JPS6119962B2 - - Google Patents

Info

Publication number
JPS6119962B2
JPS6119962B2 JP52021915A JP2191577A JPS6119962B2 JP S6119962 B2 JPS6119962 B2 JP S6119962B2 JP 52021915 A JP52021915 A JP 52021915A JP 2191577 A JP2191577 A JP 2191577A JP S6119962 B2 JPS6119962 B2 JP S6119962B2
Authority
JP
Japan
Prior art keywords
light
band
wavelength
reflection band
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52021915A
Other languages
Japanese (ja)
Other versions
JPS53107383A (en
Inventor
Hiroaki Kodera
Tsutomu Shibata
Ryuzo Itabashi
Yukifumi Tsuda
Heijiro Hayamizu
Hiroyoshi Tsucha
Haruko Sugita
Kunio Yoshida
Yoshimitsu Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2191577A priority Critical patent/JPS53107383A/en
Publication of JPS53107383A publication Critical patent/JPS53107383A/en
Publication of JPS6119962B2 publication Critical patent/JPS6119962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Filters (AREA)
  • Projection Apparatus (AREA)
  • Color Television Image Signal Generators (AREA)
  • Color Image Communication Systems (AREA)

Description

【発明の詳細な説明】 本発明は、色彩分析装置、色彩画像入力装置な
どにおける色分解光学系の改良に関し、色光を複
数本の分光組成(スペクトラム成分)に分割する
ための新規な分光光学系を提供するものである。
Detailed Description of the Invention The present invention relates to the improvement of color separation optical systems in color analysis devices, color image input devices, etc., and relates to a novel spectral optical system for dividing colored light into a plurality of spectral compositions (spectral components). It provides:

本発明によれば、たとえば白色光源によつて照
明された被検体からの反射光を、所定の波長帯域
幅で損失なく多数の分光組成に分解することがで
き、物体光の色彩特性を低雑音で正確に計測する
ことができる。
According to the present invention, for example, reflected light from a subject illuminated by a white light source can be decomposed into a large number of spectral compositions in a predetermined wavelength bandwidth without loss, and the color characteristics of object light can be analyzed with low noise. can be measured accurately.

本発明は、リモートセンシング画像解析におけ
るマルチスペクトラム分解系、色分離装置におけ
る色分解光学系、カラーマツチング装置の分光光
学系などに応用してすぐれた特性を発揮するもの
である。
The present invention exhibits excellent characteristics when applied to a multispectral separation system in remote sensing image analysis, a color separation optical system in a color separation device, a spectroscopic optical system in a color matching device, and the like.

従来の色分解装置としては、カラー写真電送装
置(カラーフアクシミリ)や印刷製版用のカラー
スキヤナ装置に見られる3色分解系が最も一般的
である。これは、たとえば第1図ロの曲線,
に示すような青及び緑色に反射特性をもつ2枚の
ダイクロイツクミラー(多層膜干渉フイルター)
101,102を第1図イのように組合わせて、
可視波長帯400〜720nmを、青波長帯(400〜
500nm)、緑波長帯(500〜600nm)及び赤波長
帯(600〜700nm)の3原色に分光するものであ
る。ここでは、青及び緑は、ほぼ80〜90%反射光
として得られ、赤は両者の通過帯から、ほぼ80%
以上の透過光として得られるので効果的な分光を
行うことができ、広く実用に供されている。
The most common conventional color separation device is a three-color separation system found in color phototransmission devices (color facsimiles) and color scanner devices for printing plate making. For example, the curve in Figure 1 B,
Two dichroic mirrors (multilayer interference filter) with reflective characteristics in blue and green as shown in
101 and 102 are combined as shown in Figure 1 A,
Visible wavelength band 400~720nm, blue wavelength band (400~720nm)
500 nm), a green wavelength band (500 to 600 nm), and a red wavelength band (600 to 700 nm). Here, blue and green are obtained as approximately 80-90% reflected light, and red is approximately 80% from the passband of both.
Since the above-described transmitted light can be obtained, effective spectroscopy can be performed, and it is widely used in practical applications.

