JPH031277B2 - - Google Patents

Info

Publication number
JPH031277B2
JPH031277B2 JP60047752A JP4775285A JPH031277B2 JP H031277 B2 JPH031277 B2 JP H031277B2 JP 60047752 A JP60047752 A JP 60047752A JP 4775285 A JP4775285 A JP 4775285A JP H031277 B2 JPH031277 B2 JP H031277B2
Authority
JP
Japan
Prior art keywords
whiskers
graphite
carbon
whisker
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60047752A
Other languages
Japanese (ja)
Other versions
JPS61205700A (en
Inventor
Yasuhiro Yamada
Shigeji Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Kasei Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60047752A priority Critical patent/JPS61205700A/en
Publication of JPS61205700A publication Critical patent/JPS61205700A/en
Publication of JPH031277B2 publication Critical patent/JPH031277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は微細細孔を有する炭素質物質(活性
炭)を2800℃以上で黒鉛化処理することにより、
黒鉛ホイスカーを製造する方法に関するものであ
る。 従来の技術と問題点 ホイスカーは繊維状単結晶でり、理論物性に近
い機械的物性を持つことから、種々のホイスカー
が製造されている。黒鉛ホイスカーについても、
いくつかの方法が提案されている。その代表的な
ものは高温、高圧下で黒鉛電極をアーク放電させ
折出させる方法である〔アール・ベーコン(R.
Bacon)、ジヤーナル・オブ アプライド・フイ
ジツクス(J.Appli.phys)第31巻、283ページ、
1960年〕。この方法によつて得られたホイスカー
の物性は引張強度約2000Kg/mm2、引張弾性率約
72ton/mm2という非常に優れたものである。その
他、β−SiC結晶の111面の積層不整および回転
双晶上にCO2ガスを熱分解させて析出させる方法
〔エツチ・ビー・ハーンストラ(H.B.Haanstra)
ら、ジヤーナル オブ クリスタル グロース
(J.Cryst.Growth)、第16巻、71ページ、1972年〕
やマルテンサイトの電解析出により得られた無定
形炭素を2800℃で加熱処理して生成させる方法
〔ジエー・ギロー(J.Gillot)ら、カーボン
(Carbon)、第6巻、381ページ、1968年〕があ
る。しかし、これらの方法はいずれも生成操作が
複雑であるため、工業的製造法としては多くの難
点を有している。 一方、工業的製造法として、約13nm以下の粒
子径を持つカーボンブラツクを2000℃以上で熱処
理することによつて、黒鉛ホイスカーを製造する
方法がある(特公昭57−8762号公報)。この方法
は簡単な操作で黒鉛ホイスカーを製造出来る点は
非常に優れた方法であるが、原料のカーボンブラ
ツクは約13nm以下の非常に小さい粒子径のもの
を使用しなければならないことと、このような小
さい粒子径のカーボンブラツクは必ずしも安価で
ない点に難点がある。 発明の目的 上記の点からみて、黒鉛ホイスカーを生成させ
る方法は特公昭57−8762号公報記載の方法が工業
的製法としては最も優れていると考えられるの
で、この方法を採用し、その際、原料カーボンブ
ラツクに代わる炭素材を検索した結果、微細細孔
を有する炭素質物質(活性炭)からも黒鉛ホイス
カーを生成させ得ることが判明したので、その製
造方法を提供することを目的とする。 発明の構成 本発明の製造方法で最も重要な点は活性炭の選
択にある。活性炭の原料は木材、植物果、石炭、
重質歴青物、合成樹脂等であるが、本発明で用い
られるのは木材や植物果の木質系と石炭系であ
る。微細細孔を成形させる賦活法には薬品賦活法
とガス賦活法があるが、そのいずれでもよい。ま
た、形状は粉末でも形成品でもよい。しかし、そ
の比表面積は少なくとも500m2/g以上であるこ
とが必要である。これ以下でも黒鉛ホイスカーは
生成するが、その量は少ないし、賦活処理しない
ものは全く生成しない。比表面積が約500m2/g
以上のものの平均細孔直径は1.0〜2.0nmであり、
クランストン−インクレイ〔Craston−Inkley
(CI)〕法によつて求められる細孔分布の大部分
の細孔はこの範囲に分布する。但し、CI法では
1.0nm以下の細孔は計算できない。 これらの活性炭の黒鉛化処理は2800℃以上で行
う。2600℃ではホイスカーはほとんど生成しな
い。雰囲気は窒素ガス、アルゴンガス等の非酸化
性雰囲気中であり、常圧、加圧下のいずれでもよ
い。また、黒鉛化温度での保持時間を長時間にし
ても特に生成量は増加しない。 この黒鉛化処理によつて、ホイスカーは活性炭
粒子表面に生成する。生成したホイスカーの直径
は1〜2μm程度であり、約0.1〜0.3μmのものも
存在する。長さは必ずしも一定でないが、大部分
は数μm〜数10μmであり、中には数mmに達する
ものも存在する。走査型電子顕微鏡で観察した結
果を図に示す。第1図は実施例1、表1中の試料
Fの3000℃で処理したもので、第1図aは低倍率
で、第1図bは高倍率で観察したものである。ま
た、第2図は実施例2、表2中のオガクズを塩化
亜鉛に含浸し、700℃で賦活した後3000℃で処理
したものである。 今まで知られている黒鉛ホイスカーの構造には
大別して、A黒鉛結晶のC軸がホイスカーの長軸
方向と同方向、B黒鉛結晶のC軸がホイスカーの
長軸方向と垂直方向、の2つがある。更に、Aは
(A−1)黒鉛結晶のC軸がホイスカーの中心軸
に対して約20℃傾いて積層しているもの(cone
−helix)、(A−2)黒鉛結晶C軸がホイスカー
の長軸方向に平行配列し、積層しているもの
(hexagonal layer)があり、Bは(B−1)帯
状黒鉛結晶がラセン状に巻きながら、連続的に積
層しているもの(scroll layer)、(B−2)帯状
黒鉛結晶がホイスカーの中心に対して同心円状に
巻いているもの(concentric sircles)がある。 透過型電子顕微鏡観察、マイクロラウエX線回
析および電子線回析による結晶構造解析の結果、
第1図に示したホイスカーは(A−1)に属する
もので、これはJ.Gillotが名付けた“葉巻形”と
同じである。第2図においても、この“葉巻形”
が生成するが、その他にさらに直径が小さく、か
つ長いものが存在する。これはBに属する構造の
ものである。しかし、(B−1)と(B−2)の
構造は同様の回析パターンを与えるため、現在の
所、このいずれの構造であるかはわからない。な
お、第1図に示した試料中にも第2図に示したの
と同様なBに属する構造のホイスカーがわずかで
はあるが生成している。 実施例 1 市販活性炭7種類(木質系5種、石炭系2種)
をタンマン炉で、アルゴンガスを流しながら平均
昇温速度400℃/hrで加熱し、最高温度で30分間
保持して黒鉛化した。 用いた活性炭の形状、液体窒素温度(77〓)で
の窒素ガス吸着による吸着等温線から求めた
BET式による比表面積およびクランストン−イ
ンクレイ法による細孔分布から求めた平均細孔直
径を表1に示した。 黒鉛化処理した活性炭は走査型電子顕微鏡
(SEM)でホイスカーの生成を確認すると共に、
これを粉砕後、高純度シリコンを内部標準として
20wt%混合して、X線回析を行つた。炭素の
(002)回析線は約2θ=26゜付近に出現するが、ホ
イスカーが生成していたものは2θが約26゜と26.5゜
付近に2つの回析線を与える。約26゜の回析線は
無定形炭素、すなわち、ホイスカーにならなかつ
た活性炭に相当し、約26.5゜のものはホイスカー
に相当するので、学振法(炭素材料研究会、炭素
材料入門、184ページ、1975年)によつて実測回
析線を補正した後、次式に示したように約26.5゜
の回析線強度(面積)に対する約26゜のそれの比
をホイスカー生成量とした。 ホイスカー生成量(%) =26.5゜回析線強度/(26゜+26.5゜)回析線強度×
100 得られた結果を表1に示した。
Industrial Application Fields The present invention graphitizes a carbonaceous material (activated carbon) having fine pores at a temperature of 2800°C or higher.
