JP2003111459A - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JP2003111459A
JP2003111459A JP2001296367A JP2001296367A JP2003111459A JP 2003111459 A JP2003111459 A JP 2003111459A JP 2001296367 A JP2001296367 A JP 2001296367A JP 2001296367 A JP2001296367 A JP 2001296367A JP 2003111459 A JP2003111459 A JP 2003111459A
Authority
JP
Japan
Prior art keywords
heat storage
storage tank
storage medium
heat
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001296367A
Other languages
Japanese (ja)
Inventor
Chiaki Matsubara
千彰 松原
Ryuzo Sugii
杉井  隆造
Muhammad Enamul Kabiru
ムハマド エナムル カビル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001296367A priority Critical patent/JP2003111459A/en
Publication of JP2003111459A publication Critical patent/JP2003111459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thermoelectric converter producing an electric output from the temperature difference between the opposite sides of a thermoelectric power generation module, in which an electric output stabilized against temperature variation can be obtained by utilizing thermal energy effectively, thereby relaxing the effect of thermal stress due to thermal fluid. SOLUTION: The thermoelectric converter comprises a heat storage tank 10 containing heat storage medium 11 with a passage 1 for introducing thermal fluid 2 being provided internally, and the heat storage tank 10 is provided with means 20 for regulating pressure variation in the heat storage tank 10 due to expansion of the heat storage medium. A thermoelectric power generation module 5 is fixed to the outer side face of the heat storage tank 10, and a cooling passage 3 is provided on the outside thereof. The heat storage tank 10 has a size large enough to contain the thermal fluid passage 1 and a sufficient quantity of heat storage medium 11. The pressure regulating means 20 regulates pressure variation due to thermal expansion of the heat storage medium, thus protecting the heat storage tank 10 and the thermoelectric power generation module 5 against damage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温の熱流体から
蓄熱体を介して加熱される高温側伝熱板と、低温側伝熱
板との間に、複数の熱電変換素子からなる熱電発電モジ
ュールを挟み込んで、熱エネルギーを電気エネルギーに
変換させる熱電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator comprising a plurality of thermoelectric conversion elements between a low temperature side heat transfer plate and a high temperature side heat transfer plate which is heated from a high temperature thermal fluid via a heat storage body. The present invention relates to a thermoelectric conversion device that sandwiches a module and converts heat energy into electric energy.

【0002】[0002]

【従来の技術】従来から、高温側伝熱板と低温側伝熱板
の間に、2種の異なる金属あるいはP型とN型の半導体
で環状回路を構成した熱電発電モジュールを挟み込むこ
とにより、熱電発電モジュールの一方側(高温側)と他
方側(低温側)との間に電圧を生じさせるゼーベック効
果を利用して、熱エネルギーを電気エネルギーに変換す
る熱電変換装置は、例えば、特公昭58−44842
号、特開平10−163538号などによって開示され
ている。
2. Description of the Related Art Conventionally, by sandwiching a thermoelectric power generation module having an annular circuit composed of two different metals or P-type and N-type semiconductors between a high-temperature side heat-transfer plate and a low-temperature side heat-transfer plate, thermoelectric power generation is possible. A thermoelectric conversion device that converts thermal energy into electric energy by using the Seebeck effect that generates a voltage between one side (high temperature side) and the other side (low temperature side) of a module is disclosed in, for example, Japanese Patent Publication No. 58-44842.
And Japanese Patent Laid-Open No. 10-163538.

【0003】このような熱電変換装置は、たとえば図7
に示すように、高温の熱流体が導かれる熱流体通路10
1と低温の流体を流す冷却通路102との間に、両面に
絶縁板103をそなえた多数のP型、N型の半導体10
4を電極105で交互に接続した熱電発電モジュール1
06を取り付けている。このため、熱電発電モジュール
106の片側面は、熱流体通路101を通る熱流体の熱
が絶縁板103を介して供給されて高温になり、他方側
面は冷却通路102で低温にされ、この温度差によって
熱電発電モジュール106に電圧を発生させている。熱
流体としては、各種エンジンやタービン発電装置、焼却
炉、ボイラーなどの排気ガス、あるいは温泉、ボイラー
の湯などが利用されており、これらの熱流体が金属の熱
流体通路101の管壁から絶縁板103を介して熱電発
電モジュール106を直接加熱するようにしている。
Such a thermoelectric converter is shown, for example, in FIG.
As shown in FIG.
1 and a cooling passage 102 through which a low-temperature fluid flows, a large number of P-type and N-type semiconductors 10 having insulating plates 103 on both sides.
Thermoelectric power generation module 1 in which 4 are alternately connected by electrodes 105
06 is attached. Therefore, one side surface of the thermoelectric power generation module 106 is heated to a high temperature by the heat of the thermal fluid passing through the thermal fluid passage 101 via the insulating plate 103, and the other side surface is cooled to a low temperature in the cooling passage 102. The voltage is generated in the thermoelectric power generation module 106. Exhaust gas from various engines, turbine generators, incinerators, boilers, hot springs, hot water of boilers, etc. are used as the thermal fluid, and these thermal fluids are insulated from the pipe wall of the metallic thermal fluid passage 101. The thermoelectric power generation module 106 is directly heated via the plate 103.

【0004】また、前記のように熱流体通路の熱流体が
直接熱電発電モジュールを加熱するものでは、熱源から
の熱伝導率が高く、熱流体の温度変化に対する熱電発電
モジュールの出力電圧の応答性が良好であるが、熱流体
通路に急激な温度変化があった場合に、熱流体通路と熱
電発電モジュールとの接合面に大きな応力が加わって変
形や剥離などが発生し、セラミックスなどの耐熱絶縁物
や熱電発電素子にキレツや変形を生じるおそれがあり、
その損傷部分で熱抵抗が増大して発電効率が低下する問
題があった。このため、特開平8−205567号で
は、複数の発電素子を多段積み構造にして、段間に補強
材となる仕切り板を設けているが、これは変形に対する
機械的な補強に過ぎず、熱応力や出力変動などに対する
考慮がされておらず、構成が複雑大型化している。
Further, in the case where the thermofluid in the thermofluid passage directly heats the thermoelectric generation module as described above, the thermal conductivity from the heat source is high, and the responsiveness of the output voltage of the thermoelectric generation module to the temperature change of the thermofluid is high. However, when there is a sudden temperature change in the thermofluid passage, large stress is applied to the joint surface between the thermofluid passage and the thermoelectric power generation module, causing deformation or peeling. There is a risk of cracks and deformation of objects and thermoelectric generators,
There has been a problem that thermal resistance increases at the damaged portion and power generation efficiency decreases. For this reason, in Japanese Patent Laid-Open No. 8-205567, a plurality of power generating elements have a multi-tiered structure and partition plates serving as a reinforcing material are provided between the tiers, but this is merely mechanical reinforcement against deformation and heat No consideration has been given to stress or output fluctuation, and the configuration is complicated and large.

