JPS61205700A - Production of graphite whisker - Google Patents

Production of graphite whisker

Info

Publication number
JPS61205700A
JPS61205700A JP60047752A JP4775285A JPS61205700A JP S61205700 A JPS61205700 A JP S61205700A JP 60047752 A JP60047752 A JP 60047752A JP 4775285 A JP4775285 A JP 4775285A JP S61205700 A JPS61205700 A JP S61205700A
Authority
JP
Japan
Prior art keywords
activated carbon
whiskers
graphite
treated
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60047752A
Other languages
Japanese (ja)
Other versions
JPH031277B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Shigeji Hagiwara
萩原 茂示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Kasei Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60047752A priority Critical patent/JPS61205700A/en
Publication of JPS61205700A publication Critical patent/JPS61205700A/en
Publication of JPH031277B2 publication Critical patent/JPH031277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Abstract

PURPOSE:A carbonaceous substance which has fine pores of specific surface area and average pore diameter within specific ranges, respectively is heat- treated at elevated temperature to enable simple and inexpensive production of graphite whiskers of high tensile strength. CONSTITUTION:A stating material for activated carbon from wood or coal such as sawdust is heat-treated and further treated by chemical activation or gas activation to prepare activated carbon with a specific surface area of more than about 500m<2>/g and fine pores of 1-2nm diameter. Then, the resultant activated carbon is graphitized in a nonoxidative atmosphere such as nitrogen or argon gas at a temperature over 2,800 deg.C to give the objective graphite whiskers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細細孔を有する炭素質物質(活性炭)を28
00℃以上で黒鉛化処理する乙とにより、黒鉛4ホイス
カーを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a carbonaceous material (activated carbon) having fine pores.
This invention relates to a method for producing graphite 4 whiskers by graphitizing treatment at 00° C. or higher.

従来の挾術とQ短点 ホイスカーは繊維状単結晶でり、理論物性に近い機械的
物性を持つことから、種々のホイスカーが製造されてい
る。黒鉛ホイスカーについても、いくつかの方法が提案
されている。その代表的なものは高温、高圧下で黒鉛電
極をアーク放電させ析出させる方法である〔アール・ベ
ーコン(R。
Conventional scissors and Q short point whiskers are made of fibrous single crystals and have mechanical properties close to theoretical properties, so a variety of whiskers are manufactured. Several methods have also been proposed for graphite whiskers. A typical method is a method in which a graphite electrode is deposited by arc discharge under high temperature and pressure [R. Bacon (R.

Bicon) 、ジャーナル・オブ アプライド°フィ
ジックス(J 、 Appli、 phys)第31巻
、283ページ、1960年〕。この方法によって轡ら
れた本イスカーの物性は引張強度的2000kg / 
wm” 、引張弾性率、駒72ton/■2という非常
に優れたものである。その他、β−5iC結晶の(,1
11)面の積層不整および回転双晶上にCD2ガスを熱
分解させて析出させる方法〔エッチ・ビー・八−ンスト
ラ(H,B、Haaastra)ら、ジャーナル オブ
 クリスタル グロース(J 、Cryst、Grow
th) 、第18巻、71ページ、19?2年〕やマル
テンサイトの電解析出により得られ。
Bicon), Journal of Applied Physics (J, Appli, Phys) Volume 31, Page 283, 1960]. The physical properties of this iscar made by this method are as follows: tensile strength of 2000kg/
wm”, tensile modulus, and 72 tons/■2.In addition, β-5iC crystal (,1
11) A method of thermally decomposing and depositing CD2 gas on plane stacking irregularities and rotation twins [H, B, Haaastra et al., Journal of Crystal Growth (J, Crystal, Grow)]
th), Vol. 18, p. 71, 19-2] or by electrolytic deposition of martensite.

た無定形炭素を2800℃で加熱処理して生成させる方
法〔ジエー・ギロー(J 、G11lot) ら、カー
ポ:/ (Carbon) 、第6巻、381ページ、
1968年〕がある。しかし、これらの方法はいずれも
生成操作が複雑であるtこめ、工業的製造法としては多
くの難点を有している。
A method of producing amorphous carbon by heat treatment at 2800°C [J. Guillot et al., Carbon, Vol. 6, p. 381,
1968]. However, all of these methods have many drawbacks as industrial production methods since the production operations are complicated.

