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Tubular thermoelectric module and method for producing said module
JP2012044107A (en) * 2010-08-23 2012-03-01 Fujitsu Ltd Thermoelectric conversion device and sensing device
JP2013510417A (en) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア Use of porous metal materials as contact connections for thermoelectric modules
JP2013126370A (en) * 2011-12-15 2013-06-24 Hyundai Motor Co Ltd Thermoelectric generation machine for vehicle
JP2013138554A (en) * 2011-12-28 2013-07-11 Daihatsu Motor Co Ltd On-vehicle power generation system
JP2013542701A (en) * 2010-09-09 2013-11-21 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for automotive thermoelectric generator with sealing element
WO2013170992A1 (en) * 2012-05-16 2013-11-21 Siemens Aktiengesellschaft Thermoelectric generator pipe and method for producing the generator pipe
JP2015185573A (en) * 2014-03-20 2015-10-22 株式会社デンソー thermoelectric conversion element
CN106997921A (en) * 2016-01-25 2017-08-01 丰田自动车株式会社 The TRT of vehicle
KR20190097440A (en) * 2018-02-12 2019-08-21 한국표준과학연구원 Multi-multi-array themoeletric generator and its generating system
WO2020118835A1 (en) * 2018-12-12 2020-06-18 深圳大学 Thermovoltaic power generation device based on waste heat power generation
EP3933946A1 (en) * 2020-07-01 2022-01-05 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method for manufacturing a thermoelectric module and thermoelectric module as a press band
WO2022069292A1 (en) * 2020-10-01 2022-04-07 Vitesco Technologies GmbH Heat exchanger having thermoelectric generator

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448150Y2 (en) * 1985-06-07 1992-11-12
JPS622388U (en) * 1985-06-07 1987-01-08
JPH02119589A (en) * 1988-10-26 1990-05-07 Toto Ltd Power unit
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH03155376A (en) * 1989-11-09 1991-07-03 Japan Atom Power Co Ltd:The Thermoelectric generating element
JPH0936439A (en) * 1995-07-24 1997-02-07 Agency Of Ind Science & Technol Thermoelectric power generation module
US6172427B1 (en) 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
WO1999019979A1 (en) * 1997-10-14 1999-04-22 Seiko Instruments Inc. Power generating block provided with thermoelectric generation unit
US6316714B1 (en) * 1997-10-14 2001-11-13 Seiko Instruments Inc. Power generating block provided with thermoelectric generation unit
WO1999044103A1 (en) * 1998-02-27 1999-09-02 Seiko Instruments Inc. Power generation device and electronic timepiece using the device
JP2000035825A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
KR20000056028A (en) * 1999-02-12 2000-09-15 음국배 Self generator using thermoelectric semiconductor and its controlling method in electric-automobile
KR100386472B1 (en) * 2000-11-16 2003-06-02 한국에너지기술연구원 Thermoelectric Generation System for Automobile Exhaust Heat Recovery
KR100452909B1 (en) * 2001-12-29 2004-10-14 한국동서발전(주) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
US6894215B2 (en) 2002-01-25 2005-05-17 Komatsu Ltd. Thermoelectric module
EP1564822A3 (en) * 2004-02-17 2009-05-20 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and its control method
US7667132B2 (en) 2004-02-17 2010-02-23 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and control method for electric power generating apparatus
WO2005098225A1 (en) 2004-04-07 2005-10-20 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery power generation device and automobile equipped therewith
DE102009033613A1 (en) * 2009-07-17 2011-01-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device with tube bundles
JP2013510417A (en) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア Use of porous metal materials as contact connections for thermoelectric modules
US9716217B2 (en) * 2009-12-17 2017-07-25 Eberspaecher Exhaust Technology Gmbh & Co. Kg Exhaust system with thermoelectric generator
US20110146743A1 (en) * 2009-12-17 2011-06-23 J. Eberspacher GmbH & Co. KG. Exhaust system with thermoelectric generator
JP2012010459A (en) * 2010-06-23 2012-01-12 Ihi Corp Exhaust gas utilization generator and power generation system
WO2012022684A1 (en) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Tubular thermoelectric module and method for producing said module
JP2013539214A (en) * 2010-08-18 2013-10-17 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Tubular thermoelectric module and method for manufacturing said module
US9484518B2 (en) 2010-08-18 2016-11-01 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Tubular thermoelectric module and method for producing the module
JP2012044107A (en) * 2010-08-23 2012-03-01 Fujitsu Ltd Thermoelectric conversion device and sensing device
JP2013542701A (en) * 2010-09-09 2013-11-21 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for automotive thermoelectric generator with sealing element
JP2013126370A (en) * 2011-12-15 2013-06-24 Hyundai Motor Co Ltd Thermoelectric generation machine for vehicle
JP2013138554A (en) * 2011-12-28 2013-07-11 Daihatsu Motor Co Ltd On-vehicle power generation system
WO2013170992A1 (en) * 2012-05-16 2013-11-21 Siemens Aktiengesellschaft Thermoelectric generator pipe and method for producing the generator pipe
JP2015185573A (en) * 2014-03-20 2015-10-22 株式会社デンソー thermoelectric conversion element
CN106997921A (en) * 2016-01-25 2017-08-01 丰田自动车株式会社 The TRT of vehicle
JP2017135152A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Power generator for vehicle
KR20190097440A (en) * 2018-02-12 2019-08-21 한국표준과학연구원 Multi-multi-array themoeletric generator and its generating system
WO2020118835A1 (en) * 2018-12-12 2020-06-18 深圳大学 Thermovoltaic power generation device based on waste heat power generation
EP3933946A1 (en) * 2020-07-01 2022-01-05 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method for manufacturing a thermoelectric module and thermoelectric module as a press band
WO2022002644A1 (en) * 2020-07-01 2022-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for producing a thermoelectric module, and thermoelectric module as interference fit assembly
WO2022069292A1 (en) * 2020-10-01 2022-04-07 Vitesco Technologies GmbH Heat exchanger having thermoelectric generator

Similar Documents

Publication Publication Date Title
JPS61254082A (en) Power generator utilizing exhaust heat
JP4423989B2 (en) Thermoelectric generator for internal combustion engine
US6307142B1 (en) Combustion heat powered portable electronic device
JP7101677B2 (en) Heat recovery device and heat recovery system
CN101882898A (en) Low temperature smoke temperature difference generator
KR100735617B1 (en) Thermoelectric generator using for waste heat
US20200294780A1 (en) Combined heating and power modules and devices
JP2003111459A (en) Thermoelectric converter
JPH03177082A (en) Thermoelectric power generator
CN108493322A (en) The thermocouple unit of annular thermoelectric material electric organ and annular thermoelectric material electric organ
JP3442862B2 (en) Thermoelectric generation unit
JPH11215867A (en) Thermoelectric power generation element structure and system thereof
JP2002199762A (en) Exhaust heat thermoelectric converter, exhaust gas exhausting system using it, and vehicle using it
EP3939065A1 (en) Combined heating and power modules and devices
JPH0679168U (en) Exhaust heat power generator
KR100452909B1 (en) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
TWI701682B (en) Ignition system and nuclear technology facility for igniting combustible gas mixture
JP3626798B2 (en) Thermoelectric power generation equipment
JP2000009361A (en) Thermoelectric conversion system
KR20120112735A (en) Device for generating electric energy from a heat-conducting material
CN214380260U (en) Auxiliary power supply device for automobile
CN113294938B (en) Coupling heat pump driven by thermoelectric stack
JPH02602Y2 (en)
Crowley et al. Performance of a wick return AMTEC cell with a micromachined condenser