JPH03177082A - Thermoelectric power generator - Google Patents

Thermoelectric power generator

Info

Publication number
JPH03177082A
JPH03177082A JP1316292A JP31629289A JPH03177082A JP H03177082 A JPH03177082 A JP H03177082A JP 1316292 A JP1316292 A JP 1316292A JP 31629289 A JP31629289 A JP 31629289A JP H03177082 A JPH03177082 A JP H03177082A
Authority
JP
Japan
Prior art keywords
thermoelectric element
thermoelectric
cooling member
junction
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1316292A
Other languages
Japanese (ja)
Inventor
Tatsuo Tokiai
健生 時合
Masaaki Nosaka
野坂 正昭
Hiromi Mizuno
水野 博美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1316292A priority Critical patent/JPH03177082A/en
Publication of JPH03177082A publication Critical patent/JPH03177082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to obtain a thermoelectric power generator having an excellent durability at low cost with a simple structure by burying a thermoelectric element into a hole bored on a heat source base body material to which one end of a P-N junction is installed, laying out a cooling material to the other side, and fixing the thermoelectric element with this coiling material. CONSTITUTION:A disk-shaped insulation board 15 is inserted into each hole 4 bored on an exhaust manifold of a heat source base body material and then a P-N junction 13 of a thermoelectric element 10 is inserted from above. A filling material 16 with an electric insulation performance is filled between the outer periphery of the P-N junction and the side of the holes 4 so that one end of the P-N junction 13 of the thermoelectric element 10 is buried and fixed. At the same time, a pair of electrodes 7 and 18 are installed in serial to the other end of the thermoelectric element 10 so that they extend over the adjacent two thermoelectric elements 10. A disk-shaped insulation material 19 is fixed over the upper surface of both the electrodes 17 and 18 and a cooling material 20 flexible and deformable is laid out on the insulation material 19.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電発電器に係り、特に、熱エネルギーを電
気エネルギーに変換する半導体熱電素子を備えた熱電発
電器に関し、自動車、船舶等の内燃機関あるいは工場の
廃熱回収機器等に利用できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thermoelectric generator, and particularly relates to a thermoelectric generator equipped with a semiconductor thermoelectric element that converts thermal energy into electrical energy, and is applicable to automobiles, ships, etc. It can be used in internal combustion engines or waste heat recovery equipment in factories.

〔背景技術〕[Background technology]

従来より、熱電効果(ゼーベック効果)を応用して熱エ
ネルギーを電気エネルギーに変換する熱電素子がある。
2. Description of the Related Art Conventionally, there have been thermoelectric elements that convert thermal energy into electrical energy by applying the thermoelectric effect (Seebeck effect).

例えば、第7図に示されるように、従来の半導体で構成
される熱電素子30は、一端にP−N接合部31が設け
られ、他端に一対の電極32.33が設けられている。
For example, as shown in FIG. 7, a thermoelectric element 30 made of a conventional semiconductor is provided with a PN junction 31 at one end and a pair of electrodes 32 and 33 at the other end.

この熱電素子30の一端、P−N接合部31側を加熱し
、他端を冷却することにより、温度差に比例した電圧が
一対の電極32.33に発生し、温度差の二乗に比例し
た電力を得ることができる。
By heating one end of this thermoelectric element 30, the P-N junction 31 side, and cooling the other end, a voltage proportional to the temperature difference is generated across the pair of electrodes 32 and 33, and a voltage proportional to the square of the temperature difference is generated. You can get electricity.

このため、複数の熱電素子30を熱源となる熱発生機器
の熱源基体部材に取付けることによって発電器を構成で
きる。熱電素子30を熱発生機器に取付けるにあたって
は、熱発生機器が振動を発生しても熱電素子30が破壊
されたり、離れたりしないように、熱電素子30を熱発
生機器側へ付勢する付勢手段を設けて振動の吸収を図っ
ている。
Therefore, a power generator can be configured by attaching a plurality of thermoelectric elements 30 to a heat source base member of a heat generating device serving as a heat source. When attaching the thermoelectric element 30 to a heat generating device, it is necessary to apply a biasing force that urges the thermoelectric element 30 toward the heat generating device so that the thermoelectric device 30 will not be destroyed or separated even if the heat generating device generates vibrations. Measures are provided to absorb vibrations.

例えば、第8図に示されるように、熱発生機器の平板状
の熱源基体部材34に対して絶縁体35を介して熱電素
子30の一端のP−N接合部31が当接され、この熱電
素子30の他端の電極32.33には、ヒートシンクを
兼ねる絶縁板36が当接されている。
For example, as shown in FIG. 8, a P-N junction 31 at one end of a thermoelectric element 30 is brought into contact with a flat heat source base member 34 of a heat generating device via an insulator 35. An insulating plate 36 that also serves as a heat sink is in contact with the electrodes 32 and 33 at the other end of the element 30.

この絶縁板36と前記熱発生機器の壁体37との間には
、付勢手段としてのばね38が設けられ、熱電素子30
が熱源基体部材34に向かつて付勢されている。
A spring 38 as a biasing means is provided between the insulating plate 36 and the wall 37 of the heat generating device, and the thermoelectric element 30
is urged toward the heat source base member 34.