The present invention relates to a method of manufacturing graphite whiskers. Prior Art and Problems Whiskers are made of fibrous single crystals and have mechanical properties close to theoretical properties, so a variety of whiskers have been manufactured. Regarding graphite whiskers,
Several methods have been proposed. A typical method is a method in which a graphite electrode is arc discharged and deposited under high temperature and high pressure [R. Bacon (R.
Bacon), Journal of Applied Physics (J.Appli.phys) Volume 31, Page 283,
1960]. The physical properties of the whisker obtained by this method are a tensile strength of approximately 2000 Kg/mm 2 and a tensile modulus of approximately
It has an extremely high capacity of 72ton/ mm2 . In addition, there is a method in which CO 2 gas is thermally decomposed and precipitated on the 111-plane stacking misalignment and rotational twins of β-SiC crystal [HBHaanstra]
J.Cryst.Growth, Volume 16, Page 71, 1972]
A method for producing amorphous carbon obtained by electrolytic deposition of martensite and martensite by heating at 2800℃ [J. Gillot et al., Carbon, Vol. 6, p. 381, 1968 ]There is. However, since all of these methods require complicated production operations, they have many drawbacks as industrial production methods. On the other hand, as an industrial manufacturing method, there is a method of manufacturing graphite whiskers by heat-treating carbon black having a particle size of about 13 nm or less at a temperature of 2000° C. or higher (Japanese Patent Publication No. 8762/1987). This method is an excellent method in that graphite whiskers can be produced with simple operations, but the raw material carbon black must have a very small particle size of about 13 nm or less, and it is difficult to use this method. The drawback is that carbon black with a small particle size is not necessarily inexpensive. Purpose of the Invention In view of the above points, the method described in Japanese Patent Publication No. 57-8762 is considered to be the best industrial method for producing graphite whiskers. As a result of searching for a carbon material to replace the raw material carbon black, it was found that graphite whiskers can also be produced from a carbonaceous material (activated carbon) having fine pores.The object of the present invention is to provide a method for producing the same. Structure of the Invention The most important point in the production method of the present invention lies in the selection of activated carbon. The raw materials for activated carbon are wood, plant fruits, coal,
These include heavy bituminous materials, synthetic resins, etc., but those used in the present invention are woody materials such as wood and fruit of plants, and coal-based materials. Activation methods for forming fine pores include a chemical activation method and a gas activation method, and either of them may be used. Moreover, the shape may be a powder or a formed article. However, it is necessary that the specific surface area is at least 500 m 2 /g or more. Graphite whiskers are generated even below this level, but the amount is small, and those without activation treatment do not generate at all. Specific surface area is approximately 500m 2 /g
The average pore diameter of the above is 1.0 to 2.0 nm,
Cranston-Inkley
(CI)] Most of the pores in the pore distribution determined by the method are distributed within this range. However, in the CI method
