JPS61203674A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61203674A
JPS61203674A JP4530885A JP4530885A JPS61203674A JP S61203674 A JPS61203674 A JP S61203674A JP 4530885 A JP4530885 A JP 4530885A JP 4530885 A JP4530885 A JP 4530885A JP S61203674 A JPS61203674 A JP S61203674A
Authority
JP
Japan
Prior art keywords
opening
oxide film
junction
guard ring
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4530885A
Other languages
Japanese (ja)
Inventor
Yoshizo Ogimoto
荻本 佳三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4530885A priority Critical patent/JPS61203674A/en
Publication of JPS61203674A publication Critical patent/JPS61203674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive the voltage as designed which allows a depletion layer to extend and reach a guard ring part by forming an opening of an oxide film of the guard ring and the junction opening part which is to be a Schottky junction in the same process and making the distance between the Schottky junction and the guard ring part uniform over the periphery of Schottky junction lastly. CONSTITUTION:An oxide film 3 is formed on both sides of an N-type semiconductor layer 2 grown on a silicon N<+> type semiconductor substrate 1 and an opening 9 for forming a guard ring part 6 is opened. At the same time, a junction opening 12 is formed in the part for forming a Schottky junction later. An oxide film 10 is formed on the openings 9 and 12 and a photoresist pattern 14 is formed on the oxide film 10 on the junction opening 12. By etching the oxide film 10 on the opening 9, the photoresist pattern 14 is removed, diffusion is carried out to form the guard ring part 6. The oxide film 10' is removed to expose the junction opening 12 again and a Schottky electrode 4(1) is formed so as to form a Schottky junction 4 on a boundary with the N-type semiconductor layer 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ショットキダイオード単体およびショットキ
ダイオードを含む集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a single Schottky diode and an integrated circuit including a Schottky diode.

〔従来の技術〕[Conventional technology]

ショットキダイオードは単体として、あるいは素子とし
て集積回路に含まれている。本発明は両者を対象とする
ものだが、以下では説明の便宜上、ショットキダイオー
ドについて述べる。
Schottky diodes are included in integrated circuits either singly or as elements. Although the present invention is directed to both types, Schottky diodes will be described below for convenience of explanation.

従来、ショットキダイオードの高耐圧化・低順電圧化の
ために、第2図(IL)に示すように1N型半導体層2
の主面上のショットキ接合40周辺をかこんで、P型領
域(以下ガードリング部という)6を設ける方法が知ら
れている。ガードリング部6は何ら外部的に電気接続さ
れることなく、フローティング状態にしておくもので、
その作用につき同図(b) (e)で説明する。
Conventionally, in order to increase the breakdown voltage and lower the forward voltage of Schottky diodes, a 1N type semiconductor layer 2 was used as shown in FIG. 2 (IL).
A known method is to provide a P-type region (hereinafter referred to as a guard ring portion) 6 surrounding the Schottky junction 40 on the main surface of the semiconductor device. The guard ring part 6 is left in a floating state without any external electrical connection.
The effect will be explained with reference to FIGS. 5(b) and (e).

いまショットキ電極4(1)に逆方向電圧vRIk:印
加すると空乏層8が拡がるが、同図(b)は丁度ガード
リング部6に空乏層8が到達したところで、さらに電圧
を高くした状態が同図(c)である0同図(b) Kな
るときの逆方向電圧&Vrtとすると、同図(e)の場
合にガードリング部6に印加される電圧V。Rは vGR=vR−vrt となり、vrtだけ低くなる。ショットキダイオ−ドと
しては、ガードリング部6をショットキ電極4(1)と
電気接続する型のものがあるが、その型ではvGRはv
Rそのものである。本発明のショットキダイオードでは
、vrtだけ低くなり耐圧が高く力る。また所要の耐圧
を得るために1空乏層8の拡がるN型半導体層2の厚み
7は薄くして良く、順方向電圧低減にも効果がある。
Now, when a reverse voltage vRIk is applied to the Schottky electrode 4(1), the depletion layer 8 expands, and in FIG. If the reverse voltage &Vrt is 0 when the figure (c) is 0 and the figure (b) is K, then the voltage V applied to the guard ring portion 6 in the case of the figure (e). R becomes vGR=vR-vrt, and becomes lower by vrt. As a Schottky diode, there is a type in which the guard ring part 6 is electrically connected to the Schottky electrode 4 (1), but in that type, vGR is v
It is R itself. In the Schottky diode of the present invention, vrt is lowered and the withstand voltage is increased. Further, in order to obtain the required breakdown voltage, the thickness 7 of the N-type semiconductor layer 2 in which one depletion layer 8 extends may be made thinner, which is also effective in reducing the forward voltage.