【0005】また、熱源側に蓄熱体を設け、この蓄熱体
を介して加熱される高温側伝熱板と低温側伝熱板の間
に、複数の発電素子からなる熱電発電モジュールを配置
するようにしたものが用いられており、たとえば、アメ
リカ特許第4251291号には、太陽光を熱源にして
150℃程度の融点をもった金属蓄熱材を加熱し、この
蓄熱材と放熱板との間に熱電素子を配置したものが示さ
れており、実開昭62−128128号の潤滑装置で
は、潜熱蓄熱材を収納した容器を外部から加熱し、容器
の上面に、熱電発電素子をそなえた熱発電機によって潤
滑油系のポンブを駆動する潤滑装置が提案されている。
Further, a heat storage body is provided on the heat source side, and a thermoelectric power generation module composed of a plurality of power generating elements is arranged between the high temperature side heat transfer plate and the low temperature side heat transfer plate which are heated via the heat storage body. For example, in US Pat. No. 4,251,291, a metal heat storage material having a melting point of about 150 ° C. is heated using sunlight as a heat source, and a thermoelectric element is provided between the heat storage material and a heat dissipation plate. In the lubricating device of Japanese Utility Model Laid-Open No. 62-128128, the container containing the latent heat storage material is heated from the outside, and the upper surface of the container is lubricated by a thermo-generator equipped with a thermoelectric generator element. Lubricating devices for driving oil-based pumps have been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかるに前述のよう
に、高温の熱流体通路に、熱電発電モジュールの一方側
を直接取り付ける熱電発電装置においては、熱流体の温
度変化による発電効率の変動が大きく、熱電発電モジュ
ールとの接合面の変形や剥離などが発生し、熱電発電素
子自体にもキレツや変形を生じる問題がある。このた
め、高温側に蓄熱材を設けたものでは、前記の欠点を解
決できるが、熱源から蓄積材への熱交換効率が発電効率
に与える影響が大きく、蓄熱材の外表面から加熱する従
来の熱電発電装置では、熱交換効率が低いだけでなく、
蓄熱材が金属材料や密閉された容器に収納されているた
め蓄熱材の膨張収縮によって容器が変形したり、熱電発
電モジュールとの接合面に剥離などを発生し易い、
However, as described above, in the thermoelectric generator in which one side of the thermoelectric generator module is directly attached to the high-temperature thermofluid passage, the fluctuation of the power generation efficiency due to the temperature change of the thermofluid is large, There is a problem that the joint surface with the thermoelectric power generation module is deformed or peeled off, and the thermoelectric power generation element itself is also cracked or deformed. Therefore, in the case where the heat storage material is provided on the high temperature side, the above-mentioned drawbacks can be solved, but the heat exchange efficiency from the heat source to the storage material has a large influence on the power generation efficiency, and the conventional method of heating from the outer surface of the heat storage material In thermoelectric generators, not only is the heat exchange efficiency low,
Since the heat storage material is stored in a metal material or a sealed container, the container is deformed due to expansion and contraction of the heat storage material, or peeling is likely to occur at the joint surface with the thermoelectric power generation module.

【0007】本発明は、加熱状態では液体状である蓄熱
材の内部に熱流体通路を配置した蓄熱槽をそなえ、熱流
体通路のほぼ全面で蓄熱材との熱交換を行わせるととも
に、蓄熱槽に蓄熱体の膨張収縮に伴う圧力変化による変
形などを防ぎ、高効率で安定した出力を得ることを目的
とする。
According to the present invention, a heat storage tank having a heat fluid passage arranged inside a heat storage material which is liquid in a heated state is provided so that heat is exchanged with the heat storage material over substantially the entire surface of the heat fluid passage, In addition, the purpose is to prevent deformation due to pressure change due to expansion and contraction of the heat storage body, and to obtain a highly efficient and stable output.

【0008】[0008]

【課題を解決するための手段】このため、多数の熱電変
換素子からなる熱電発電モジュールを、高温の熱流体通
路と低温の冷却通路の間に配置した熱電変換装置におい
て、内部に熱流体通路を配置し、この熱流体通路に接触
する蓄熱媒体を収納した蓄熱槽をそなえ、前記蓄熱槽に
蓄熱媒体の膨張による圧力を調整する圧力調整手段を設
け、この蓄熱槽の外周と冷却通路の間に熱電発電モジュ
ールを取り付けるようにしている。なお、前記蓄熱媒体
は、水や油などのように常温で液体状の物質や、温度の
上昇によって液化する低融点金属が用いられる。
Therefore, in a thermoelectric conversion device in which a thermoelectric power generation module including a large number of thermoelectric conversion elements is arranged between a high temperature thermofluid passage and a low temperature cooling passage, a thermofluid passage is provided inside. The heat storage tank, which is arranged and has a heat storage medium in contact with the heat fluid passage, is provided with pressure adjusting means for adjusting the pressure due to expansion of the heat storage medium in the heat storage tank, and between the outer periphery of the heat storage tank and the cooling passage. The thermoelectric generator module is attached. As the heat storage medium, a substance that is liquid at room temperature, such as water or oil, or a low melting point metal that liquefies when the temperature rises is used.