Pores smaller than 1.0 nm cannot be calculated. The graphitization treatment of these activated carbons is carried out at 2800°C or higher. Almost no whiskers are generated at 2600℃. The atmosphere is a non-oxidizing atmosphere such as nitrogen gas or argon gas, and may be either normal pressure or pressurized. In addition, even if the holding time at the graphitization temperature is increased for a long time, the amount produced does not particularly increase. By this graphitization treatment, whiskers are generated on the surface of the activated carbon particles. The diameter of the generated whiskers is about 1 to 2 μm, and some have a diameter of about 0.1 to 0.3 μm. Although the length is not necessarily constant, most of the lengths range from several μm to several tens of μm, and some lengths reach several mm. The figure shows the results observed with a scanning electron microscope. FIG. 1 shows Sample F in Example 1 and Table 1 treated at 3000°C, with FIG. 1a being observed at low magnification and FIG. 1b being observed at high magnification. Moreover, FIG. 2 shows the sawdust in Example 2 and Table 2 impregnated with zinc chloride, activated at 700°C, and then treated at 3000°C. The structures of graphite whiskers that have been known so far can be roughly divided into two types: A: the C axis of the graphite crystal is in the same direction as the long axis of the whisker, and B: the C axis of the graphite crystal is perpendicular to the long axis of the whisker. be. Furthermore, A is (A-1) a laminated graphite crystal whose C axis is tilted approximately 20 degrees with respect to the central axis of the whisker (cone).
-helix), (A-2) The C-axis of the graphite crystal is arranged parallel to the long axis direction of the whisker, and there are hexagonal layers, and B is (B-1) The graphite crystal is arranged in a spiral shape. There are two types: one in which the graphite crystals are continuously layered while being rolled (scroll layer), and the other in which (B-2) band-shaped graphite crystals are wound concentrically around the center of the whisker (concentric circulars). Results of crystal structure analysis using transmission electron microscopy, micro-Laue X-ray diffraction and electron beam diffraction,
The whisker shown in FIG. 1 belongs to (A-1), which is the same as the "cigar shape" named by J. Gillot. Also in Figure 2, this “cigar shape”
is produced, but there are others that are smaller in diameter and longer. This is a structure belonging to B. However, since the structures (B-1) and (B-2) give similar diffraction patterns, it is currently unknown which structure it is. Incidentally, even in the sample shown in FIG. 1, whiskers having a structure belonging to B similar to that shown in FIG. 2 are generated, albeit in a small amount. Example 1 7 types of commercially available activated carbon (5 types of wood-based, 2 types of coal-based)
was heated in a Tammann furnace at an average temperature increase rate of 400°C/hr while flowing argon gas, and was maintained at the maximum temperature for 30 minutes to graphitize. The shape of the activated carbon used was determined from the adsorption isotherm due to nitrogen gas adsorption at liquid nitrogen temperature (77〓).
Table 1 shows the average pore diameter determined from the specific surface area by the BET equation and the pore distribution by the Cranston-Inkley method. Graphitized activated carbon was examined using a scanning electron microscope (SEM) to confirm the formation of whiskers.
After pulverizing this, high-purity silicon was used as an internal standard.
They were mixed at 20 wt% and subjected to X-ray diffraction. The (002) diffraction line of carbon appears around 2θ = 26°, but the one with whiskers gives two diffraction lines around 2θ of about 26° and 26.5°. The diffraction line at about 26° corresponds to amorphous carbon, that is, activated carbon that has not turned into whiskers, and the one at about 26.5° corresponds to whiskers, so we used the Gakushin method (Carbon Materials Research Group, Introduction to Carbon Materials, 184 After correcting the measured diffraction lines according to (Page, 1975), the ratio of the intensity (area) of the diffraction line at about 26.5° to that at about 26° was taken as the amount of whisker production, as shown in the following equation. Whisker generation amount (%) = 26.5° diffraction line intensity / (26° + 26.5°) diffraction line intensity ×
100 The results obtained are shown in Table 1.