しかしながら、さらに多くの波長分解を必要と
する目的、たとえば航空機や人工衛星により地表
面や海面を走査して資源分布や汚染調査、海洋調
査などを行う画像解析システムには、3色分解系
では不充分であり、第2図のごときマルチスペク
トラム分解系が用いられている。図において、2
01は地表202からの反射光で、可視光と赤外
光とを含んでいる。この反射光201は走査鏡2
03で走査選択され、反射光学系204を介して
ビームスプリツター205に加えられる。
However, for purposes that require even more wavelength resolution, such as image analysis systems that scan the earth's surface or sea surface using aircraft or artificial satellites to investigate resource distribution, pollution, and oceanographic surveys, three-color separation systems are insufficient. This is sufficient, and a multispectral decomposition system as shown in FIG. 2 is used. In the figure, 2
01 is reflected light from the ground surface 202, which includes visible light and infrared light. This reflected light 201 is reflected by the scanning mirror 2
03 and is applied to the beam splitter 205 via the reflection optical system 204.

ビームスプリツター205では入射ビームを可
視光と赤外光に分割する。分割された可視光およ
び赤外光はそれぞれプリズム206、回折格子2
07により複数チヤネルの波長帯域に細分されて
検出器群208に加えられる。
A beam splitter 205 splits the incident beam into visible light and infrared light. The divided visible light and infrared light are transmitted through a prism 206 and a diffraction grating 2, respectively.
07, the signal is subdivided into wavelength bands of multiple channels and added to the detector group 208.

このマルチスペクトラム分解系は、プリズムも
しくは回折格子を用いて、地表からの反射光をた
とえば4〜11チヤネルの波長帯域に細分し、各チ
ヤネルに固有の分光特性からより詳細な色彩デー
タの分析を行うものである。このようなマルチス
ペクトラム分解の場合には、分割チヤネル数が多
くなればそれだけチヤネル当りの信号光が微弱と
なるので、できるだけ損失の少い分解系が必要と
され、かつ装置化のために小型軽量であることが
望ましい。
This multispectral decomposition system uses a prism or a diffraction grating to subdivide the reflected light from the earth's surface into wavelength bands of, for example, 4 to 11 channels, and performs more detailed color data analysis from the spectral characteristics unique to each channel. It is something. In the case of such multispectral decomposition, as the number of divided channels increases, the signal light per channel becomes weaker, so a decomposition system with as little loss as possible is required. It is desirable that

ところが、第2図のような例は一般的に光路の
曲折と波長分離特性、受光器群の配置などの諸条
件から光学系の構造が複雑であり形状も大型化し
易く、かつ高価であるなど、使用目的によつては
不都合であつた。たとえば、これをカラースキヤ
ナ装置に組込んで、色彩写真の解析に用いたり、
あるいは織物や染色における色彩図案の自動柄出
し(色分離)などに利用する場合には、装置が大
型・高価となりかつ受光器の口径に対して必らず
しも十分な光量が得られない難点がある。
However, in the example shown in Fig. 2, the structure of the optical system is generally complicated due to various conditions such as the bending of the optical path, wavelength separation characteristics, and arrangement of the receiver group, and the shape tends to be large and expensive. , which was inconvenient depending on the purpose of use. For example, you can incorporate this into a color scanner device and use it to analyze color photographs.
Alternatively, when used for automatic pattern creation (color separation) of colored designs in textiles or dyeing, the device is large and expensive, and the problem is that it cannot necessarily provide a sufficient amount of light for the aperture of the receiver. There is.

本発明は、上記のマルチスペクトラム分解系を
構成する他の有効な実現法を提供するものであ
る。すなわちプリズムや回折格子など大掛りかつ
高価な光学系を用いることなく、複数枚のダイク
ロイツクミラーの組合わせのみによつて、効率よ
く遮断特性の良好な分光を行わしめ、かつコンパ
クトな構造で調整を必要としない実用的な分解系
を構成するものである。
The present invention provides another effective implementation method for configuring the above multispectral decomposition system. In other words, without using large-scale and expensive optical systems such as prisms or diffraction gratings, we can efficiently perform spectroscopy with good cut-off characteristics by simply combining multiple dichroic mirrors, and adjust it with a compact structure. This constitutes a practical decomposition system that does not require

以下図面とともに詳細に説明する。 A detailed explanation will be given below with reference to the drawings.