【0009】また、前記蓄熱槽内の圧力調整手段とし
て、蓄熱槽内の蓄熱媒体に連通する膨張タンクをそなえ
て膨張した蓄熱媒体を流入させるようにしており、この
膨張タンクに不活性ガスを封入して温度変化による蓄熱
媒体の酸化や劣化を防止することが望ましく、不活性ガ
スを封入する手段として、膨張タンクに隔離用媒体を収
納したトラップを連結している。なお、蓄熱媒体として
昇温により液化する低融点金属を用いる場合は、蓄熱槽
の蓄熱媒体面より上部に、蓄熱槽内の膨張気体を排出さ
せる吸排気孔をそなえるようにしており、また、熱流体
がガス流体であれば、熱流体通路に膨張気体を吸い込む
吸排気孔を設けて熱流体通路を介して排出させることが
できる。
Further, as the pressure adjusting means in the heat storage tank, an expansion tank communicating with the heat storage medium in the heat storage tank is provided so that the expanded heat storage medium can flow in, and an inert gas is filled in the expansion tank. Therefore, it is desirable to prevent the heat storage medium from being oxidized or deteriorated due to the temperature change. As a means for enclosing the inert gas, a trap containing an isolation medium is connected to the expansion tank. When a low-melting metal that liquefies by temperature rise is used as the heat storage medium, the heat storage tank is provided with an intake and exhaust hole for discharging the expanded gas in the heat storage tank above the surface of the heat storage medium. If is a gas fluid, it is possible to provide an intake / exhaust hole for sucking the expansion gas in the thermal fluid passage and discharge it through the thermal fluid passage.

【0010】また、熱流体通路に熱流体と蓄熱媒体との
熱交換を促進させるため、蓄熱槽内の熱流体通路にフィ
ンを設けている。
Further, in order to promote heat exchange between the heat fluid and the heat storage medium in the heat fluid passage, fins are provided in the heat fluid passage in the heat storage tank.

【0011】[0011]

【発明の実施の形態】以下、図に示す実施例について説
明する。図1および図2において、1は焼却炉の排ガス
などの熱流体2を導入する熱流体通路、3は冷水などの
冷却媒体4を供給する冷却通路、5は熱電発電モジュー
ルで、従来と同様に構成され、たとえば図2に示すよう
にP型とN型の半導体素子6a、6bを両側面の電極板
7a、7bで順次に接続し環状回路を構成させている。
8は前記熱電発電モジュール5の両側にそなえた絶縁
板、9は装置の外周を囲む断熱材である。10は蓄熱槽
で、内部にコイル状にした熱流体通路1を配置し、常温
で液体状の蓄熱媒体11(たとえば水、油など)を満た
している。この蓄熱槽10の外周に熱電発電モジュール
5の高温側の絶縁板8を取り付け、低温側の絶縁板8を
冷却通路3に取り付けている。熱電発電モジュール5の
絶縁板8と蓄熱槽10および冷却通路3との接合面に
は、熱伝導性の良いグリースを塗布しておくのが望まし
い。20は圧力調整手段で、膨張タンク21をそなえ、
蓄熱槽10と液通路22で連通させており、上部の開放
孔23にフィルター24を設けている。なお、熱流体通
路1の形状は、図に示したコイル状のものに限られず、
適宜の熱交換構造にすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments shown in the drawings will be described below. In FIG. 1 and FIG. 2, 1 is a thermal fluid passage for introducing a thermal fluid 2 such as exhaust gas from an incinerator, 3 is a cooling passage for supplying a cooling medium 4 such as cold water, 5 is a thermoelectric power generation module, which is the same as a conventional one. For example, as shown in FIG. 2, P-type and N-type semiconductor elements 6a and 6b are sequentially connected by electrode plates 7a and 7b on both side surfaces to form an annular circuit.
Reference numeral 8 is an insulating plate provided on both sides of the thermoelectric power generation module 5, and 9 is a heat insulating material surrounding the outer periphery of the device. Reference numeral 10 denotes a heat storage tank, in which a coil-shaped thermal fluid passage 1 is arranged and filled with a heat storage medium 11 (for example, water or oil) which is liquid at room temperature. The insulating plate 8 on the high temperature side of the thermoelectric power generation module 5 is attached to the outer periphery of the heat storage tank 10, and the insulating plate 8 on the low temperature side is attached to the cooling passage 3. It is desirable to apply grease having good thermal conductivity to the joint surface of the insulating plate 8 of the thermoelectric power generation module 5 with the heat storage tank 10 and the cooling passage 3. Reference numeral 20 is a pressure adjusting means, which is provided with an expansion tank 21,
The heat storage tank 10 and the liquid passage 22 are communicated with each other, and a filter 24 is provided in the upper open hole 23. The shape of the thermal fluid passage 1 is not limited to the coil shape shown in the figure,
An appropriate heat exchange structure can be used.

【0012】このように、内部に熱流体通路1を配置
し、蓄熱媒体11を満たした蓄熱槽10を設け、この蓄
熱槽10内の熱流体通路1に、焼却炉の排ガスなどの高
温の熱流体2が供給され、その周囲にたとえば水や油な
どの液体状の蓄熱媒体を封入している。したがって、熱
流体通路1を通る熱流体2により蓄熱媒体11を昇温さ
せ、この蓄熱媒体11を介して熱電発電モジュール5を
間接的に加熱する。このため、熱流体通路1を通る熱流
体2の温度が急激に変化しても、蓄熱媒体11の熱容量
によって絶縁板8や熱電発電モジュール5に加わる温度
変化が緩和され、急激な変動を生じることがなく、熱電
発電モジュール5との接合面等に加わる熱応力を小さく
し、絶縁板や発電素子および接合部分などの変形や損傷
をなくすとともに、出力電圧の変動も小さくなり安定し
た電気エネルギーを得ることができる。また、蓄熱槽1
0の容量を大きくでき、蓄熱槽内の熱流体通路1と蓄熱
媒体11との接触面が大きく良好な熱伝達が行われ、こ
の蓄熱槽10に圧力調整手段20を設けているので、温
度上昇により膨張した蓄熱媒体11は、液通路22から
膨張タンク21に流入して蓄熱槽10内の圧力を調整
し、蓄熱槽自体および蓄熱槽に取り付けられた熱電発電
モジュール5などの変形、破損を防止する。
As described above, the heat fluid passage 1 is disposed inside, and the heat storage tank 10 filled with the heat storage medium 11 is provided. The heat fluid passage 1 in the heat storage tank 10 has a high temperature heat such as exhaust gas from an incinerator. A fluid 2 is supplied, and a liquid heat storage medium such as water or oil is enclosed around the fluid 2. Therefore, the heat storage medium 11 is heated by the heat fluid 2 passing through the heat fluid passage 1, and the thermoelectric generation module 5 is indirectly heated via the heat storage medium 11. Therefore, even if the temperature of the thermal fluid 2 passing through the thermal fluid passage 1 changes abruptly, the heat capacity of the heat storage medium 11 reduces the temperature change applied to the insulating plate 8 and the thermoelectric power generation module 5, and causes a rapid change. , The thermal stress applied to the joint surface with the thermoelectric power generation module 5 is reduced, deformation and damage of the insulating plate, the power generation element and the joint portion are eliminated, and the fluctuation of the output voltage is also reduced to obtain stable electric energy. be able to. Also, the heat storage tank 1
The capacity of 0 can be increased, the contact surface between the heat fluid passage 1 and the heat storage medium 11 in the heat storage tank is large, and good heat transfer is performed. Since the heat storage tank 10 is provided with the pressure adjusting means 20, the temperature rises. The heat storage medium 11 expanded by the above flows into the expansion tank 21 from the liquid passage 22 and adjusts the pressure in the heat storage tank 10 to prevent deformation and damage of the heat storage tank itself and the thermoelectric power generation module 5 attached to the heat storage tank. To do.