また、このばね38により熱発生機器の振動に伴う熱電
素子30の熱源基体部材34からの離間や、熱電素子3
0の破壊が防止されている。
The spring 38 also prevents the thermoelectric element 30 from separating from the heat source base member 34 due to vibrations of the heat generating equipment, and prevents the thermoelectric element 3
0 destruction is prevented.

なお、熱源基体部材34の図中下側には、排ガスや廃蒸
気等の熱源となる流体が流通され、一方、絶縁板36と
壁体37との間には、水・空気等の冷媒が流通して、熱
電素子30の電極32.33側を冷却できるようになっ
ている。
Note that a fluid serving as a heat source such as exhaust gas or waste steam flows through the lower side of the heat source base member 34 in the figure, while a refrigerant such as water or air flows between the insulating plate 36 and the wall 37. The thermoelectric element 30 can be cooled on the electrode 32, 33 side by flowing through the thermoelectric element 30.

このような構造で多数の、例えば、数百個の熱電素子3
0を熱発生機器の熱源基体部材34上に固定し、各熱電
素子30を電気的に接続して熱電発電器が構成される。
With such a structure, a large number, for example, several hundred thermoelectric elements 3
0 is fixed on a heat source base member 34 of a heat generating device, and each thermoelectric element 30 is electrically connected to construct a thermoelectric generator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述のような熱電発電器では、熱発生機
器の振動による熱電素子30の破壊は防止できるが、熱
電素子30が転倒するなどして、熱源基体部材34から
離脱してしまう可能性がある。この熱電素子30の離脱
によって各熱電素子30を相互接続する電気配線が切断
され、発電器としての機能を失う可能性があり、耐久性
が十分でないという問題がある。
However, in the above-mentioned thermoelectric generator, although it is possible to prevent the thermoelectric element 30 from being destroyed due to vibrations of the heat generating equipment, there is a possibility that the thermoelectric element 30 falls over and separates from the heat source base member 34. . When the thermoelectric elements 30 are detached, the electrical wiring interconnecting the thermoelectric elements 30 is cut, and there is a possibility that the function as a power generator is lost, resulting in insufficient durability.

また、熱電素子30の電極32.33側では、ばね38
による付勢および空気等の冷媒による冷却の両方が行わ
れるので、冷媒等の付勢手段側への漏洩の防止をする必
要があり、多数の熱電素子30を熱源基体部材34上に
固定する熱電発電器では、特に、冷却機構の構造が複雑
になり、高価になるという問題がある。
Further, on the electrode 32, 33 side of the thermoelectric element 30, a spring 38
Since both the energization by the thermoelectric elements 30 and the cooling by the refrigerant such as air are performed, it is necessary to prevent the refrigerant from leaking to the energizing means. In generators, there is a particular problem in that the structure of the cooling mechanism becomes complicated and expensive.

本発明の目的は、安価でしかも単純な構造で、耐久性が
良好な熱電発電器を提供することにある。
An object of the present invention is to provide a thermoelectric generator that is inexpensive, has a simple structure, and has good durability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、熱電素子を、そのP−N接合側の一端が熱発
生機器の熱源基体部材に設けた孔に埋設された状態で複
数配置し、その他端側に冷却部材を配置し、この冷却部
材で前記熱電素子の固定を行って、これらの熱電素子の
離脱などを防止した熱電発電器を構成するものである。
In the present invention, a plurality of thermoelectric elements are disposed with one end of the P-N junction side buried in a hole provided in a heat source base member of a heat generating device, a cooling member is disposed on the other end side, and the cooling member is disposed on the other end side. A thermoelectric generator is constructed in which the thermoelectric elements are fixed with a member to prevent the thermoelectric elements from detaching.

〔作用〕[Effect]

このような本発明では、熱電素子の一端を埋設し、他端
を冷却部材で固定して、振動による熱電素子の逸脱、破
壊および転倒を防止し、熱電発電器に耐久性を付与する
。また、付勢手段を省略して熱電発電器の全体構造を簡
略化する。
In the present invention, one end of the thermoelectric element is buried and the other end is fixed with a cooling member to prevent the thermoelectric element from being dislodged, destroyed, or overturned due to vibration, thereby imparting durability to the thermoelectric generator. Furthermore, the urging means is omitted, simplifying the overall structure of the thermoelectric generator.

さらに、冷却部材を、例えば、可撓性チューブのような
柔軟性を有する弾性変形可能な材料で形威し、冷却部材
に熱発生機器の振動を吸収させ、従来のような付勢手段
を用いずに単純な防振構造を形成する。これにより、熱
源基体部材の振動を緩和し、熱電発電器の耐久性をさら
に向上させる。
Furthermore, the cooling member may be formed of a flexible, elastically deformable material such as a flexible tube, the cooling member may absorb vibrations of the heat generating equipment, and may be provided with conventional biasing means. A simple vibration isolation structure is formed without any vibration. This reduces the vibration of the heat source base member and further improves the durability of the thermoelectric generator.

また、冷却部材を大きな表面積を有する形状にし、高い
冷却効率を有するものとして発電効率の向上を図ること
が可能となる。
In addition, the cooling member has a shape with a large surface area and has high cooling efficiency, thereby making it possible to improve power generation efficiency.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図ないし第4図には、本発明の第1実施例が示され
ている。ただし、第1図中には、熱電素子lOを電気的
に接続する電極や配線等は図示していない。
A first embodiment of the invention is shown in FIGS. 1-4. However, in FIG. 1, electrodes, wiring, etc. that electrically connect the thermoelectric element IO are not shown.