一方、工業的製造法として、約13nm以下の粒子径を
持つカーボンブラックを2000℃以上で熱処理するこ
とによって、黒鉛ホイスカーを製造する方法がある(特
公昭57−8762号公報)。この方法は簡単な操作で
黒鉛ホイスカーを製造出来る点は非常に優れた方法であ
るが、原料のカーボンブラックは約13nm以下の非常
に小さい粒子径のものを使用しなければならないことと
、このような小さい粒子径のカーポンプ、ラックは必ず
しも安価でない点に難点がある。
On the other hand, as an industrial manufacturing method, there is a method of manufacturing graphite whiskers by heat-treating carbon black having a particle size of about 13 nm or less at 2000° C. or higher (Japanese Patent Publication No. 57-8762). This method is an excellent method in that graphite whiskers can be produced with simple operations, but the carbon black used as a raw material must have a very small particle size of about 13 nm or less. The drawback is that car pumps and racks with small particle diameters are not necessarily cheap.

発明の目的 上記の点からみて、黒鉛ホイスカーを生成させる方法は
特公昭57−8782号公報記載の方法が工業的製法と
しては最も優れていると考えられるので、この方法を採
用し、その際、原料カーボンブラックに代わる炭素材を
検索した結果、微細細孔を有する炭素質物質(活性炭)
からも黒鉛ホイスカーを生成させ得ることが判明したの
で、その製造方法を提供することを目的とする。
Purpose of the Invention In view of the above points, the method described in Japanese Patent Publication No. 57-8782 is considered to be the most excellent industrial method for producing graphite whiskers. As a result of searching for a carbon material to replace the raw material carbon black, we found a carbonaceous material with fine pores (activated carbon).
Since it has been found that graphite whiskers can also be produced from

発明の構成 本発明の製造方法で最も重要な点は活性炭の選択にある
。活性炭の原料は木材、植物果、石炭、重質歴青物、合
成11yIJ等であるが、本発明で用いられるのは木材
や植物果の木質系と石炭系である。
Structure of the Invention The most important point in the production method of the present invention is the selection of activated carbon. Raw materials for activated carbon include wood, plant fruit, coal, heavy bituminous materials, synthetic 11yIJ, etc., and those used in the present invention are woody and coal-based materials such as wood and plant fruit.

微細細孔を成形させる賦活法には薬品賦活法とガス賦活
法があるが、そのいずれでもよい。また、形状は粉末で
も形成量でもよい。しかし、その比表面積は少なくとも
500rri“78以上であることが必要である。これ
以下でも黒鉛ホイスカーは生成するが、その量は少ない
し、賦活処理しないものは全く生成しない。比表面積が
約5OOm2/g以上のものの平均細孔直径は1.0〜
2. Onmであり、クランストン−インクレイ[Cr
asnton −Inkley (CI) )法によっ
て求められる細孔分布の大部分の細孔ばこの範囲に分布
する。但し、CI法では1、On+a以下の細孔は計算
できない。
Activation methods for forming fine pores include a chemical activation method and a gas activation method, and either of them may be used. Further, the shape may be a powder or a formed amount. However, it is necessary that the specific surface area is at least 500rri"78 or more. Even if it is less than this, graphite whiskers will be produced, but the amount is small, and those without activation treatment will not be produced at all.The specific surface area is about 5OOm2/ The average pore diameter of those larger than g is 1.0~
2. Onm and Cranston-Inklay [Cr
The pore distribution is determined by the Asnton-Inkley (CI) method. However, the CI method cannot calculate pores smaller than 1, On+a.

これらの活性炭の黒鉛化処理は2800℃以上で行う。Graphitization treatment of these activated carbons is carried out at 2800°C or higher.

2600℃ではホイスカーはほとんど生成しない。Almost no whiskers are generated at 2600°C.

雰囲気は窒素ガス、アルゴンガス等の非酸化性雰囲気中
であり、常圧、加圧下のいずれでもよい。
The atmosphere is a non-oxidizing atmosphere such as nitrogen gas or argon gas, and may be either normal pressure or pressurized.