【0013】図3は別の実施例を示すもので、図1の実
施例と同じ部分に同一の符号を付しており、熱流体通路
1を複数の平行する通路に分岐させて、蓄熱媒体11と
の接触面を大きくしており、圧力調整手段20は、液通
路22を介して蓄熱槽1の上部に設けた膨張タンク21
に蓄熱媒体11の酸化を防ぐ不活性ガス25を封入して
いる。蓄熱槽1内の蓄熱媒体11として油などを用いる
場合は、熱流体通路1を通る熱流体2により加熱される
が、外気と接触すると酸化反応が促進され劣化が著しく
なる。このため、蓄熱媒体11が液通路22から流入す
る膨張タンク21内に不活性ガス25を封入し、膨張タ
ンク21の上部に連通するトラップ26をそなえてい
る。このトラップ26は、第1膨張室26aおよび第1
膨張室の下部で連通する第2膨張室26bで形成され、
第1膨張室26aと第2膨張室26bに隔離媒体27を
収納している。したがって、膨張により蓄熱槽10から
液通路22を通って膨張タンク21に流入する蓄熱流体
11の上面が常に不活性ガス25と接触し、第1膨張室
26aと第2膨張室26bからなるトラップ26に収納
した隔離媒体27で不活性ガス25を封入させている。
FIG. 3 shows another embodiment, in which the same parts as those in the embodiment of FIG. 1 are denoted by the same reference numerals, and the heat fluid passage 1 is branched into a plurality of parallel passages to store the heat storage medium. The contact surface with 11 is made large, and the pressure adjusting means 20 has an expansion tank 21 provided above the heat storage tank 1 via a liquid passage 22.
An inert gas 25 that prevents the heat storage medium 11 from being oxidized is enclosed in the. When oil or the like is used as the heat storage medium 11 in the heat storage tank 1, it is heated by the heat fluid 2 passing through the heat fluid passage 1, but when it comes into contact with the outside air, the oxidation reaction is promoted and the deterioration becomes remarkable. For this reason, the inert gas 25 is sealed in the expansion tank 21 into which the heat storage medium 11 flows in from the liquid passage 22, and a trap 26 communicating with the upper portion of the expansion tank 21 is provided. The trap 26 includes a first expansion chamber 26a and a first expansion chamber 26a.
It is formed by the second expansion chamber 26b communicating with the lower part of the expansion chamber,
The isolation medium 27 is housed in the first expansion chamber 26a and the second expansion chamber 26b. Therefore, the upper surface of the heat storage fluid 11 flowing into the expansion tank 21 from the heat storage tank 10 through the liquid passage 22 due to expansion is always in contact with the inert gas 25, and the trap 26 including the first expansion chamber 26a and the second expansion chamber 26b is formed. The inert gas 25 is enclosed by the isolation medium 27 housed in.

【0014】図4は異なる実施例を示すもので、図1の
実施例と同じ部分に同一の符号を付しており、蓄熱媒体
11は、温度上昇によって液化する低融点金属、たとえ
ばBi、Li、Na、Pbなどの純金属や、Bi、P
b、Sn、Cd、Inからなる合金などを用い、圧力調
整手段20は、蓄熱槽10内の蓄熱媒体11の面より上
の空間に連通する吸排気孔で構成している。
FIG. 4 shows a different embodiment, in which the same parts as those in the embodiment of FIG. 1 are designated by the same reference numerals, and the heat storage medium 11 is a low melting point metal such as Bi or Li which is liquefied when the temperature rises. , Na, Pb and other pure metals, Bi, P
The pressure adjusting means 20 is composed of intake and exhaust holes communicating with a space above the surface of the heat storage medium 11 in the heat storage tank 10, using an alloy or the like made of b, Sn, Cd, and In.

【0015】前述の実施例のように、蓄熱媒体11とし
て常温で液体状の水や油などを使用すると、加熱による
蓄熱媒体11の膨張が大きく、膨張タンク21を設けて
蓄熱槽10内の圧力を調整させる必要があり、とくに油
を用いる場合は、火災や酸化に対する対策が必要にな
る。また、液体の顕熱のみを利用して熱電発電モジュー
ルを加熱させることになるので、装置の小形化が困難で
ある。
When water or oil that is liquid at room temperature is used as the heat storage medium 11 as in the above-described embodiment, the heat storage medium 11 expands greatly due to heating, and the expansion tank 21 is provided to increase the pressure in the heat storage tank 10. Must be adjusted, especially when oil is used, it is necessary to take measures against fire and oxidation. Moreover, since the thermoelectric power generation module is heated by utilizing only the sensible heat of the liquid, it is difficult to downsize the device.