図において、本実施例の熱電発電器lでは、熱発生機器
はエンジンとされ、その熱源基体部材は排気マニホール
ド2とされる。排気マニホールド2には、円柱状の多数
の熱電素子IOの一端が埋設され、その他端に冷却部材
20が配置される。これらの排気マニホールド2、熱電
素子10および冷却部材20を含んで熱電発電器lが構
成される。
In the figure, in the thermoelectric generator 1 of this embodiment, the heat generating device is an engine, and the heat source base member is an exhaust manifold 2. One end of a large number of cylindrical thermoelectric elements IO is buried in the exhaust manifold 2, and a cooling member 20 is arranged at the other end. A thermoelectric generator 1 is configured including these exhaust manifold 2, thermoelectric element 10, and cooling member 20.

マニホールド2は、ハイステロイ合金C等の耐熱性部材
で構成され、第2図に示されるように、複数の枝管2A
が設けられている。枝管2Aのエンジン側フランジ3近
傍には、第3図に示されるように、所定直径dの孔4が
所定ピッチPで螺旋状に配列されている。マニホールド
2全体では、例えば、約300個の孔4が設けられてい
る。これらの孔4の深さhは、マニホールド2の肉厚の
半分以下にされている。各社4には、孔4の直径dより
若干細い直径りを有する熱電素子lOがそれぞれ挿入可
能となっている。
The manifold 2 is made of a heat-resistant member such as Hysteroy Alloy C, and as shown in FIG.
is provided. As shown in FIG. 3, holes 4 having a predetermined diameter d are arranged in a spiral shape at a predetermined pitch P near the engine side flange 3 of the branch pipe 2A. For example, about 300 holes 4 are provided in the entire manifold 2. The depth h of these holes 4 is less than half the wall thickness of the manifold 2. A thermoelectric element 1O having a diameter slightly smaller than the diameter d of the hole 4 can be inserted into each hole 4.

この際、孔4の深さhが深いほどより確実な熱電素子l
Oの取付けが行えるが、熱電素子10の全長に対して深
く入り過ぎると、熱電素子lOの両端で温度差が得にく
くなるため、発電効率は低下する。
At this time, the deeper the depth h of the hole 4, the more reliable the thermoelectric element l.
Although it is possible to attach the thermoelectric element 10, if it is inserted too deeply relative to the entire length of the thermoelectric element 10, it becomes difficult to obtain a temperature difference between both ends of the thermoelectric element 10, and the power generation efficiency decreases.

そこで、孔4の深さhは、熱電素子10の高さHに対し
て0.1〜0.8H,好ましくは、0.15〜0.6H
の寸法に設定される。
Therefore, the depth h of the hole 4 is 0.1 to 0.8H, preferably 0.15 to 0.6H with respect to the height H of the thermoelectric element 10.
The dimensions are set to .

一方、熱電素子10の形状は、従来と同様であり、第4
図に示されるように、P型およびN型のふたつの半導体
11.12が接合されたものであって、−端側にP−N
接合部13が設けられ、他端側からPN接合部13にか
けて半導体11.12を電気的に絶縁する溝14が設け
られている。
On the other hand, the shape of the thermoelectric element 10 is the same as the conventional one, and the fourth
As shown in the figure, two semiconductors 11 and 12 of P-type and N-type are bonded, with P-N on the negative end side.
A junction part 13 is provided, and a groove 14 is provided from the other end side to the PN junction part 13 to electrically insulate the semiconductors 11 and 12.

なお、熱電素子lOを形成する半導体としては、Fe5
itが採用され、P型、N型のドーパントとして、それ
ぞれマンガンおよびコバルトがドーピングされている。
Note that the semiconductor forming the thermoelectric element 1O is Fe5.
IT is used, and manganese and cobalt are doped as P-type and N-type dopants, respectively.

前記孔4の各々には、アルミナ等で形成した円盤状の絶
縁板15が挿入され、その上から熱電素子lOのP−N
接合部13が挿入される。P−N接合部13の外周と孔
4の側面との間には、アルミナセメント等の電気的絶縁
性を有する充填剤16が充填され、熱電素子lOのP−
N接合部13側の一端が埋設、固定されている。また、
熱電素子10の他端には、それぞれアルミ箔、バラジュ
ームー銀(Pd−Ag)ペースト等からなる一対の電極
17.18が隣接する二つの熱電素子IOにまたがって
直列に設けられ、電極17.18によって熱電素子lO
で発生する電力の取り出しが可能となっている。また、
電極17゜18の両方の上面にわたってアルミナ等で形
成した円盤状の絶縁部材19が固着され、絶縁部材19
上に柔軟性を有する弾性変形可能な冷却部材20が配置
されている。
A disk-shaped insulating plate 15 made of alumina or the like is inserted into each of the holes 4, and the P-N of the thermoelectric element lO is inserted from above.
Joint portion 13 is inserted. A filler 16 having electrical insulation properties such as alumina cement is filled between the outer periphery of the P-N junction 13 and the side surface of the hole 4, and the P-
One end on the N-junction 13 side is buried and fixed. Also,
At the other end of the thermoelectric element 10, a pair of electrodes 17.18 made of aluminum foil, baladium silver (Pd-Ag) paste, etc. are provided in series across two adjacent thermoelectric elements IO. The thermoelectric element lO by
It is possible to extract the electricity generated by the Also,
A disk-shaped insulating member 19 made of alumina or the like is fixed over both upper surfaces of the electrodes 17 and 18, and the insulating member 19
A flexible and elastically deformable cooling member 20 is disposed thereon.