さて、この種のショットキダイオードの製造方法を、各
工程ごとに図示した第3図で説明する。(al 二N”
型半導体基板1の上に成長させた所定の不純物濃度のN
型半導体層2を散化し、(b):酸化膜3に開孔9を設
けてp聾ガードリング部6を拡散により形成し、(cl
:p型ガードリング部6をさらに高温拡散させ所定の深
さにするとともに酸化J[10で開孔9をおおった後ホ
トレジストパターン11を形成し、(d) : ff化
膜3に接合開孔部12をあけ、その部分にショットキ接
合4を形成するために& e Pt e Crなどの金
属層4(2)をスパッタ法、Eガン蒸着法々どで蒸着し
、その上にホトレジストパターン13を形成し、(e)
 :金属層4(2)の不要部分なのぞきショットキ電極
4(1)を形成する。ショットキ電極4(1)からリー
ド線を取りだすためには、さらにその上にAg、AQな
どの金属を形成する。
Now, a method for manufacturing this type of Schottky diode will be explained with reference to FIG. 3, which illustrates each step. (al 2N”
type semiconductor substrate 1 with a predetermined impurity concentration.
(b): An opening 9 is provided in the oxide film 3 and a p-deaf guard ring portion 6 is formed by diffusion.
: The p-type guard ring part 6 is further diffused at a high temperature to a predetermined depth, and the opening 9 is covered with oxide J[10, after which a photoresist pattern 11 is formed. (d) : A bonding opening is formed in the FF film 3. A portion 12 is opened, and in order to form a Schottky junction 4 in that portion, a metal layer 4 (2) such as & e Pt e Cr is deposited by sputtering, E-gun vapor deposition, etc., and a photoresist pattern 13 is formed thereon. form, (e)
: A Schottky electrode 4(1) is formed in an unnecessary portion of the metal layer 4(2). In order to take out a lead wire from the Schottky electrode 4(1), a metal such as Ag or AQ is further formed thereon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の製造方法では、第3図(bl 、 ((り 、 
(d)にみられるように、ガードリング部6の開孔9と
7ヨツトキ接合4の接合開孔部12との孔明けが別々に
行なわれる。そのため第4図のように1ショットキ接合
4とガードリング部6との距離が一様忙ならないことが
多い。この場合、ガードリング部6に空乏層8が到達す
る電圧Vrtは距離の短いa側できまり、距離が等しい
a = bの場合より小さくなる。設計上、当然a =
 bのようにしであるが、実際の製造工程では、iスフ
目金わせの関係から上記のように不均等になり、装置と
してのVrtが低下する。このため■。8が高くなり、
低い逆方向電圧vRで逆方向降伏が生ずるととKなる。
In the above manufacturing method, as shown in FIG.
As shown in (d), the opening 9 of the guard ring portion 6 and the joining opening 12 of the 7-way joint 4 are drilled separately. Therefore, as shown in FIG. 4, the distance between the Schottky joint 4 and the guard ring portion 6 is often not uniform. In this case, the voltage Vrt that the depletion layer 8 reaches the guard ring portion 6 is determined by the short distance a side, and is smaller than when the distances are equal, a = b. By design, of course a =
However, in the actual manufacturing process, due to the relationship between the i-splash and metal fittings, as described above, the unevenness occurs, and the Vrt of the device decreases. For this reason ■. 8 becomes higher,
If reverse breakdown occurs at a low reverse voltage vR, then K.