また、黒鉛化温度での保持時間を長時間にしても特に生
成量は増加しない。
In addition, even if the holding time at the graphitization temperature is increased for a long time, the amount produced does not particularly increase.

この黒鉛化処理によって、ホイスカーは活性炭粒子表面
に生成する。生成した本イスカーの直径は1〜2μ議程
度であり、約0.1−0.3μ−のものも存在する。長
さは必ずしも一定でないが、大部分は数μ諷〜数lOμ
墓であり、中には数−に達するものも存在する。走査型
電子顕微鏡で観察した結果を図に示す。第1図は実施例
1、表1中の試料Fの3000℃で処理したもので、第
1図(a)は低倍率で、第′1図(b)は高倍率で観察
したものである。また、第2図は実施例2、表2中のオ
ガクズを塩化亜鉛に含浸し、700℃で賦活したvlt
3000℃で処理したものである。
By this graphitization treatment, whiskers are generated on the surface of the activated carbon particles. The diameter of the produced iskers is about 1 to 2 μm, and some are about 0.1 to 0.3 μm. The length is not necessarily constant, but most range from a few microns to several 10 microns.
They are graves, and some of them can reach as many as -. The figure shows the results observed with a scanning electron microscope. Figure 1 shows sample F in Example 1 and Table 1 treated at 3000°C, with Figure 1 (a) being observed at low magnification and Figure 1 (b) being observed at high magnification. . In addition, Figure 2 shows the vlt in Example 2 and Table 2 in which sawdust was impregnated with zinc chloride and activated at 700°C.
It was treated at 3000°C.

今まで知られている黒鉛ホイスカーの構造には大別して
、(A)黒鉛結晶のC軸が本イスカーの長軸方向と同方
向、(B)黒鉛結晶のC軸がホイスカーの長軸方向と垂
直方向、の2つがある。更に、(A)は(A−’1)黒
鉛結晶のC軸がホイスカーの中心軸に対して約20°傾
いて積層しているもの’(eQne−helix) 、
(A −2)黒鉛結晶C軸がホイ表カーの長軸方向に平
行配列し、積層しているもめ(hexBonal 1a
yer)があり、(B)は(B−1)帯状黒鉛結晶がラ
セン状に巻きながら、連続的に積層しているもの(sc
roll 1ayer) 、(B−2)帯状黒鉛結晶が
本イスカーの中心に対して同心円状に巻いているもの(
concentric gircles)がある。
The structures of graphite whiskers known so far can be roughly divided into: (A) the C-axis of the graphite crystal is in the same direction as the long axis of the whisker; (B) the C-axis of the graphite crystal is perpendicular to the long axis of the whisker. There are two directions. Furthermore, (A) is (A-'1) one in which the C axis of the graphite crystal is stacked at an angle of about 20 degrees with respect to the central axis of the whisker' (eQne-helix),
(A-2) The graphite crystal C-axis is arranged parallel to the long axis direction of the Hui-Bonal 1a, and the graphite crystals are stacked (hexBonal 1a).
yer), and (B) is (B-1) where the band-shaped graphite crystals are wound in a spiral shape and continuously laminated (sc
(roll 1 ayer), (B-2) one in which band-shaped graphite crystals are wound concentrically around the center of this isker (
concentric circles).

透過型電子顕微鏡観察、マイクロラウェX線回折および
電子線回折による結晶構造解析の結果、第1図に示した
本イスカーは(A−1)に属するもので、これはJ 、
G11lotが名付けた“葉巻形”と同じである。第2
図においても、この“葉巻形”が生成するが、その他に
さらに直径が小さく、かつ長いものが存在する。これは
(B)に属する構造のものである。しかし、(B−1)
と(B−2)の構造は同様の回折パターンを与えるため
、現在の所、このいずれの構造であるかはわからない。
As a result of crystal structure analysis by transmission electron microscopy, microlawe X-ray diffraction, and electron beam diffraction, the present iscar shown in FIG. 1 belongs to (A-1), which is J,
It is the same as the "cigar shape" named by G11lot. Second
In the figure, this "cigar-shaped" shape is also produced, but there are other shapes that are smaller in diameter and longer. This is a structure belonging to (B). However, (B-1)
Since the structures of (B-2) and (B-2) give similar diffraction patterns, it is currently unknown which of these structures it is.