冷却部材20は、直径Φ、肉厚tのシリコンゴムチュー
ブ等からなり、内部に水や空気等の冷媒が流通可能とさ
れる。この冷却部材20は、前記螺旋状に配置された熱
電素子10の電極17.18側をマニホールド2側に付
勢するように螺旋状に巻付けられ、この付勢力によって
熱電素子IOのマニホールド2からの逸脱が防止されて
いる。
The cooling member 20 is made of a silicone rubber tube or the like with a diameter Φ and a wall thickness t, and allows a coolant such as water or air to flow therein. This cooling member 20 is spirally wound so as to bias the electrodes 17, 18 side of the thermoelectric element 10 arranged spirally toward the manifold 2 side, and this biasing force causes the thermoelectric element IO to move away from the manifold 2. deviations are prevented.

前記冷却部材20の内部には、マニホールド2の排気の
下流から上流へ(図中矢印方向に)冷却水等の冷媒が流
通される。また、エンジンが水冷の場合には、冷媒とし
てエンジンの冷却水が利用できる。
A refrigerant such as cooling water flows inside the cooling member 20 from downstream to upstream of the exhaust gas of the manifold 2 (in the direction of the arrow in the figure). Furthermore, if the engine is water-cooled, engine cooling water can be used as the refrigerant.

なお、本実施例の孔4および熱電素子10等の各寸法の
具体例は、例えば、次のようになる。
Note that specific examples of the dimensions of the hole 4, thermoelectric element 10, etc. in this embodiment are as follows, for example.

すなわち、孔4の直径d1深さhおよびピッチPがそれ
ぞれ8mm13. 5mm、  11mmとされ、この
孔4に対する熱電素子10の直径りおよび高さHがそれ
ぞれ7IIff+および13ID11とされている。ま
た、熱電素子10の溝14の幅および高さがそれぞれ1
 mm、10mmとされ、マニホールド2の肉厚が6〜
8 mmとされる。さらに、冷却部材20の直径Φおよ
び肉厚tがそれぞれ5 mmおよびlamとされている
That is, the diameter d1 and the depth h and pitch P of the hole 4 are each 8 mm13. The diameter and height H of the thermoelectric element 10 relative to the hole 4 are 7IIff+ and 13ID11, respectively. Further, the width and height of the groove 14 of the thermoelectric element 10 are each 1
mm, 10 mm, and the wall thickness of manifold 2 is 6~
It is said to be 8 mm. Furthermore, the diameter Φ and wall thickness t of the cooling member 20 are 5 mm and lam, respectively.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず、エンジンを起動し、これに伴い冷却水を冷却部材
20の内部に流通させておく。エンジンの運転によって
発生する排気ガスによって、排気マ二ホールド2は、3
00〜800℃まで加熱される。この熱で熱電素子IO
のP−N接合部13側の一端側が加熱され、他端側か冷
却水を流通させた冷却部材20で冷却される。従って、
熱電素子lOの両端間に温度差が生じ、この温度差によ
って電極17゜18の間に直流電圧が生じる。エンジン
の排気ガスの温度が上昇して前記温度差がある程度大き
くなると、熱電発電器の出力電圧が大きくなり、負荷に
電力を供給可能な状態となる。この状態で熱電発電器に
負荷、例えば、直流モータを接続し、熱電発電器で発電
した電力で駆動させる。エンジンの排気ガスの熱、すな
わち、排熱によって発電器の電力の供給が連続して行わ
れる。
First, the engine is started, and cooling water is caused to flow inside the cooling member 20 accordingly. Exhaust gas generated by engine operation causes the exhaust manifold 2 to
Heated to 00-800°C. With this heat, the thermoelectric element IO
One end on the P-N junction 13 side is heated, and the other end is cooled by a cooling member 20 through which cooling water flows. Therefore,
A temperature difference is created between the ends of the thermoelectric element IO, and this temperature difference creates a DC voltage between the electrodes 17 and 18. When the temperature of the exhaust gas from the engine rises and the temperature difference increases to a certain extent, the output voltage of the thermoelectric generator increases, making it possible to supply power to the load. In this state, a load, such as a DC motor, is connected to the thermoelectric generator and driven by the electric power generated by the thermoelectric generator. The power of the generator is continuously supplied by the heat of the exhaust gas of the engine, that is, the waste heat.