第3図は、非金属多層膜ダイクロイツクミラー
の特性例であり、膜厚及び膜数の構成によつて、
たとえばタイプA,B,Cのごとく遮断特性の異
るフイルタが得られる。このような多層膜フイル
タは、高屈折率物質(たとえばZnS)と低屈折率
物質(たとえばMgF2)の膜を交互に多層蒸着
し、境界面での多重反射による光の干渉作用を利
用して波長選択特性を得るもので、非金属膜は光
の吸収がないので、透過率と反射率の和は1に近
く効率の良いフイルタを製作することができる。
これらは、電気的な多段LCフイルタに類似して
おり、膜厚により共振波長、膜数により遮断特性
を制御することができる。膜数を増し、共振特性
を考慮すると、B,Cのように鋭いカツトオフの
狭帯域フイルタを得ることができる。しかしAの
ような広帯域型に比べると主反射帯の両側近くに
副反射帯が現われてくる。第3図は、透過率と波
長の関係を示しているが、横軸の波長は規格化し
た位相表現w=λ/λを用いて位相で表現され
ている。λは膜厚によつて定まる中心波長を示
し、したがつて横軸上の実際の波長は、λ=λ
/wで換算される。それ故、膜の厚さつまりλ
を変えることによつて、同じ構造の多層膜でも
任意の波長位置にカツトオフを移動することがで
きる。第4図は、第3図Bの構造でλをずらせ
て選択波長帯を変えた一例を実波長軸で図示した
ものである。
Figure 3 shows an example of the characteristics of a nonmetallic multilayer dichroic mirror.
For example, filters of types A, B, and C having different cutoff characteristics can be obtained. Such multilayer film filters are made by alternately depositing multiple layers of high refractive index materials (e.g. ZnS) and low refractive index materials (e.g. MgF 2 ), and utilize the interference effect of light caused by multiple reflections at the interface. Since the non-metallic film does not absorb light, the sum of transmittance and reflectance is close to 1, making it possible to produce a highly efficient filter.
These are similar to electrical multistage LC filters, and the resonance wavelength can be controlled by the film thickness and the cutoff characteristics can be controlled by the number of films. By increasing the number of films and taking resonance characteristics into consideration, narrow band filters with sharp cutoffs like those shown in B and C can be obtained. However, compared to a broadband type like A, sub-reflection bands appear near both sides of the main reflection band. FIG. 3 shows the relationship between transmittance and wavelength, and the wavelength on the horizontal axis is expressed in phase using the normalized phase expression w=λ 0 /λ. λ 0 indicates the center wavelength determined by the film thickness, so the actual wavelength on the horizontal axis is λ = λ
It is converted by 0 /w. Therefore, the film thickness or λ
By changing 0 , the cutoff can be moved to an arbitrary wavelength position even in a multilayer film having the same structure. FIG. 4 shows an example of the structure shown in FIG. 3B in which the selected wavelength band is changed by shifting λ 0 on the actual wavelength axis.

さて、以上の多層膜フイルタにおける膜厚と膜
数(層数)の2つのパラメータによる波長選択特
性に注目すると、これらの組み合わせによる効果
的なマルチバンドフイルタを構成することができ
る。従来の3色分解系の場合には、λをそれぞ
れ青色及び緑色波長に選んだ膜数7程度の第3図
Aのものよりもやゝ広い比較的広帯域のフイルタ
2枚を組み合わせて、単純に可視域を3分割して
いた。この場合反射もしくは透過の一方のみを利
用しかつ副反射帯の現われない状態で使用してい
た。
Now, if we pay attention to the wavelength selection characteristics based on the two parameters of the film thickness and the number of films (number of layers) in the above-mentioned multilayer film filter, an effective multiband filter can be constructed by combining these parameters. In the case of the conventional three-color separation system, two relatively broadband filters, which are slightly wider than the one in Figure 3A with about 7 films, each with λ 0 selected for the blue and green wavelengths, are combined, and a simple method is used. The visible range was divided into three parts. In this case, only one of reflection or transmission was used and no sub-reflection band appeared.

これに対し、本発明では、反射帯と透過帯及び
副反射帯を積極的に活用して、マルチバンドの狭
帯域波長選択フイルタを合成する手段を提供す
る。本発明の実用上の特長は多層膜フイルタの特
長である低損失特性と鋭いカツトオフ特性を損な
わない巧妙な組合せ法及び経済的かつコンパクト
な構成法にある。
In contrast, the present invention provides means for synthesizing a multi-band narrowband wavelength selection filter by actively utilizing the reflection band, transmission band, and sub-reflection band. The practical advantages of the present invention reside in a clever combination method and an economical and compact construction method that do not impair the low loss characteristics and sharp cutoff characteristics that are the characteristics of multilayer film filters.