【0016】この実施例では蓄熱媒体11として、温度
上昇によって液化する低融点金属を用いているので、熱
流体2が熱流体通路1に導入されると、蓄熱媒体11が
加熱され、温度上昇によって液化し、熱流体2の温度近
くまで蓄熱される。蓄熱媒体の蓄熱により絶縁板8を介
して熱電発電モジュール5の一方側面が加熱され、冷却
された他方側面との温度差により電気を発生させる。蓄
熱媒体11は蓄熱槽10の上部に空間を残しており、圧
力調整手段20は、蓄熱槽10上部に設けた外気に開放
される吸排気孔で構成され、前記空間の膨張した空気を
放出させる。このように蓄熱媒体11として、温度上昇
によって液化する低融点金属を用いることにより、蓄熱
媒体の固体時の顕熱と、固体から液体への相転換時の潜
熱、および液体時の顕熱を利用することができるので、
蓄熱効果が向上し、蓄熱媒体の量を少なくすることがで
き、装置の小形化が可能になり、圧力調整手段20も簡
単にすることができる。
In this embodiment, the heat storage medium 11 is made of a low melting point metal which is liquefied when the temperature rises. Therefore, when the heat fluid 2 is introduced into the heat fluid passage 1, the heat storage medium 11 is heated and the temperature rises. It is liquefied and heat is stored up to near the temperature of the thermal fluid 2. One side surface of the thermoelectric power generation module 5 is heated by the heat storage of the heat storage medium via the insulating plate 8, and electricity is generated by the temperature difference between the one side surface and the cooled other side surface. The heat storage medium 11 leaves a space above the heat storage tank 10, and the pressure adjusting means 20 is composed of intake and exhaust holes provided in the upper part of the heat storage tank 10 and opened to the outside air, and releases the expanded air in the space. By using the low melting point metal that is liquefied by the temperature rise as the heat storage medium 11, the sensible heat of the solid state of the heat storage medium, the latent heat of the phase transition from the solid to the liquid, and the sensible heat of the liquid are used. Because you can
The heat storage effect is improved, the amount of heat storage medium can be reduced, the apparatus can be downsized, and the pressure adjusting means 20 can be simplified.

【0017】蓄熱媒体にシリコンオイルを用いた場合
と、低融点金属Biを用いた場合の蓄熱量を比較した結
果、蓄熱媒体の体積V=1m3 、蓄熱温度T=400℃
とした時に、シリコンオイルでは573MJ、Biを用
いた場合は1074MJが得られた。このように、蓄熱
効果は約2倍になり、同じ蓄熱量を得る場合は、蓄熱媒
体の量を少なくし、蓄熱槽を小さくすることができる。
As a result of comparing the amount of heat storage when silicon oil was used as the heat storage medium and when the low melting point metal Bi was used, the volume V = 1m3 of the heat storage medium and the heat storage temperature T = 400 ° C.
At that time, 573 MJ was obtained with silicone oil, and 1074 MJ was obtained when Bi was used. In this way, the heat storage effect is approximately doubled, and when obtaining the same amount of heat storage, the amount of heat storage medium can be reduced and the heat storage tank can be made smaller.

【0018】なお、図の実施例では、蓄熱槽10内の熱
流体通路1を導入管部分より大径にして熱源から排出さ
れる熱流体2の流速を調整し、熱源となるボイラーやエ
ンジンなどの負荷が増大しないようにするとともに、蓄
熱槽10内における表面積を増大させ、蓄熱媒体11と
の接触面を増して熱交換効率を向上させるようにしてい
る。また、常温で液体状である蓄熱媒体11を用いる場
合は、蓄熱槽10内の上部に不活性ガスを収納した空間
を設け、この空間に連通する吸排気孔にトラップをそな
えておけばよい
In the illustrated embodiment, the thermal fluid passage 1 in the heat storage tank 10 is made larger in diameter than the introduction pipe portion to adjust the flow velocity of the thermal fluid 2 discharged from the heat source, so that the heat source is a boiler or an engine. In addition to increasing the load, the surface area in the heat storage tank 10 is increased and the contact surface with the heat storage medium 11 is increased to improve heat exchange efficiency. When the heat storage medium 11 that is liquid at room temperature is used, a space containing an inert gas may be provided in the upper part of the heat storage tank 10, and a trap may be provided in the intake and exhaust holes communicating with this space.

【0019】図5は、熱流体2として蓄熱媒体11に影
響を与えないガスなどの気体を用いた場合の例で、圧力
調整手段20は、図4に示した実施例における吸排気孔
に代えて、蓄熱槽10内の熱流体通路1の、蓄熱媒体1
1が膨張したときでも蓄熱媒体と接触しない部分に、蓄
熱媒体上面の空間に連通する連通孔を設けて構成してい
る。したがって、加熱により蓄熱槽10内の気体が膨張
し、蓄熱槽内の圧力が増大すると、蓄熱槽10上部の空
間にある気体が圧力調整手段(連通孔)20から熱流体
通路1内に矢示のように吸い込まれて、熱流体2ととも
に排出され、蓄熱槽10を外気と隔離したままで圧力を
調整する。
FIG. 5 shows an example in which a gas such as a gas that does not affect the heat storage medium 11 is used as the heat fluid 2, and the pressure adjusting means 20 is replaced with the intake / exhaust holes in the embodiment shown in FIG. , The heat storage medium 1 of the thermal fluid passage 1 in the heat storage tank 10
A communication hole communicating with the space on the upper surface of the heat storage medium is provided in a portion that does not come into contact with the heat storage medium even when 1 expands. Therefore, when the gas in the heat storage tank 10 expands due to heating and the pressure in the heat storage tank 10 increases, the gas in the space above the heat storage tank 10 is indicated in the thermal fluid passage 1 from the pressure adjusting means (communication hole) 20. Is sucked in and discharged together with the hot fluid 2, and the pressure is adjusted while the heat storage tank 10 is isolated from the outside air.

【0020】図6の実施例は、蓄熱槽内における熱交換
効率を向上させて発電を効率的に行い得るようにしたも
ので、蓄熱槽10内の熱流体通路1の外面に、蓄熱媒体
11に接触するフィン12を設けている。なお、フィン
の形状は、図に示すものに限られず、たとえば熱流体通
路1の軸方向に凸条を設置してもよい。また、熱流体通
路1の内面にも内部フィン13を設けることができ、熱
流体通路内面では流速を妨げないよう、入り口の間隙1
4を大きくしたり、図示のように軸方向のフィンにする
ことが望ましい。
In the embodiment shown in FIG. 6, the heat exchange efficiency in the heat storage tank is improved so that power can be efficiently generated. The heat storage medium 11 is formed on the outer surface of the heat fluid passage 1 in the heat storage tank 10. Is provided with a fin 12 that comes into contact with. The shape of the fins is not limited to that shown in the figure, and for example, ridges may be provided in the axial direction of the thermal fluid passage 1. In addition, the inner fins 13 can be provided on the inner surface of the thermal fluid passage 1 so that the inner space of the inlet 1 does not interfere with the flow velocity on the inner surface of the thermal fluid passage.
It is desirable to make 4 larger or axial fins as shown.