この際、エンジンが発生する振動は、マニホールド2に
伝達され、熱電素子10を振動する。しかし、熱電素子
lOの一端を孔4に埋設・固定し、かつ、他端を冷却部
材20で固定して、振動による熱電素子lOの逸脱、破
壊および転倒を防止し、熱電発電器Iに耐久性を付与す
る。また、従来の付勢手段を省略して熱電発電器lの構
造を簡略化する。
At this time, vibrations generated by the engine are transmitted to the manifold 2 and vibrate the thermoelectric element 10. However, by embedding and fixing one end of the thermoelectric element IO in the hole 4 and fixing the other end with the cooling member 20, it is possible to prevent the thermoelectric element IO from deviating from, breaking, or falling over due to vibration, and making the thermoelectric generator I durable. give gender. Furthermore, the structure of the thermoelectric generator 1 is simplified by omitting the conventional urging means.

また、可撓性を有するシリコンチューブ等で冷却部材2
0を形成し、冷却部材20を弾性変形させて振動を吸収
させ、この冷却部材20で防振構造を形成して熱電発電
器!の耐久性をさらに向上させる。
In addition, the cooling member 2 is made of a flexible silicone tube or the like.
0 is formed, the cooling member 20 is elastically deformed to absorb vibration, and this cooling member 20 forms a vibration-proof structure to create a thermoelectric generator! further improves durability.

前述のような本実施例によれば、次のような効果がある
According to this embodiment as described above, there are the following effects.

すなわち、熱電素子lOの一端を埋設し、他端を冷却部
材20を配置して固定したので、振動による熱電素子I
Oの逸脱、破壊および転倒を防止でき、熱電発電器lに
良好な耐久性を付与することができる。しかも、従来の
ようなばね等の付勢手段を必要とせず、かつ、冷却部材
20を熱電素子10の他端に配置するのみで単純な冷却
機構が構成されるため、冷却機構を簡略化でき、ひいて
は、熱電発電器1の構造を単純で安価なものにできる。
That is, since one end of the thermoelectric element IO was buried and the other end was fixed by arranging the cooling member 20, the thermoelectric element IO due to vibrations
O deviation, destruction, and overturning can be prevented, and good durability can be imparted to the thermoelectric generator l. Moreover, the cooling mechanism can be simplified because it does not require a biasing means such as a conventional spring and a simple cooling mechanism is constructed by simply arranging the cooling member 20 at the other end of the thermoelectric element 10. As a result, the structure of the thermoelectric generator 1 can be made simple and inexpensive.

また、冷却部材20を可撓性チューブで構成するととも
に、熱電素子10の上部に押圧し、この冷却部材20で
振動を吸収させる防振構造を形成したので、熱電発電器
1の耐久性をさらに向上できる。
Furthermore, since the cooling member 20 is made of a flexible tube and is pressed against the upper part of the thermoelectric element 10 to form a vibration-proofing structure in which the cooling member 20 absorbs vibrations, the durability of the thermoelectric generator 1 is further improved. You can improve.

さらに、冷却部材20を可撓性チューブで構成し、この
冷却部材20を熱電素子10を介してマニホールド2等
の熱源基体部材に巻回したので、たとえ熱源基体部材が
四角柱状や平板状であっても、その形状に関係なく冷却
部材20を巻回できる。従って、熱源基体部材の形状に
関係なく、熱電素子10の熱源基体部材への取付けも行
うことができる。
Furthermore, since the cooling member 20 is constructed from a flexible tube and is wound around the heat source base member such as the manifold 2 via the thermoelectric element 10, even if the heat source base member is square prism-shaped or flat plate-like, However, the cooling member 20 can be wound regardless of its shape. Therefore, the thermoelectric element 10 can be attached to the heat source base member regardless of the shape of the heat source base member.

また、排気マニホールド2に熱電発電器lを設けたので
、大気中に捨てていた排熱を有効利用でき、しかもこの
排熱を効率よく電力に変換できる。
Furthermore, since the exhaust manifold 2 is provided with the thermoelectric generator 1, the exhaust heat that would otherwise be thrown away into the atmosphere can be used effectively, and moreover, this exhaust heat can be efficiently converted into electric power.

さらに、冷却部材20の内部にマニホールド2の排気の
下流から上流に冷媒を流通したので、各熱電素子IOの
両端の温度差が均一化され、発電効率を向上できる。
Furthermore, since the refrigerant was passed inside the cooling member 20 from downstream to upstream of the exhaust gas of the manifold 2, the temperature difference between both ends of each thermoelectric element IO is equalized, and power generation efficiency can be improved.

第5図および第6図には、本発明の第2実施例が示され
ている。本実施例は、前記実施例における電極17.1
8を厚内の部材から形成するとともに、その端部を熱電
素子lOの上端から突出させ、これにより放熱フィンを
形成するとともに、フィンの部分で冷却部材20を掛止
して冷却部材20の固定をも行うものである。
A second embodiment of the invention is shown in FIGS. 5 and 6. In this embodiment, the electrode 17.1 in the previous embodiment is
8 is formed from a thick member, and its end protrudes from the upper end of the thermoelectric element lO, thereby forming a radiation fin, and the cooling member 20 is fixed by hooking the cooling member 20 at the fin portion. It also does this.

すなわち、第5図および第6図において、前記第1実施
例の電極17.18に相当する電極21は、厚肉の銅板
等で形成され、隣接する二つの熱電素子10にまたがっ
て配置される。この電極21の一端が一方の素子lOの
N型部分の上に固着され、他端が他方の素子IOのP型
部分の上に固着され、電極21によって前記二つの熱電
素子10が電気的に直列接続される。
That is, in FIGS. 5 and 6, the electrodes 21 corresponding to the electrodes 17 and 18 of the first embodiment are formed of a thick copper plate or the like, and are arranged astride two adjacent thermoelectric elements 10. . One end of this electrode 21 is fixed on the N-type part of one element IO, and the other end is fixed on the P-type part of the other element IO, and the two thermoelectric elements 10 are electrically connected by the electrode 21. connected in series.