なお、第1図に示した試料中にも第2図に示したのと同
様な(B)に属する構造のホイスカーがわずかではある
が生成している。
Incidentally, even in the sample shown in FIG. 1, whiskers having a structure belonging to (B) similar to that shown in FIG. 2 are generated, albeit in a small amount.

実施例 1 市販活性炭7種類(木質系5種、石炭系2種)−をタン
マン炉で、アルゴンガスを流しながら平均□昇温速度4
00℃/hrで加熱し、最高温度で30分間保持して黒
鉛化した。
Example 1 7 types of commercially available activated carbon (5 types of wood type, 2 types of coal type) were heated in a Tamman furnace at an average heating rate of 4 while flowing argon gas.
It was heated at 00° C./hr and maintained at the maximum temperature for 30 minutes to graphitize it.

用いた活性炭の形状、液体窒素温度(77@K)での窒
素ガス吸着による吸着等−S線から求めたBET式によ
る比表面積およびクランストン−インクレイ法による細
孔分布から求めた平均細孔直径を表1に示した。
Shape of the activated carbon used, adsorption by nitrogen gas adsorption at liquid nitrogen temperature (77@K), etc. - Specific surface area determined by the BET equation determined from the S line and average pore diameter determined from the pore distribution determined by the Cranston-Inkley method. are shown in Table 1.

黒鉛化処理した活性炭は走査型電子顕微鏡(SEM)で
ホイスカーの生成を確認すると共に、これを粉砕後、高
純度シリコンを内部標準として20wt%混合して、x
11回折を行った。炭素の(002)回折線は約20=
26°付近に出現するが、本イスカーが生成していたも
のは2θが約28’ と26.5゜付近に2つの回折線
を与える。約26°の回折線は無定形炭素、すなわち、
ホイスカーにならなかった活性炭に相当し、約2B、5
°のものはホイスカーに相当するので、手振法(炭素材
料研究会、炭素材料入門、184ページ、1975年)
によって実測回折線を補正した後、次式に示したように
約26.5゜の回折線強度(面積)に対する約26°の
それの比をホイスカー生成量とした。
The graphitized activated carbon was checked for whisker formation using a scanning electron microscope (SEM), and after pulverizing it, 20 wt% of high-purity silicon was mixed as an internal standard and x
11 diffraction was performed. The (002) diffraction line of carbon is approximately 20=
It appears around 26°, but the one produced by this Isker gives two diffraction lines at around 28' and 26.5° 2θ. The diffraction line at about 26° is amorphous carbon, i.e.
Equivalent to activated carbon that did not become a whisker, approximately 2B, 5
° is equivalent to a whisker, so use the hand wave method (Carbon Materials Research Group, Introduction to Carbon Materials, page 184, 1975).
After correcting the actually measured diffraction line by , the ratio of the intensity (area) of the diffraction line at about 26.5° to that at about 26° was taken as the amount of whisker production, as shown in the following equation.

得られた結果を表1に示した。The results obtained are shown in Table 1.

表1 実施例 2 オガクズを濃厚な塩化亜鉛水溶液に入れ、50℃に加熱
して十分吸収させた。これを電気炉で窒素焼成賦活した
。これをIN−塩酸水溶液に入れ、約1時間煮沸し、ろ
過した。この操作を数回くり返して塩化亜鉛を除去した
。ついで、蒸留水で塩素が検出されなくなるまで洗浄し
た後乾燥した。また、比較のためにオガクズのみを窒素
ガス中、700℃、30分間炭化した。これらの試料の
77@にでの窒素ガス吸着によって求めた比表面積およ
び平均細孔直径を表2に示す。
Table 1 Example 2 Sawdust was placed in a concentrated zinc chloride aqueous solution and heated to 50° C. to ensure sufficient absorption. This was fired and activated with nitrogen in an electric furnace. This was placed in an IN-hydrochloric acid aqueous solution, boiled for about 1 hour, and filtered. This operation was repeated several times to remove zinc chloride. Then, it was washed with distilled water until no chlorine was detected, and then dried. For comparison, only sawdust was carbonized in nitrogen gas at 700°C for 30 minutes. Table 2 shows the specific surface area and average pore diameter of these samples determined by nitrogen gas adsorption at 77@.