【表】 実施例 2 オガクズを濃厚な塩化亜鉛水溶液に入れ、50℃
に加熱して十分吸収させた。これを電気炉で窒素
ガスを少量流しながら、500および700℃で30分間
焼成賦活した。これをIN−塩酸水溶液に入れ、
約1時間煮沸し、ろ過した。この操作を数回くり
返して塩化亜鉛を除去した。ついで、蒸溜水で塩
素が検出されなくなるまで洗浄した後乾燥した。
また、比較のためにオガクズのみを窒素ガス中、
700℃、30分間炭化した。これらの試料の77〓で
の窒素ガス吸着によつて求めた比表面積および平
均細孔直径を表2に示す。 これらの試料をタンマン炉を用いて、2800、
3000℃の各温度で30分間処理した。この処理物を
SEMによる観察、X線回析および電子線回析を
測定した。得られた結果を表2に示した。 塩化亜鉛で賦活したものは第2図に示すように
ホイスカーが粒子表面に密生して生成している
が、賦活しなかつたものはホイスカーの生成は認
められなかつた。
[Table] Example 2 Sawdust was placed in a concentrated zinc chloride aqueous solution and heated to 50°C.
It was heated to allow it to be fully absorbed. This was fired and activated in an electric furnace at 500 and 700°C for 30 minutes while flowing a small amount of nitrogen gas. Put this in IN-hydrochloric acid aqueous solution,
Boiled for about 1 hour and filtered. This operation was repeated several times to remove zinc chloride. Then, it was washed with distilled water until no chlorine was detected, and then dried.
In addition, for comparison, only sawdust was placed in nitrogen gas.
Carbonization was performed at 700°C for 30 minutes. Table 2 shows the specific surface area and average pore diameter of these samples determined by nitrogen gas adsorption at 77%. These samples were heated at 2800, using a Tammann furnace.
It was treated at each temperature of 3000°C for 30 minutes. This processed material
Observation by SEM, X-ray diffraction and electron beam diffraction were measured. The results obtained are shown in Table 2. As shown in FIG. 2, the particles activated with zinc chloride produced whiskers densely grown on the surface of the particles, but the particles that were not activated did not produce any whiskers.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は粒子上に生成したホイス
カーの走査型電子顕微鏡写真であり、第1図bは
第1図aの高倍率で観察したものである。
FIGS. 1 and 2 are scanning electron micrographs of whiskers formed on particles, and FIG. 1b is a higher magnification view of FIG. 1a.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積約500m2/g以上、平均細孔直径1.0
〜2.0nmの微細細孔を有する炭素質物質を2800℃
以上で熱処理することを特徴とする黒鉛ホイスカ
ーの製造方法。
1 Specific surface area approximately 500m 2 /g or more, average pore diameter 1.0
Carbonaceous material with ~2.0nm micropores at 2800℃
A method for producing graphite whiskers, which comprises heat-treating as described above.
JP60047752A 1985-03-11 1985-03-11 Production of graphite whisker Granted JPS61205700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047752A JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047752A JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Publications (2)