また、電極21の端部には、斜め上方へ突出した突出部
22.23が設けられている。突出部22.23には、
数条のスリット24が設けられ、突出部22.23が放
熱フィンとして機能するようになっている。
Furthermore, protrusions 22 and 23 that protrude diagonally upward are provided at the ends of the electrodes 21. The protrusions 22.23 include
Several slits 24 are provided, and the protrusions 22.23 function as heat radiation fins.

そして、突出部22.23の先端は、内側に傾斜、例え
ば、熱電素子10の端面に対し20〜80度で傾斜させ
られ、突出部22.23の間に冷却部材20が配置され
ている。これらの突出部22.23によって冷却部材2
0が熱電素子10の上部に固定されている。
The tips of the protrusions 22.23 are inclined inward, for example, at an angle of 20 to 80 degrees with respect to the end surface of the thermoelectric element 10, and the cooling member 20 is disposed between the protrusions 22.23. By means of these projections 22,23 the cooling member 2
0 is fixed on the top of the thermoelectric element 10.

なお、本実施例では、冷却部材20の少なくとも表面は
導電性を有しないので、冷却部材20と熱電素子10と
の間には絶縁部材を省略しである。
Note that in this embodiment, since at least the surface of the cooling member 20 does not have electrical conductivity, an insulating member is not provided between the cooling member 20 and the thermoelectric element 10.

このような本実施例においても前記第1実施例と同様な
作用、効果を奏することができる他、電極21に放熱フ
ィンを兼用させたので、冷却効率を向上でき、熱電素子
IOの両端の温度差が拡大されるため、高い発電出力を
得ることができるという効果を付加できる。また、冷却
部材20を突出部22゜23で固定したので、冷却部材
20の固定をより強固なものにでき、耐久性を向上でき
るという効果も付加できる。
In this embodiment, the same functions and effects as in the first embodiment can be achieved, and since the electrode 21 also serves as a radiation fin, cooling efficiency can be improved, and the temperature at both ends of the thermoelectric element IO can be improved. Since the difference is expanded, an additional effect can be obtained in that a high power generation output can be obtained. Furthermore, since the cooling member 20 is fixed by the protrusions 22 and 23, the cooling member 20 can be fixed more firmly, and the durability can be improved.

なお、本発明は前述の実施例に限定されるものではなく
、本発明の目的を達成できる範囲での変形、改良等は本
発明に含まれるものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and the present invention includes modifications, improvements, etc. within a range that can achieve the purpose of the present invention.

例えば、熱発生機器は、エンジン等の内燃機関に限らず
、ボイラー、ソーラーコレクタ、核反応炉、溶鉱炉等の
熱を伴う機器であればよい。この際、前記実施例のよう
に機器の排気管等に熱電素子10を取り付ければ、廃熱
を利用することができる。
For example, the heat generating device is not limited to an internal combustion engine such as an engine, but may be any device that generates heat such as a boiler, solar collector, nuclear reactor, or blast furnace. At this time, waste heat can be utilized by attaching the thermoelectric element 10 to the exhaust pipe of the device as in the above embodiment.

また、冷却部材20の材質は、シリコンゴムで成形した
ものに限らず、例えば、表面にシリコンゴムの被覆や陽
極酸化皮膜を有するアルミニウム管でもよい。
Further, the material of the cooling member 20 is not limited to one made of silicone rubber, and may be, for example, an aluminum tube having a silicone rubber coating or an anodic oxide coating on the surface.

さらに、冷却部材20の形状は、チューブ状のものに限
らず、例えば、水枕を大きくしたような形状のウォータ
ージャケットでもよく、これでマニホールド2に配置さ
れた全ての熱電素子lOを覆い、このウォータージャケ
ットに冷却水を流通させて冷却部材を構成してもよい。
Further, the shape of the cooling member 20 is not limited to a tube-like one, but may be a water jacket shaped like a large water pillow, which covers all the thermoelectric elements 10 arranged in the manifold 2, and this water The cooling member may be configured by circulating cooling water through the jacket.

また、冷却部材20の内部を流通する冷媒は、水に限ら
ず、空気や窒素ガス等の気体でもよく、要するに、熱交
換が可能で冷却部材20内部を流通することができれば
よい。
Further, the refrigerant flowing inside the cooling member 20 is not limited to water, and may be air or gas such as nitrogen gas, as long as it can exchange heat and can flow inside the cooling member 20.

さらに、チューブ状の冷却部材20による熱電素子lO
への固定手段は、電極を兼用するものや熱電素子10の
表面から外方向に突出された突出部22゜23を有する
ものに限らず、電極とは別個にされたものや突出部を持
たない固定具で構成してもよい。
Furthermore, the thermoelectric element lO by the tubular cooling member 20
The means for fixing to the thermoelectric element 10 is not limited to those that double as electrodes or those that have protrusions 22 and 23 that protrude outward from the surface of the thermoelectric element 10, but also those that are separate from the electrodes or have no protrusions. It may also consist of a fixture.