このように、接合開孔部12の位置ずれKよる耐圧低下
は従来の工程では避けられなかった@本発明の目的は、
上記の事情に鑑み、接合開孔部認の位置ずれをなくシ、
所定の耐圧をうろことのできる製造方法を提供すること
にある。
In this way, the reduction in breakdown voltage due to the positional deviation K of the joining hole 12 was unavoidable in the conventional process.@The purpose of the present invention is to
In view of the above circumstances, we will eliminate the positional deviation of the joint opening.
It is an object of the present invention to provide a manufacturing method that can measure a predetermined withstand pressure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のショットキダイオードは、フロティング状態の
ガードリング部を有するものであるが、その製造工程に
おいて、前記ガードリング部の形成工程として酸化膜開
孔の際に、以降の工程で形成されるショットキ接合の予
定領域上の酸化膜を、同時に開孔しておくようにしたも
のである。
The Schottky diode of the present invention has a guard ring part in a floating state, and in the manufacturing process, when the oxide film is opened as the step of forming the guard ring part, the Schottky diode formed in the subsequent process is At the same time, holes are opened in the oxide film on the area where bonding is planned.

〔作用〕[Effect]

ガードリング部と、ショットキ接合の予定領域とのため
の酸化膜の開孔を同時に行なっているから、目合わせマ
スクを共通に使用することができる。したがって後の工
程でショットキ接合を形成する場合に、前記酸化膜の開
孔である接合開孔部を基準としてなされるから、ガード
リング部と、ショットキ接合との距離は、目合わせマス
ク精度で、均等にすることができる。
Since the holes in the oxide film for the guard ring portion and the area where the Schottky junction is to be formed are formed at the same time, the alignment mask can be used in common. Therefore, when forming a Schottky junction in a later step, it is done based on the junction opening, which is the opening in the oxide film, so the distance between the guard ring part and the Schottky junction is determined by the accuracy of the alignment mask. It can be made even.

これ罠よってショットキダイオードの耐圧を設計値の範
囲内におさめることができる〇〔実施例〕 以下、図面を参照して本発明の一実施例の説明を行なう
。第1図に実施例を工程順に図示しである。同図(a)
はシリコン!型半導体基板1上に成長させた所定の不純
物濃度のN型半導体層2を酸化し、両面に酸化膜3が形
成された状態である。次に同図(b) K示すように、
酸化膜3に写真蝕刻法により、ガードリング部6を形成
するための開孔9をあけるが、このときガラスマスクに
は将来ショットキ接合を形成すべき予定部分くもパター
ンを設けて同時に接合開孔部臣な形成する◎ 次に、同図(e) K示すように、熱酸化法により開孔
9.接合開孔部n上に酸化膜10ik形成するが、この
厚さは、ガードリング部9の形成を行なう(同図(d)
)ときに1接合開孔部12に拡散されないようにマスク
となる充分な厚さとする。
By this means, the breakdown voltage of the Schottky diode can be kept within the range of the designed value. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in the order of steps. Figure (a)
is silicon! An N-type semiconductor layer 2 with a predetermined impurity concentration grown on a type semiconductor substrate 1 is oxidized, and oxide films 3 are formed on both surfaces. Next, as shown in Figure (b) K,
An opening 9 for forming the guard ring part 6 is made in the oxide film 3 by photolithography. At this time, a spider pattern is provided on the glass mask in the area where the Schottky junction is to be formed in the future, and at the same time, the opening 9 for forming the guard ring part 6 is formed in the glass mask. ◎ Next, as shown in Figure (e) K, apertures 9. An oxide film 10ik is formed on the junction opening n, the thickness of which is the same as the formation of the guard ring part 9 (FIG. 1(d)).
) The thickness is sufficient to act as a mask to prevent diffusion into the one-junction opening 12.