【0021】[0021]

【発明の効果】このように本発明は、多数の熱電変換素
子からなる熱電発電モジュールを、高温の熱流体通路と
低温の冷却通路の間に配置した熱電変換装置において、
内部に熱流体通路を配置し、この熱流体通路に接触する
蓄熱媒体を収納した蓄熱槽をそなえ、この蓄熱槽に蓄熱
媒体の膨張による圧力を蓄熱槽外に放出する圧力調整手
段を設け、蓄熱槽の外周と冷却通路の間に熱電発電モジ
ュールを取り付けているので、熱流体通路からの高温を
直接熱電発電モジュールに加えることがなく、蓄熱槽内
に十分な量の蓄熱媒体が保持され、熱流体通路を適宜の
形状にして広い面で蓄熱媒体と接触させることができ、
熱流体通路の外面全部が蓄熱媒体と接触するので、熱エ
ネルギーを外気などに放散させずに良好な熱伝達効率で
熱交換を行わせ、蓄熱効果を増大させさせることがで
き、発電効率を向上させ安定した電気出力を得られる。
また、圧力調整手段により、加熱時の蓄熱媒体の膨張に
よる内圧を調整し、蓄熱槽内の蓄熱媒体が膨張しても、
蓄熱槽内の圧力上昇を有効に防止し、蓄熱槽自体や熱電
発電モジュールおよび接合面に急激な熱応力を加えるこ
とがなく、蓄熱槽に大きな強度を必要としないで、変形
や損傷を防ぐとともに、変形や損傷による発電効率の低
下をなくし得るなどの効果がある。
As described above, the present invention provides a thermoelectric conversion device in which a thermoelectric power generation module including a large number of thermoelectric conversion elements is arranged between a high temperature thermofluid passage and a low temperature cooling passage.
A heat fluid passage is arranged inside, and a heat storage tank containing a heat storage medium in contact with this heat fluid passage is provided, and this heat storage tank is provided with pressure adjusting means for releasing the pressure due to the expansion of the heat storage medium to the outside of the heat storage tank. Since the thermoelectric power generation module is installed between the outer circumference of the tank and the cooling passage, a sufficient amount of heat storage medium is retained in the heat storage tank without directly applying high temperature from the thermofluid passage to the thermoelectric power generation module. The fluid passage can be made into an appropriate shape and can contact the heat storage medium on a wide surface,
Since the entire outer surface of the thermal fluid passage contacts the heat storage medium, heat can be exchanged with good heat transfer efficiency without dissipating heat energy to the outside air and the heat storage effect can be increased, improving power generation efficiency. A stable electric output can be obtained.
Further, by the pressure adjusting means, the internal pressure due to the expansion of the heat storage medium at the time of heating is adjusted, and even if the heat storage medium in the heat storage tank expands,
It effectively prevents pressure rise in the heat storage tank, does not apply sudden thermal stress to the heat storage tank itself, the thermoelectric generation module and the joint surface, does not require large strength in the heat storage tank, and prevents deformation and damage. In addition, there is an effect such that a decrease in power generation efficiency due to deformation or damage can be eliminated.

【0022】また、常温で液体状の蓄熱媒体を満たした
蓄熱槽を用いる場合に、前記蓄熱槽内に連通して膨張し
た蓄熱媒体を流入させる膨張タンクをそなえ、加熱によ
る蓄熱槽内の圧力増加を自動的に調整して蓄熱槽の変形
を防ぐとともに、この膨張タンク内に不活性ガスを収納
することにより、わずかな量の不活性ガスで、蓄熱媒体
の酸化、劣化を確実に防止する効果が得られる。なお、
前記膨張タンク内の不活性ガスに連通させて、隔離用媒
体を収納したトラップを連結することにより、不活性ガ
スの外気への放出を防止できる。
Further, when a heat storage tank filled with a liquid heat storage medium at room temperature is used, the heat storage tank is provided with an expansion tank for communicating the expanded heat storage medium and increasing the pressure in the heat storage tank by heating. By automatically adjusting the heat storage tank to prevent deformation of the heat storage tank, and by storing an inert gas in this expansion tank, it is possible to reliably prevent oxidation and deterioration of the heat storage medium with a small amount of inert gas. Is obtained. In addition,
It is possible to prevent the inert gas from being released to the outside air by communicating with the inert gas in the expansion tank and connecting the trap containing the isolation medium.

【0023】また、蓄熱槽内に温度の上昇により液化す
る蓄熱媒体を収納した場合は、圧力調整手段として、蓄
熱槽内の蓄熱媒体より上部吸排気孔を設けることによ
り、加熱による蓄熱槽内の膨張気体を排出させることが
でき、簡単な構成で蓄熱槽の圧力増加による変形を防ぐ
ことができる。なお、蓄熱槽内に熱流体通路から熱流体
が漏れても差し支えがない場合は、前記吸排気孔に代え
て蓄熱槽内の熱流速通路の蓄熱媒体と接触しない位置に
連通孔を設けることにより、蓄熱槽内の膨張気体を熱流
体の流れによって吸い込み、熱流体とともに排出させる
ことができ、蓄熱槽を外気から隔離させ、構造を簡単に
し得る利点がある。
When a heat storage medium which is liquefied due to a rise in temperature is stored in the heat storage tank, a pressure adjusting means is provided with an inlet and exhaust hole above the heat storage medium in the heat storage tank to expand the heat storage tank by heating. The gas can be discharged, and the deformation of the heat storage tank due to the increase in pressure can be prevented with a simple structure. Incidentally, if there is no problem even if the heat fluid leaks from the heat fluid passage in the heat storage tank, by providing a communication hole at a position that does not contact the heat storage medium of the heat flow passage in the heat storage tank instead of the intake and exhaust holes, The expanded gas in the heat storage tank can be sucked by the flow of the heat fluid and discharged together with the heat fluid, so that the heat storage tank can be isolated from the outside air and the structure can be simplified.

【0024】また、大きな蓄熱槽を用いられるので、蓄
熱槽内の熱流体通路に、少なくとも蓄熱媒体と接触する
面にフィンをそなえることができ、熱流体と蓄熱媒体と
の熱交換を効率よく行わせ、発電効率を向上させるなど
の効果が得られる。
Further, since a large heat storage tank is used, it is possible to provide fins on at least the surface in contact with the heat storage medium in the heat fluid passage in the heat storage tank, so that heat exchange between the heat fluid and the heat storage medium can be performed efficiently. Therefore, the effect of improving the power generation efficiency can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す側断面図である。FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】図1における一部の拡大図である。FIG. 2 is a partially enlarged view of FIG.