例えば、冷却部材20の上から熱電素子lOに被せられ
る「コ」字状の絶縁体で構成された固定具等で冷却部材
20の固定を行ってもよい。また、この固定具の「コ」
字状の各先端部分だけに導電部を有する導電部を設け、
固定具を熱電素子10の先端に被せるとともに、固定具
の各導電部を熱電素子lOのP型およびN型の半導体1
1.12にそれぞれ接続させ、この固定具で電極を兼用
してもよい。要するに、冷却部材20の固定手段は、実
施にあたって適宜選択すればよい。
For example, the cooling member 20 may be fixed with a fixture made of a U-shaped insulator that is placed over the thermoelectric element 1O from above the cooling member 20. Also, the "ko" of this fixture
A conductive part having a conductive part is provided only at the tip of each character,
The fixture is placed over the tip of the thermoelectric element 10, and each conductive part of the fixture is connected to the P-type and N-type semiconductors 1 of the thermoelectric element 10.
1.12, respectively, and this fixture may also serve as an electrode. In short, the means for fixing the cooling member 20 may be appropriately selected in implementation.

〔発明の効果〕〔Effect of the invention〕

前述のように、本発明の熱電発電器によれば、単純で安
価な構造で良好な耐久性を得ることができるという効果
がある。
As described above, the thermoelectric generator of the present invention has the effect of being able to obtain good durability with a simple and inexpensive structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の第1実施例を示し、第1図は
要部を示す斜視図(電極、配線は図示せず)、第2図は
略全体を示す正面図、第3図はマニホールド単体の要部
を示す斜視図、第4図は熱電素子部分の断面図、第5図
および第6図は本発明の第2実施例の要部を示す斜視図
および断面図、第7図は一般の熱電素子を説明するため
の斜視図、第8図は従来例を示す断面図である。 ■・・・熱電発電器、2・・・熱源基体部材としてのマ
ニホールド、10・・・熱電素子、13・・・P−N接
合部、17、18・・・電極、20・・・冷却部材、2
1・・・放熱フィンを兼用する電極、22.23・・・
突出部。
1 to 4 show a first embodiment of the present invention, in which FIG. 1 is a perspective view showing the main part (electrodes and wiring are not shown), FIG. 2 is a front view showing almost the whole, and FIG. 3 is a perspective view showing a main part of a single manifold, FIG. 4 is a sectional view of a thermoelectric element portion, FIGS. 5 and 6 are a perspective view and a sectional view showing a main part of a second embodiment of the present invention, FIG. 7 is a perspective view for explaining a general thermoelectric element, and FIG. 8 is a sectional view showing a conventional example. ■... Thermoelectric generator, 2... Manifold as heat source base member, 10... Thermoelectric element, 13... P-N junction, 17, 18... Electrode, 20... Cooling member ,2
1... Electrode that also serves as a heat radiation fin, 22.23...
protrusion.

Claims (5)

【特許請求の範囲】[Claims] (1)複数の熱電素子が、そのP−N接合部を有する一
端側をそれぞれ熱源基体部材に埋設されるとともに、そ
の他端側に冷却部材が配置され、この冷却部材により前
記熱電素子を固定してなることを特徴とする熱電発電器
(1) One end of a plurality of thermoelectric elements having a P-N junction is embedded in a heat source base member, and a cooling member is disposed on the other end, and the thermoelectric element is fixed by this cooling member. A thermoelectric generator characterized by
(2)請求項第1項において、前記冷却部材は、内部に
冷媒が流通される可撓性チューブにより構成されること
を特徴とする熱電発電器。
(2) The thermoelectric generator according to claim 1, wherein the cooling member is constituted by a flexible tube through which a refrigerant flows.
(3)請求項第1項または第2項において、前記冷却部
材の少なくとも表面部分が絶縁体で構成されていること
を特徴とする熱電発電器。
(3) The thermoelectric generator according to claim 1 or 2, wherein at least a surface portion of the cooling member is made of an insulator.
(4)請求項第1項ないし第3項のいずれかにおいて、
前記熱電素子の他端に電極が設けられ、この電極の少な
くとも一部が熱電素子から突出されて突出部が形成され
、この突出部により放熱フィンが兼用されることを特徴
とする熱電発電器。
(4) In any one of claims 1 to 3,
A thermoelectric generator, characterized in that an electrode is provided at the other end of the thermoelectric element, at least a part of the electrode projects from the thermoelectric element to form a protrusion, and the protrusion also serves as a radiation fin.
(5)請求項第1項ないし第3項のいずれかにおいて、
前記熱電素子の他端に電極が設けられ、この電極に冷却
部材が掛止されることにより冷却部材の固定がなされる
ことを特徴とする熱電発電器。
(5) In any one of claims 1 to 3,
A thermoelectric generator characterized in that an electrode is provided at the other end of the thermoelectric element, and the cooling member is fixed by being hooked to the electrode.
JP1316292A 1989-12-05 1989-12-05 Thermoelectric power generator Pending JPH03177082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316292A JPH03177082A (en) 1989-12-05 1989-12-05 Thermoelectric power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316292A JPH03177082A (en) 1989-12-05 1989-12-05 Thermoelectric power generator