第5図は本発明の一実施例を示す構成図、第6
図はそのフイルター特性である。
FIG. 5 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure shows the filter characteristics.

第5図は、可視波長帯400〜720nmの間を40n
m間隔で8つの波長帯に分光する場合の基本的な
構成例である。図において、501,502,5
03,505,506は、前記第3図Cのタイプ
の多層膜フイルタにおいて45゜入射角に対し中心
波長λがそれぞれλ=420、460、540、660、
620nmになるように膜厚を設定したダイクロイ
ツクミラー群、504は第3図Bのタイプの多層
膜フイルタでλ=420nm、507は同じくB
のタイプの多層膜フイルタでλ=460nmに選
んだダイクロイツクミラーである。これらの分光
チヤネル数−1枚、すなわち7枚のダイクロイツ
クミラー501〜507は、入射光軸に対して全
て45゜に配置され、それぞれの入射光線を45゜方
向への反射光と垂直方向への透過光に2分する。
第5図の構成において、たとえばコリメートされ
た白色光線517を入射させると、ダイクロイツ
クミラー501及び504の両反射帯が重なり合
う波長域の光は光線518となつて光電変換器5
08へ入射する。各ダイクロイツクミラー501
〜507の実波長に対する透過率特性は、番号順
にそれぞれ第6図イ〜トに与えられる通りであ
り、綜合特性を第7図チ〜ヨに示す。たとえば第
5図の光線518は第6図イ及びニの合成反射光
として中心波長を420nmにもつ帯域選択光チと
なる。同様にして、たとえば光線519はダイク
ロイツクミラー501の透過帯とダイクロイツク
ミラー502及び507の反射帯の3つの組合せ
として第7図リに示すような中心波長を460nm
にもつ帯域選択光となる。以下光線520〜52
5についても各光線の経路上にあるダイクロイツ
クミラーの反射及び透過帯を合成することによ
り、第7図ヌ〜ヨのような帯域選択特性が得られ
る。第5図の508,509,510,511,
512,513,514及び515は、光電変換
器群であり、順に中心波長がそれぞれ420、460、
500、540、580、620、660及び700nmの帯域選択
光を受光する。以上の説明から明らかなように、
本発明は、2〜4枚の多層膜ダイクロイツクミラ
ーを反射もしくは透過して得られる合成光が、そ
れぞれ所期の帯域選択光となるように、各ミラー
の主反射帯、副反射帯及びその逆特性の通過帯を
巧妙に組合わせた点に特徴を有する。
Figure 5 shows 40n between the visible wavelength band 400 and 720nm.
This is a basic configuration example in the case of separating light into eight wavelength bands at intervals of m. In the figure, 501, 502, 5
03 , 505 , and 506 are multilayer film filters of the type shown in FIG.
A dichroic mirror group whose film thickness is set to 620 nm, 504 is a multilayer filter of the type shown in Fig. 3B, and λ 0 = 420 nm, 507 is also a B type filter.
This type of multilayer filter is a dichroic mirror with λ 0 =460 nm. These spectral channel number minus one, that is, seven dichroic mirrors 501 to 507 are all arranged at 45 degrees with respect to the incident optical axis, and each incident light beam is directed perpendicularly to the reflected light in the 45 degree direction. The transmitted light is divided into two parts.
In the configuration shown in FIG. 5, for example, when a collimated white light beam 517 is incident, the light in the wavelength range where both the reflection bands of the dichroic mirrors 501 and 504 overlap becomes a light beam 518 and is sent to the photoelectric converter 5.
08. Each dichroic mirror 501
The transmittance characteristics for the actual wavelengths of 507 to 507 are as given in FIG. 6, I to I, respectively in numerical order, and the combined characteristics are shown in FIG. For example, the light ray 518 in FIG. 5 becomes a band-selected light beam having a center wavelength of 420 nm as the composite reflected light of FIG. 6 A and D. Similarly, for example, the light ray 519 has a center wavelength of 460 nm as shown in FIG.
It becomes a band-selective light with Below rays 520-52
5 as well, by combining the reflection and transmission bands of the dichroic mirrors on the path of each light beam, band selection characteristics as shown in FIG. 7 can be obtained. 508, 509, 510, 511 in Figure 5,
512, 513, 514, and 515 are photoelectric converter groups whose center wavelengths are 420, 460, and 460, respectively.
It receives band selective light of 500, 540, 580, 620, 660 and 700 nm. As is clear from the above explanation,
The present invention provides a main reflection band, a sub-reflection band of each mirror, and their It is characterized by a clever combination of passbands with opposite characteristics.