ソt、テホトレジストパターン14を接合開孔部12の
酸化[10上に形成する。
Then, a photoresist pattern 14 is formed over the oxidation layer 10 of the junction opening 12.

次に、同図(d)に示すように、開孔9上の酸化膜10
をエツチングするが、エツチングは前記酸化膜10が除
去されたら直ちに停止し、ホトレジストで保護されてい
ない酸化膜3がエッチされすぎないようにする。エツチ
ング後、ホトレジストパターン14す除去し、拡散を行
ない、ガードリング部6を形成する。
Next, as shown in FIG. 3D, the oxide film 10 on the opening 9
However, the etching is stopped immediately after the oxide film 10 is removed, so that the oxide film 3 not protected by the photoresist is not etched too much. After etching, the photoresist pattern 14 is removed and diffused to form the guard ring portion 6.

次に、同図(e)に示すようにガードリング部6上に表
面保護のため再度酸化膜15を形成した後、ホトレジス
トパターン16を利用して、同図(f)に示すように、
接合開孔部12に形成された酸化膜1σを除去し、接合
開孔部化を再び露呈する。同図(f)はホトレジストパ
ターン16除去後の状態を示す・ 以下の工程は、従来例の第3図(dl 、 (e)と同
様に行ない、N型半導体層稔との境界にショットキ接合
4な形成するようにショットキ電極4(1)をつくる。
Next, as shown in FIG. 5(e), an oxide film 15 is again formed on the guard ring portion 6 for surface protection, and then, using a photoresist pattern 16, as shown in FIG.
The oxide film 1σ formed on the junction opening 12 is removed to expose the junction opening again. FIG. 3(f) shows the state after the photoresist pattern 16 has been removed. The following steps are performed in the same manner as in FIGS. The Schottky electrode 4(1) is made so as to have a uniform shape.

なお、前記一連の工程で、開孔9と、接合開孔部12は
、同図(b)で一度形成後、それ以降の工程でその部分
に酸化膜10 、10’ 、 1ゲを形成し、またエツ
チングするので、最初に設ける酸化膜3は上記工程を考
慮して充分な厚さにとる。
In addition, in the series of steps described above, after the opening 9 and the joining opening 12 are formed once as shown in FIG. Also, since etching is performed, the oxide film 3 to be formed first should have a sufficient thickness in consideration of the above steps.

〔発明の効果〕〔Effect of the invention〕

以上、詳しく説明したように、ガードリング部の酸化膜
の開孔とショットキ接合に予定される接合開孔部とが同
一工程で形成され、最終的にショットキ接合とガードリ
ング部との距離がショットキ接合周辺にわたって一様に
なる。このためショットキダイオードに逆方向電圧を加
えたときの、空乏層が拡がりガードリング部に到達する
電圧Vr tが設計どおりとなり、耐圧電圧を高くとる
ことができる。また順方向電圧の低下も期待できる。な
お、集積回路に組込んだ場合にも、本発明が適用できる
ことはいうまでもない。
As explained in detail above, the opening in the oxide film of the guard ring part and the junction opening part planned for the Schottky junction are formed in the same process, and the distance between the Schottky junction and the guard ring part is finally the same as that of the Schottky junction. uniform around the joint. Therefore, when a reverse voltage is applied to the Schottky diode, the depletion layer expands and the voltage Vrt that reaches the guard ring portion is as designed, and a high withstand voltage can be achieved. Further, a reduction in forward voltage can be expected. It goes without saying that the present invention is also applicable when incorporated into an integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す製造方法を工程順に
示した図、第2図はガードリング部の効果を説明するた
めの図、第3図は従来例の製造工程図、第4図は従来例
で生ずるショットキ接合領域の位置ずれを示す図である
。 1・・・!型半導体基板、 2・・・N型半導体層、 3・・・酸化膜、    4・・・ショットキ接合、4
(1)・・・ショットキ電極、4(21・・・金属層、
6・・・ガードリング部、9・・・開孔、10 、10
’ 、 10’、 15・・・酸化膜、11 、13 
、14 、16・・・ホトレジストパターン、12・・
・接合開孔部。
FIG. 1 is a diagram showing a manufacturing method according to an embodiment of the present invention in order of process, FIG. 2 is a diagram for explaining the effect of the guard ring part, and FIG. 3 is a manufacturing process diagram of a conventional example. FIG. 4 is a diagram showing the positional deviation of the Schottky junction region that occurs in the conventional example. 1...! type semiconductor substrate, 2... N type semiconductor layer, 3... Oxide film, 4... Schottky junction, 4
(1)... Schottky electrode, 4 (21... metal layer,
6... Guard ring part, 9... Opening hole, 10, 10
', 10', 15...Oxide film, 11, 13
, 14, 16... photoresist pattern, 12...
・Joint opening.