これらの試料をタンマン炉を用いて、280G、SEM
による観察、xva回析および電子線回折を測定した。
These samples were subjected to SEM at 280G using a Tammann furnace.
observation, xva diffraction and electron beam diffraction were measured.

□得られた結果を表2に示した。□The results obtained are shown in Table 2.

塩化亜鉛で賦活したものは第2図に示すようにホイスカ
ーが粒子表面に密生して生成しているが、賦活しなかっ
tこ“ものは本イスカーの生成は認められなかった。
As shown in Figure 2, the particles activated with zinc chloride produced whiskers densely grown on the surface of the particles, but the particles that were not activated did not produce whiskers.

表2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は粒子上に生成しtコホイスカーの
走査型電子顕微蜆写真であり、第1図(b)は第1図(
a)の高倍率で観察したものである。 第 第′2図 一 3使菖 り図 ゛くし ・   蔓 代
Figures 1 and 2 are scanning electron micrographs of t-cowhiskers generated on particles, and Figure 1(b) is
Observation at higher magnification of a). Figure '2-13 Iris illustration 'Kushi/Tree'

Claims (1)

【特許請求の範囲】[Claims] 比表面積約500m^2/g以上、平均細孔直径1.0
〜2.0nmの微細細孔を有する炭素質物質を2800
℃以上で熱処理することを特徴とする黒鉛ホイスカーの
製造方法。
Specific surface area approximately 500m^2/g or more, average pore diameter 1.0
~2800 carbonaceous materials with micropores of ~2.0 nm
A method for producing graphite whiskers, characterized by heat treatment at temperatures above ℃.
JP60047752A 1985-03-11 1985-03-11 Production of graphite whisker Granted JPS61205700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047752A JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047752A JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Publications (2)

Publication Number Publication Date
JPS61205700A true JPS61205700A (en) 1986-09-11
JPH031277B2 JPH031277B2 (en) 1991-01-10

Family

ID=12784089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047752A Granted JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Country Status (1)

Country Link
JP (1) JPS61205700A (en)

Also Published As

Publication number Publication date
JPH031277B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
JP5162817B2 (en) Network carbon material
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Panapoy et al. Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method
Ko Raman spectrum of modified PAN‐based carbon fibers during graphitization
WO2010143585A1 (en) Carbon nanotubes and process for producing same
Zhigalina et al. Electron microscopy study of new composite materials based on electrospun carbon nanofibers
JP7201683B2 (en) Methods for growing height-controlled carbon nanotube arrays
CN110255626B (en) Method for preparing surface-active onion-shaped carbon nanospheres based on vapor deposition
KR100396457B1 (en) Method for preparing porous silica, porous silica based molding material, and nano-sized silica particle derived from rice husk
EP3443152A1 (en) Polyacrylonitrile-based graphite fiber
US4822587A (en) High modulus pitch-based carbon fiber and method for preparing same
KR100421557B1 (en) Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
KR100813178B1 (en) Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and Preparation method of it
JP3930335B2 (en) Carbon fiber, battery electrode material and carbon fiber manufacturing method by vapor phase growth method
JPS61205700A (en) Production of graphite whisker
Yu et al. Promotion of crystal growth on biomass-based carbon using phosphoric acid treatments
KR20020040644A (en) Multi-walled carbon nanotube and a manufacturing method thereof
K Brantov Perspective methods for producing composite materials based on carbon, silicon and silicon carbide: Progress and challenges
JPH02184511A (en) Production of porous graphite
JPS62141126A (en) Production of activated carbon fiber
JPS6241320A (en) Carbon yarn having section with wavy structure
Orlova et al. Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons
Wang et al. Preparation and characterization of carbon nanotubes-coated cordierite for catalyst supports
JPS61275114A (en) Production of graphite
KR100444141B1 (en) Anode active materials for lithium secondary battery, anode plates and secondary battery using them

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term