第8図は、第5図をさらに実用的な構成にまと
めたものである。801〜807は第5図のダイ
クロイツクミラー501〜507に、808〜8
15の光電変換器群508〜515に、同じく8
17〜825は第5図の光線517〜525にそ
れぞれ対応しており、機能、特性共何ら変るとこ
ろはない。816は光路変更用として付加された
全反射ミラーであり、光学系の構造をよりコンパ
クトにまとめるために用いられている。さらに、
各光電変換器808〜815の前には波長帯域幅
整形用の干渉フイルター群828〜835が付加
されている。これらは、第7チ〜ヨに示す各チヤ
ネルの分光特性に見られる相互の重なりと帯域幅
のアンバランスを是正するために用いられる。す
なわち、干渉フイルタ群828〜835は、中心
波長が420nmから40nm毎に700nmまで等間隔に
選ばれた半値幅±20nmを有する多層膜干渉フイ
ルタであり、第9図チ′〜ヨ′にその分光特性を示
す。これによつて各チヤネルの波長帯域幅と分離
度を均等化することができる。第9図チ′〜ヨ′は
第8図における828〜835に順に対応してい
る。したがつて、これらはより正確な色分解デー
タを必要とする目的に有効なものである。勿論、
それほど精度を要求しない用途には、これらの干
渉フイルタは省略しても差し支えない。第8図
は、ミラー群の周辺に光電変換器群808〜81
5が整然と配置されており、装置の組立ならびに
調整に適した実用性の高い構造をなしている。と
くにこれらをカラースキヤナのような移動する走
査台上に塔載して用いる場合には、小型軽量化に
適した機構となつている。
FIG. 8 summarizes FIG. 5 into a more practical configuration. 801 to 807 correspond to the dichroic mirrors 501 to 507 in FIG. 5, and 808 to 8
Similarly, in the 15 photoelectric converter groups 508 to 515, 8
The rays 17 to 825 correspond to the rays 517 to 525 in FIG. 5, respectively, and there is no difference in function or characteristics. A total reflection mirror 816 is added for changing the optical path, and is used to make the structure of the optical system more compact. moreover,
A group of interference filters 828 to 835 for wavelength bandwidth shaping are added in front of each photoelectric converter 808 to 815. These are used to correct the mutual overlap and bandwidth imbalance found in the spectral characteristics of each channel shown in sevenths. That is, the interference filter groups 828 to 835 are multilayer interference filters having a half width of ±20 nm, whose center wavelength is selected at regular intervals from 420 nm to 700 nm every 40 nm, and the spectral spectrum is shown in FIG. Show characteristics. This makes it possible to equalize the wavelength bandwidth and degree of separation of each channel. 9 corresponds to 828 to 835 in FIG. 8 in order. Therefore, these are useful for purposes requiring more accurate color separation data. Of course,
For applications that do not require much precision, these interference filters may be omitted. FIG. 8 shows photoelectric converter groups 808 to 81 located around the mirror group.
5 are arranged in an orderly manner, creating a highly practical structure suitable for assembling and adjusting the device. In particular, when these are mounted on a moving scanning table such as a color scanner, the mechanism is suitable for reduction in size and weight.