Publications (1)

Publication Number Publication Date
JPH03177082A true JPH03177082A (en) 1991-08-01

Family

ID=18075488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316292A Pending JPH03177082A (en) 1989-12-05 1989-12-05 Thermoelectric power generator

Country Status (1)

Country Link
JP (1) JPH03177082A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250675A (en) * 2010-04-28 2011-12-08 Daihatsu Motor Co Ltd Power generating system
JP2012167671A (en) * 2011-02-16 2012-09-06 J Eberspecher Gmbh & Co Kg Exhaust manifold
JP2013508596A (en) * 2009-10-14 2013-03-07 ウエスキャスト インダストリーズ インク. Fluid-cooled exhaust manifold
JP2013074160A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Power generation system
JP2013074161A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Power generation system
JP2013199902A (en) * 2012-03-26 2013-10-03 Isuzu Motors Ltd Supercharging device of internal combustion engine
JP2013233086A (en) * 2005-06-28 2013-11-14 Bsst Llc Thermoelectric generator for varying heat power source
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
JP2015076943A (en) * 2013-10-08 2015-04-20 矢崎総業株式会社 Thermal power generation device for vehicle
US9627997B2 (en) 2011-09-28 2017-04-18 Daihatu Motor Co., Ltd Power generating system
NO20170547A1 (en) * 2017-04-03 2018-05-22 Tegma As A device for generating electric power for installation to an exhaust conduit
JP2019091825A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Thermoelectric conversion element, thermoelectric conversion module, and moving body
DE102015207446B4 (en) 2014-09-01 2022-03-24 Hyundai Motor Company Thermoelectric generating device for a vehicle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233086A (en) * 2005-06-28 2013-11-14 Bsst Llc Thermoelectric generator for varying heat power source
JP2013508596A (en) * 2009-10-14 2013-03-07 ウエスキャスト インダストリーズ インク. Fluid-cooled exhaust manifold
JP2012010592A (en) * 2010-04-28 2012-01-12 Daihatsu Motor Co Ltd Power generation system
JP2011250675A (en) * 2010-04-28 2011-12-08 Daihatsu Motor Co Ltd Power generating system
US9190597B2 (en) 2010-04-28 2015-11-17 Daihatsu Motor Co., Ltd. Power-generating system
JP2012167671A (en) * 2011-02-16 2012-09-06 J Eberspecher Gmbh & Co Kg Exhaust manifold
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
JP2013074160A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Power generation system
JP2013074161A (en) * 2011-09-28 2013-04-22 Daihatsu Motor Co Ltd Power generation system
US9627997B2 (en) 2011-09-28 2017-04-18 Daihatu Motor Co., Ltd Power generating system
JP2013199902A (en) * 2012-03-26 2013-10-03 Isuzu Motors Ltd Supercharging device of internal combustion engine
JP2015076943A (en) * 2013-10-08 2015-04-20 矢崎総業株式会社 Thermal power generation device for vehicle
DE102015207446B4 (en) 2014-09-01 2022-03-24 Hyundai Motor Company Thermoelectric generating device for a vehicle
NO20170547A1 (en) * 2017-04-03 2018-05-22 Tegma As A device for generating electric power for installation to an exhaust conduit
NO342455B1 (en) * 2017-04-03 2018-05-22 Tegma As A device for generating electric power for installation to an exhaust conduit
WO2018185087A1 (en) 2017-04-03 2018-10-11 Tegma As An electric energy generating device
US10858979B2 (en) 2017-04-03 2020-12-08 Tegma As Electric energy generating device
JP2019091825A (en) * 2017-11-15 2019-06-13 古河電気工業株式会社 Thermoelectric conversion element, thermoelectric conversion module, and moving body

Similar Documents

Publication Publication Date Title
EP0190151B1 (en) Thermo-electric generator
JP3388841B2 (en) Thermoelectric generator
JPH03177082A (en) Thermoelectric power generator
KR100735617B1 (en) Thermoelectric generator using for waste heat
JPS61254082A (en) Power generator utilizing exhaust heat
US20070095379A1 (en) Thermoelectric generator
CN101882898A (en) Low temperature smoke temperature difference generator
WO2001080325A1 (en) Combustion heat powered portable electronic device
JP2008069771A (en) Thermoelectric system
US20060172245A1 (en) Gas burner with thermoelectric generator
TWI353673B (en) Integrated package having solar cell and thermoele
CN105604661A (en) Device for power generation by waste heat of automobile exhaust pipes
JPH10234194A (en) Waste-heat power generation apparatus
JP2007019260A (en) Thermoelectric conversion system
JP3442862B2 (en) Thermoelectric generation unit
TW201010104A (en) A solar energy recycling device and method
JP2004088057A (en) Thermoelectric module
KR102109486B1 (en) Multi-multi-array themoeletric generator and its generating system
JP4661235B2 (en) Thermoelectric converter
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
JPH0679168U (en) Exhaust heat power generator
TWI701682B (en) Ignition system and nuclear technology facility for igniting combustible gas mixture
JPH02303381A (en) Cogeneration facility
Furue et al. Case study on thermoelectric generation system utilizing the exhaust gas of interal-combustion power plant
CN102769414A (en) Round thermoelectric generator of automobile exhaust semiconductor