Claims (1)

【特許請求の範囲】[Claims] 一定の伝導型の半導体主面に、ショットキ接合と、該接
合の周辺に設けられ、前記伝導型と異なる伝導型の電気
的接続のないガードリング部とを有する半導体装置の製
造工程において、前記ガードリング部の形成工程として
、酸化膜開孔の際に、以降の工程で形成される前記ショ
ットキ接合の予定領域上の酸化膜を同時に開孔しておく
ことを特徴とする半導体装置の製造方法。
In the manufacturing process of a semiconductor device having a Schottky junction on a main surface of a semiconductor of a certain conductivity type, and a guard ring portion provided around the junction and having no electrical connection of a conductivity type different from the conductivity type, the guard 1. A method for manufacturing a semiconductor device, wherein in the step of forming a ring portion, when opening a hole in the oxide film, a hole is simultaneously opened in the oxide film on a region where the Schottky junction to be formed in a subsequent step is to be formed.
JP4530885A 1985-03-07 1985-03-07 Manufacture of semiconductor device Pending JPS61203674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4530885A JPS61203674A (en) 1985-03-07 1985-03-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4530885A JPS61203674A (en) 1985-03-07 1985-03-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61203674A true JPS61203674A (en) 1986-09-09

Family

ID=12715683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4530885A Pending JPS61203674A (en) 1985-03-07 1985-03-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61203674A (en)

Similar Documents

Publication Publication Date Title
US4899199A (en) Schottky diode with titanium or like layer contacting the dielectric layer
JPS6190445A (en) Semiconductor device
US4119446A (en) Method for forming a guarded Schottky barrier diode by ion-implantation
JPS61203674A (en) Manufacture of semiconductor device
KR100500854B1 (en) Semiconductor device
US3860461A (en) Method for fabricating semiconductor devices utilizing composite masking
US3885994A (en) Bipolar transistor construction method
JPH07235660A (en) Manufacture of thyristor
JP2830215B2 (en) Method for manufacturing charge transfer device
JP2982510B2 (en) Semiconductor device and manufacturing method thereof
JPS63221668A (en) Schottky barrier diode and manufacture thereof
US3923562A (en) Process for producing monolithic circuits
JP2002246611A (en) Semiconductor element
JPH04127539A (en) Manufacture of semiconductor device
JPH0680733B2 (en) Wiring connection part of semiconductor device
JPH0284730A (en) Manufacture of semiconductor device
KR850000037B1 (en) The method of mos with self alignment metal electroid
JPH01268167A (en) Manufacture of schottky diode
JPS6113383B2 (en)
KR100272577B1 (en) Method for fabricating bipolar transistor
JPS61202463A (en) Semiconductor device
JPS59198768A (en) Zener diode
GB1594067A (en) Semiconductor devices and their manufacture
JPS6341075A (en) Manufacture of semiconductor device
JPS61236162A (en) Manufacture of semiconductor device