第10図はさらに他の一実施例である。第5図
と同様の原理にもとづき特性の異る5枚のダイク
ロイツクミラーを組合せて可視波長域を6チヤネ
ルのマルチバンドに分割する。第10図におい
て、1001,1002及び1004は第3図C
の特性をもち中心波長がそれぞれλ=600、500
及び550nmのダイクロイツクミラー、また10
03,1005は第3図Bの特性でλ=420、
460nmに中心反射帯をもつダイクロイツクミラ
ーである。1006〜1011は選択された各バ
ンドの帯域幅を整形するための干渉フイルタであ
り、それぞれ順に中心波長が420、460、500、
550、600及び650nmの光を通過させる。第10
図のダイクロイツクミラー1001〜1005の
特性を第11図イ〜ホに干渉フイルタ1006〜
1011の特性を第12図ヘ〜ルに、光線101
9〜1024の分光特性を第13図オ〜レに示
す。たとえば第10図で、コリメートされた白色
光線1018を入射させると、ミラー1001〜
1005によつて6チヤネルに分光された光線は
それぞれの干渉フイルタ1006〜1011を経
て最終的に光線1019〜1024となつて各チ
ヤネルの光電変換器1012〜1017で受光さ
れ、電気信号に変換される。このときの出力光の
波長選択特性はそれぞれの光路上に置かれたダイ
クロイツクミラー及び干渉フイルタの合成特性か
ら得られ、最終的には第13図オ〜レに示すよう
な6チヤネルのマルチバンドに分解される。第1
0図はさきの第8図よりも簡略な構造をもち、長
波長帯での波長分解能がやゝ粗い特性となるが、
やはり航空写真の解析や色彩データ分析用のマル
チ色分解系として有用である。
FIG. 10 shows yet another embodiment. Based on the same principle as shown in FIG. 5, five dichroic mirrors with different characteristics are combined to divide the visible wavelength range into six multi-band channels. In Figure 10, 1001, 1002 and 1004 are Figure 3C
The center wavelengths are λ 0 = 600 and 500, respectively.
and 550nm dichroic mirror, and 10
03,1005 is the characteristic of Figure 3B, λ 0 = 420,
It is a dichroic mirror with a central reflection band at 460nm. 1006 to 1011 are interference filters for shaping the bandwidth of each selected band, and the center wavelengths are 420, 460, 500,
Passes light of 550, 600 and 650 nm. 10th
The characteristics of the dichroic mirrors 1001 to 1005 shown in the figure are shown in FIG.
The characteristics of ray 1011 are shown in Figure 12.
The spectral characteristics of samples 9 to 1024 are shown in FIG. For example, in FIG. 10, when collimated white light 1018 is incident, mirrors 1001-
The light beams separated into six channels by 1005 pass through respective interference filters 1006 to 1011, and finally become light beams 1019 to 1024, which are received by photoelectric converters 1012 to 1017 of each channel and converted into electrical signals. . The wavelength selection characteristics of the output light at this time are obtained from the composite characteristics of the dichroic mirror and interference filter placed on each optical path, and the final result is a 6-channel multiband as shown in Figure 13. It is decomposed into 1st
Figure 0 has a simpler structure than the previous Figure 8, and the wavelength resolution in the long wavelength band is somewhat rough.
After all, it is useful as a multi-color separation system for analyzing aerial photographs and color data analysis.

以上の実施例ではいずれも第3図のタイプB,
Cを使用したものについて説明したが、タイプA
のものも用途によつては使用可能であることはも
ちろんである。
In the above embodiments, type B in Fig. 3,
I explained about the type using C, but type A
Of course, these can also be used depending on the purpose.