【図3】他の実施例を示す側断面図である。FIG. 3 is a side sectional view showing another embodiment.

【図4】別の実施例を示す側断面図である。FIG. 4 is a side sectional view showing another embodiment.

【図5】図4の一部を変更した実施例を示す部分側断面
図である。
5 is a partial side sectional view showing an embodiment in which a part of FIG. 4 is modified.

【図6】さらに異なる実施例を示す側断面図である。FIG. 6 is a side sectional view showing still another embodiment.

【図7】従来の例を示す側断面図である。FIG. 7 is a side sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 熱流体通路 2 熱流体 3 冷却通路 4 冷却媒体 5 熱電発電モジュール 6a、6b 半導体素子 7a、7b 電極板 8 絶縁板 9 断熱材 10 蓄熱槽 11 蓄熱媒体 12 フィン 13 内部フィン 14 間隙 20 圧力調整手段 21 膨張タンク 22 液通路 23 開放孔 24 フィルター 25 不活性ガス 26 トラップ 26a 第1膨張室 26b 第2膨張室 27 隔離媒体 1 Thermal fluid passage 2 Thermal fluid 3 cooling passages 4 Cooling medium 5 Thermoelectric power generation module 6a, 6b Semiconductor element 7a, 7b Electrode plate 8 insulating plates 9 thermal insulation 10 heat storage tank 11 heat storage medium 12 fins 13 internal fins 14 Gap 20 Pressure adjusting means 21 expansion tank 22 Liquid passage 23 Open hole 24 filters 25 inert gas 26 traps 26a First expansion chamber 26b Second expansion chamber 27 isolation media

フロントページの続き (72)発明者 カビル ムハマド エナムル 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内Continued front page    (72) Inventor Kabir Muhammad Enamuru             2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu City, Fukuoka Prefecture               Yasukawa Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多数の熱電変換素子からなる熱電発電モ
ジュールを、高温の熱流体通路と低温の冷却通路の間に
配置し温度差により発電させる熱電変換装置において、
内部に熱流体通路を配置し、この熱流体通路に接触する
蓄熱媒体を収納した蓄熱槽をそなえ、前記蓄熱槽に蓄熱
媒体の膨張による圧力を蓄熱槽外に放出する圧力調整手
段を設け、この蓄熱槽の外周と冷却通路の間に熱電発電
モジュールを取り付けたことを特徴とする熱電変換装
置。
1. A thermoelectric conversion device, wherein a thermoelectric power generation module comprising a large number of thermoelectric conversion elements is arranged between a high temperature thermofluid passage and a low temperature cooling passage to generate electricity by a temperature difference,
A heat fluid passage is arranged inside, a heat storage tank containing a heat storage medium in contact with the heat fluid passage is provided, and the heat storage tank is provided with pressure adjusting means for releasing pressure due to expansion of the heat storage medium to the outside of the heat storage tank. A thermoelectric conversion device comprising a thermoelectric power generation module mounted between the outer periphery of a heat storage tank and a cooling passage.
【請求項2】 前記蓄熱媒体が、常温で液体状である請
求項1の熱電変換装置。
2. The thermoelectric conversion device according to claim 1, wherein the heat storage medium is liquid at room temperature.
【請求項3】 前記蓄熱媒体が、温度の上昇によって液
化する低融点金属である請求項1の熱電変換装置。
3. The thermoelectric conversion device according to claim 1, wherein the heat storage medium is a low melting point metal that is liquefied when the temperature rises.
【請求項4】 前記圧力調整手段が、蓄熱槽内に連通
し、加熱によって膨張する蓄熱媒体を流入させる膨張タ
ンクからなり、蓄熱槽に常温で液体状である蓄熱媒体と
を収納している請求項1または2の熱電変換装置。
4. The pressure adjusting means comprises an expansion tank communicating with the heat storage tank and allowing a heat storage medium that expands by heating to flow therein, and the heat storage tank stores a heat storage medium that is liquid at room temperature. Item 1 or 2 thermoelectric conversion device.
【請求項5】 前記膨張タンクに、不活性ガスを封入
し、前記不活性ガスと外気との間に隔離用媒体を収納し
たトラップを連結している請求項4の熱電変換装置。
5. The thermoelectric converter according to claim 4, wherein the expansion tank is filled with an inert gas, and a trap containing an isolation medium is connected between the inert gas and the outside air.
【請求項6】 前記圧力調整手段が、蓄熱槽内に連通す
る吸排気孔で構成され、蓄熱槽内に温度の上昇により液
化する蓄熱媒体を上部に空隙を残して収納している請求
項1または3の熱電変換装置。
6. The pressure adjusting means is constituted by intake and exhaust holes communicating with the inside of the heat storage tank, and stores a heat storage medium which is liquefied due to temperature rise in the heat storage tank with a gap left above. 3 thermoelectric converter.
【請求項7】 前記吸排気孔が、蓄熱槽内に収納した蓄
熱媒体の面より上の熱流体通路に設けられている請求項
6の熱電変換装置。
7. The thermoelectric conversion device according to claim 6, wherein the intake and exhaust holes are provided in a thermofluid passage above a surface of the heat storage medium housed in the heat storage tank.
【請求項8】 前記熱流体通路が、少なくとも蓄熱槽内
の蓄熱媒体と接触する面にフィンをそなえている請求項
1ないし7のいずれかに記載した熱電変換装置。
8. The thermoelectric conversion device according to claim 1, wherein the thermal fluid passage has fins on at least a surface of the thermal fluid tank that comes into contact with the heat storage medium.
JP2001296367A 2001-09-27 2001-09-27 Thermoelectric converter Pending JP2003111459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296367A JP2003111459A (en) 2001-09-27 2001-09-27 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296367A JP2003111459A (en) 2001-09-27 2001-09-27 Thermoelectric converter

Publications (1)

Publication Number Publication Date
JP2003111459A true JP2003111459A (en) 2003-04-11