Publication Number Publication Date
JPS61205700A JPS61205700A (en) 1986-09-11
JPH031277B2 true JPH031277B2 (en) 1991-01-10

Family

ID=12784089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047752A Granted JPS61205700A (en) 1985-03-11 1985-03-11 Production of graphite whisker

Country Status (1)

Country Link
JP (1) JPS61205700A (en)

Also Published As

Publication number Publication date
JPS61205700A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
Inagaki et al. Materials science and engineering of carbon: fundamentals
JP2687794B2 (en) Graphite fiber with cylindrical structure
Endo et al. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment
Ramos et al. Graphitization thermal treatment of carbon nanofibers
Ko The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Panapoy et al. Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method
JP7201683B2 (en) Methods for growing height-controlled carbon nanotube arrays
JP2002308612A (en) Graphite polycrystalline body and isolation method for the same and application for the same
KR100421557B1 (en) Method of preparing fibrous carbonaceous nano-materials and electrode materials for electrochemical capacitor using them
Otani et al. High modulus carbon fibers from pitch materials
KR100470764B1 (en) Multi-walled carbon nanotube and a manufacturing method thereof
JPH031277B2 (en)
Yu et al. Promotion of crystal growth on biomass-based carbon using phosphoric acid treatments
K Brantov Perspective methods for producing composite materials based on carbon, silicon and silicon carbide: Progress and challenges
Inagaki Structure and texture of carbon materials
KR100444141B1 (en) Anode active materials for lithium secondary battery, anode plates and secondary battery using them
JPS61275114A (en) Production of graphite
Orlova et al. Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons
Sugimoto et al. The effect of sulfur evolution on the properties of high-temperature carbons—I. Thianthrene and thianthrene-anthracene precursors
Tao et al. Effect of reaction temperature on carbon films prepared by a hydrothermal electrochemical method
JPH0476959B2 (en)
JPS61266398A (en) Preparation of graphite whisker
CN109371504B (en) Bamboo-shaped carbon fiber and preparation method thereof
Chung et al. Electrospun poly (vinylidene fluoride)-based carbon nanofibers for hydrogen storage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term