以上第5図、第8図あるいは第10図の実施例
に示すように、本発明は光の損失が少い非金属多
層膜フイルタのみを分光すべきチヤネル数をNと
したときN−1枚組合せてNチヤネルのマルチバ
ンドの分光を行うために、出力光線の減衰が少く
信号対雑音比の高い光電変換特性が得られる。さ
らに構成が簡素でコンパクトであり、かつ各ミラ
ーは45゜方向の固定配置により殆んど無調整で正
しく光軸を合わせることができるので、製作が容
易で安価な上に品質が安定などの特長が得られ
る。このような光の利用効率の高い色分解系は分
割チヤネル数が多い場合に有効で特に分割チヤネ
ル数が4以上の場合に低損失、小型軽量の多色分
解光学系が得られる。
As shown in the embodiments of FIG. 5, FIG. 8, or FIG. Since N-channel multiband spectroscopy is performed in combination, photoelectric conversion characteristics with low output light attenuation and high signal-to-noise ratio can be obtained. Furthermore, the configuration is simple and compact, and each mirror is fixedly arranged in a 45° direction, so the optical axis can be aligned correctly with almost no adjustment, making it easy to manufacture, inexpensive, and stable in quality. is obtained. Such a color separation system with high light utilization efficiency is effective when the number of divided channels is large, and especially when the number of divided channels is 4 or more, a small and lightweight multicolor separation optical system with low loss can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは従来の3色分解系の構成図、同ロは
それに使用されるダイクロイツクミラーの分光特
性図、第2図は従来のマルチスペクトラム分解系
の構成図、第3図A,B,Cは非金属多層膜ダイ
クロイツクミラーの3つのタイプの特性図、第4
図は第3図B′の特性をもち、中心波長λの異な
る2つの多層膜フイルタの特性図、第5図は本発
明の第1の実施例における多色分解光学系を示す
構成図、第6図イ〜トは第5図におけるダイクロ
イツクミラーの透過率特性図、第7図は第5図に
おける各光電変換器への入射光強度特性図、第8
図は本発明の第2の実施例を示す構成図、第9図
は第8図中の各干渉フイルタの透過率特性図、第
10図は本発明の第3の実施例を示す構成図、第
11図は第10図の各ダイクロイツクミラーの特
性図、第12図は第10図の各干渉フイルタの特
性図、第13図は第10図の各光電変換器への入
射光の特性図である。 501〜507,801〜807,1001〜
1005……ダイクロイツクミラー、508〜5
15,808〜815,1012〜1017……
光電変換器、517〜525,817〜825,
1018〜1024……光線、816……全反射
ミラー、828〜835,1006〜1011…
…干渉フイルタ。
Figure 1A is a block diagram of a conventional three-color separation system, Figure 2 is a diagram of the spectral characteristics of the dichroic mirror used in it, Figure 2 is a block diagram of a conventional multispectral separation system, and Figures 3A and B , C are characteristic diagrams of three types of nonmetallic multilayer dichroic mirrors, 4th
The figure is a characteristic diagram of two multilayer film filters having the characteristics shown in FIG. 3B' and having different center wavelengths λ 0 , and FIG. 5 is a configuration diagram showing a multicolor separation optical system in the first embodiment of the present invention. Figures 6-8 are transmittance characteristic diagrams of the dichroic mirror in Figure 5, Figure 7 is a characteristic diagram of incident light intensity to each photoelectric converter in Figure 5,
9 is a block diagram showing a second embodiment of the present invention, FIG. 9 is a transmittance characteristic diagram of each interference filter in FIG. 8, and FIG. 10 is a block diagram showing a third embodiment of the present invention. Figure 11 is a characteristic diagram of each dichroic mirror in Figure 10, Figure 12 is a characteristic diagram of each interference filter in Figure 10, and Figure 13 is a characteristic diagram of incident light to each photoelectric converter in Figure 10. It is. 501~507,801~807,1001~
1005...Dichroitsch mirror, 508~5
15,808~815,1012~1017...
Photoelectric converter, 517-525, 817-825,
1018-1024...Light ray, 816...Total reflection mirror, 828-835, 1006-1011...
...interference filter.

Claims (1)

【特許請求の範囲】[Claims] 1 N−1枚(N4)の多層膜干渉フイルタを
有し、この多層膜干渉フイルタは入射光が前記多
層膜干渉フイルタを透過または反射して進行し相
異なるN本の光線群に分割されるように配され、
前記N−1枚の多層膜干渉フイルタの少なくとも
1枚は主反射帯とその両側または片側に副反射帯
を有しており、前記各光線群を得る光路上に位置
する多層膜干渉フイルタの主、副反射帯または透
過帯を組合せて成る合成分光特性がNチヤネルの
帯域に分割された波長選択特性をもつことを特徴
とする多色分解光学系。
1 has N-1 (N4) multilayer film interference filters, and in this multilayer film interference filter, incident light passes through or reflects the multilayer film interference filters and travels, and is divided into N different groups of light rays. arranged like this,
At least one of the N-1 multilayer interference filters has a main reflection band and a sub reflection band on both sides or one side of the main reflection band, and the main multilayer interference filter located on the optical path for obtaining each group of rays has a main reflection band and a sub reflection band on both sides or one side thereof. , a multicolor separation optical system characterized in that a composite spectral characteristic formed by combining a sub-reflection band or a transmission band has a wavelength selection characteristic divided into N-channel bands.
JP2191577A 1977-02-28 1977-02-28 Multicolor separation optical system Granted JPS53107383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191577A JPS53107383A (en) 1977-02-28 1977-02-28 Multicolor separation optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191577A JPS53107383A (en) 1977-02-28 1977-02-28 Multicolor separation optical system

Publications (2)

Publication Number Publication Date
JPS53107383A JPS53107383A (en) 1978-09-19
JPS6119962B2 true JPS6119962B2 (en) 1986-05-20