Family

ID=19117622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296367A Pending JP2003111459A (en) 2001-09-27 2001-09-27 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP2003111459A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger
JP2007051332A (en) * 2005-08-18 2007-03-01 Koyo Thermo System Kk Hardening device, and method for recovering exhaust heat of coolant
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator
JP2012065418A (en) * 2010-09-15 2012-03-29 Toshiba Corp Thermoelectric power generation system
JP2013098494A (en) * 2011-11-04 2013-05-20 Toshiba Corp Thermal power generation system
JP2015520836A (en) * 2012-04-13 2015-07-23 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator
KR101679954B1 (en) * 2015-02-02 2016-11-25 현대자동차주식회사 Thermoelectric generator
CN108599621A (en) * 2018-04-11 2018-09-28 江苏大学 A kind of liquid cooling wheel hub motor cooling range power generator and its working method
CN109742978A (en) * 2019-01-09 2019-05-10 青岛海尔空调器有限总公司 A kind of energy source station and its control method
CN109891611A (en) * 2016-12-06 2019-06-14 德国航空航天中心 Heat-transfer equipment
CN109989811A (en) * 2019-05-14 2019-07-09 河北工业大学 A kind of intermediate medium type exhaust gases of internal combustion engines temperature difference electricity generation device
KR20190090929A (en) * 2018-01-26 2019-08-05 엘지이노텍 주식회사 Thermoelectric power generation module
JP2020038045A (en) * 2018-09-05 2020-03-12 株式会社アステックス Hot spring steam power generation/hot-water generation system, hot spring steam power generation/hot-water generation device
JP2020058118A (en) * 2018-10-01 2020-04-09 ウシオ電機株式会社 Thermoelectric power generation device
EP3534526A4 (en) * 2016-10-25 2020-05-06 Yanmar Co., Ltd. Thermoelectric generating system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024608A (en) * 2004-07-06 2006-01-26 Central Res Inst Of Electric Power Ind Heat transfer cushion and thermoelectric conversion module provided therewith
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger
JP4534060B2 (en) * 2005-04-08 2010-09-01 国立大学法人京都大学 Thermoelectric generator, heat exchanger
JP2007051332A (en) * 2005-08-18 2007-03-01 Koyo Thermo System Kk Hardening device, and method for recovering exhaust heat of coolant
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator
JP2012065418A (en) * 2010-09-15 2012-03-29 Toshiba Corp Thermoelectric power generation system
JP2013098494A (en) * 2011-11-04 2013-05-20 Toshiba Corp Thermal power generation system
JP2015520836A (en) * 2012-04-13 2015-07-23 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator
KR101679954B1 (en) * 2015-02-02 2016-11-25 현대자동차주식회사 Thermoelectric generator
US9728701B2 (en) 2015-02-02 2017-08-08 Hyundai Motor Company Thermoelectric generation apparatus
EP3534526A4 (en) * 2016-10-25 2020-05-06 Yanmar Co., Ltd. Thermoelectric generating system
CN109891611A (en) * 2016-12-06 2019-06-14 德国航空航天中心 Heat-transfer equipment
JP7044781B2 (en) 2016-12-06 2022-03-30 ドイチェス ツェントルム フュール ルフト-ウント ラウムファールト エー ファウ Heat transfer equipment
JP2020513526A (en) * 2016-12-06 2020-05-14 ドイチェス ツェントルム フュール ルフト−ウント ラウムファールト エー ファウDeutsches Zentrum Fuer Luft−Und Raumfahrt E.V. Heat transfer equipment
KR102452408B1 (en) * 2018-01-26 2022-10-11 엘지이노텍 주식회사 Thermoelectric power generation module
KR20190090929A (en) * 2018-01-26 2019-08-05 엘지이노텍 주식회사 Thermoelectric power generation module
CN108599621A (en) * 2018-04-11 2018-09-28 江苏大学 A kind of liquid cooling wheel hub motor cooling range power generator and its working method
JP2020038045A (en) * 2018-09-05 2020-03-12 株式会社アステックス Hot spring steam power generation/hot-water generation system, hot spring steam power generation/hot-water generation device
JP2020058118A (en) * 2018-10-01 2020-04-09 ウシオ電機株式会社 Thermoelectric power generation device
JP7191289B2 (en) 2018-10-01 2022-12-19 ウシオ電機株式会社 thermal generator
CN109742978A (en) * 2019-01-09 2019-05-10 青岛海尔空调器有限总公司 A kind of energy source station and its control method
CN109989811A (en) * 2019-05-14 2019-07-09 河北工业大学 A kind of intermediate medium type exhaust gases of internal combustion engines temperature difference electricity generation device

Similar Documents

Publication Publication Date Title
JP2003111459A (en) Thermoelectric converter
US6096966A (en) Tubular thermoelectric module
JP5066139B2 (en) Thermoelectric generator with improved energy conversion efficiency using convective heat flow
RU2353047C2 (en) Thermo electrical systems of electric power generation industry
ES2467970T3 (en) Module for a thermoelectric generator and a thermoelectric generator
US7608777B2 (en) Thermoelectric power generator with intermediate loop
CN110416656B (en) Systems and methods for thermally stable energy storage systems
US6307142B1 (en) Combustion heat powered portable electronic device
EP1336204B1 (en) Thermoelectric module with integrated heat exchanger and method of use
JP5787755B2 (en) Heat exchange tube bundle provided with device for generating electric energy, and heat exchanger provided with this tube bundle
JPS61254082A (en) Power generator utilizing exhaust heat
US20130255739A1 (en) Passively cooled thermoelectric generator cartridge
JPWO2007026432A1 (en) EGR gas power generator
KR20120042997A (en) Thermoelectric device comprising tube bundles
US9293679B2 (en) Thermoelectric module for a thermoelectric generator of a vehicle and vehicle having thermoelectric modules
EP3020077A1 (en) Thermoelectric generator
JPH0936439A (en) Thermoelectric power generation module
FR2512499A1 (en) IC engine exhaust converter for heat to electricity - contains thermoelectric generators mounted between exhaust pipe and water cooled surface
JPH0448150Y2 (en)
JPH05219765A (en) Thermo electric generator
JPH11215867A (en) Thermoelectric power generation element structure and system thereof
JP2004088057A (en) Thermoelectric module
JP6350297B2 (en) Thermoelectric generator
JP2002199762A (en) Exhaust heat thermoelectric converter, exhaust gas exhausting system using it, and vehicle using it
JP2000312035A (en) Thermoelectric generation system