Family

ID=12068370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191577A Granted JPS53107383A (en) 1977-02-28 1977-02-28 Multicolor separation optical system

Country Status (1)

Country Link
JP (1) JPS53107383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961183B2 (en) * 2003-03-26 2005-11-01 Olympus Corporation Optical filter and optical instrument
JP2010517043A (en) * 2007-01-29 2010-05-20 カンブリアス,インコーポレイテッド Chemical analyzers for industrial process control

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562411A (en) * 1978-11-06 1980-05-10 Canon Inc Optical system
US4373782A (en) * 1980-06-03 1983-02-15 Optical Coating Laboratory, Inc. Non-polarizing thin film edge filter
JPS5989224U (en) * 1982-12-09 1984-06-16 株式会社東芝 spectroscopic optical device
JPS59170734A (en) * 1983-03-16 1984-09-27 Matsushita Electric Ind Co Ltd Multicolor resolving system
JPS607328A (en) * 1983-06-27 1985-01-16 Fujitsu Ltd Circuit for detecting synthesis and splitting of light beams
FR2699677B1 (en) * 1992-12-22 1995-03-03 Bertin & Cie Method and device for determining the color of a transparent, diffusing and absorbing object, such as in particular a tooth.
JPH07244318A (en) * 1994-03-07 1995-09-19 Fujitsu Ltd Image acquiring device
FR2871325B1 (en) * 2004-06-07 2006-09-15 Lumiere Technology Sa MULTISPECTRAL SCANNER EXTENDED CHROMATIC OR GAMUT EXTENDED, IN PARTICULAR SCANNER A FLAT MONOPASSE
US7372039B2 (en) * 2005-12-20 2008-05-13 Ecolab Inc. Near UV absorption spectrometer and method for using the same
WO2017221203A1 (en) 2016-06-22 2017-12-28 Xpectraltek, Lda Spectral camera having interchangeable filters
US11644680B2 (en) 2018-10-12 2023-05-09 Hitachi High-Tech Corporation Dichroic mirror array and light detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961183B2 (en) * 2003-03-26 2005-11-01 Olympus Corporation Optical filter and optical instrument
JP2010517043A (en) * 2007-01-29 2010-05-20 カンブリアス,インコーポレイテッド Chemical analyzers for industrial process control

Also Published As

Publication number Publication date
JPS53107383A (en) 1978-09-19

Similar Documents

Publication Publication Date Title
US7394543B2 (en) Spectral selection and image conveyance using micro filters and optical fibers
CA2560327C (en) Planar waveguide reflective diffraction grating
EP1495293B1 (en) Imaging spectrometer
US7382498B1 (en) Two-channel imaging spectrometer utilizing shared objective, collimating, and imaging optics
JPS6119962B2 (en)
Taylor et al. Seeing-limited radial velocity field mapping of extended emission line sources using a new imaging Fabry–Perot system
WO1994024527A1 (en) Spectrograph with multiplexing of different wavelength regions onto a single detector array
Dekker et al. ESO's multimode instrument for the Nasmyth focus of the 3.5 m new technology telescope
EP3218681B1 (en) Spatially resolved gas detection
CN109489817A (en) A kind of optical system of the airborne Difference Absorption imaging spectrometer of big visual field wide spectrum
US5099359A (en) Composite optical interference filter for use in film scanner system
CN108444600B (en) High-flux wide-spectrum miniaturized imaging spectrometer
CN105547478B (en) Imaging spectrometer based on etched diffraction grating
CN109798979A (en) The semiconductor technology compatibility high light spectrum image-forming chip design method of wide spectral range
CN109186763B (en) Polarization hyperspectral imaging device based on immersion grating
US5708504A (en) Interfering imaging spectrometer
CN108896177B (en) Multichannel multiplexing spectral image acquisition method
CN106772748A (en) A kind of rank for ultra-optical spectrum imaging system gets over optical filter
JPH1042101A (en) Color image reader
CN113820013A (en) Transmission type super-structure surface multispectral imager based on Fabry-Perot cavity
US11821791B1 (en) Techniques for reducing optical ghosts in a gratings-based optical spectrum analyzer (OSA)
CN211602167U (en) Novel three-grating scanning spectrometer
JPS6212846B2 (en)
Jockers A Two-channel focal reducer for small (diameter≥ 1 M) F/8 telescopes
CN220871902U (en) Double-channel seamless spectrometer