JPS61198590A - Self-temperature controlling heater - Google Patents

Self-temperature controlling heater

Info

Publication number
JPS61198590A
JPS61198590A JP3827685A JP3827685A JPS61198590A JP S61198590 A JPS61198590 A JP S61198590A JP 3827685 A JP3827685 A JP 3827685A JP 3827685 A JP3827685 A JP 3827685A JP S61198590 A JPS61198590 A JP S61198590A
Authority
JP
Japan
Prior art keywords
self
resistor
electrodes
heater
temperature controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3827685A
Other languages
Japanese (ja)
Inventor
嶋崎 行雄
八田 敏正
駒木根 力夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3827685A priority Critical patent/JPS61198590A/en
Publication of JPS61198590A publication Critical patent/JPS61198590A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、正の抵抗一温度係数(PTC>特性を有する
自己温度制御性ヒ―りに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a self-temperature-controllable heel having a positive resistance-temperature coefficient (PTC> characteristic).

[従来の技術] 結晶性プラスチックスに金属粉末、カーボンブラック、
グラフIイト等の導電性付与剤を1種または2種以上分
散させてなるPTC特性を有する抵抗体を一対の電極間
に設けてなる自己温度制御性ヒータは、省エネルギー型
ヒータとして応用分野が広がりつつある。
[Conventional technology] Crystalline plastics, metal powder, carbon black,
Self-temperature-controlling heaters, in which a resistor with PTC characteristics made by dispersing one or more types of conductivity-imparting agents such as Graph Iite, are provided between a pair of electrodes have a wide range of applications as energy-saving heaters. It's coming.

[発明が解決しようとする問題点] しかし、この種のヒータは発熱部分がプラスチックで構
成されているため、発熱量に−・定の限界があり、−・
般にニクロム線等の金属製ヒータに比較して発熱量が少
ない。また、供給する電圧を高くすると発熱体の寿命が
著しく低下する傾向がある。
[Problems to be solved by the invention] However, since the heat generating part of this type of heater is made of plastic, there is a certain limit to the amount of heat generated.
Generally, it generates less heat than metal heaters such as nichrome wire. Furthermore, when the supplied voltage is increased, the life of the heating element tends to be significantly reduced.

本発明は、上記に基づいてなされたものであり、発熱量
が大きくまた供給電圧を高くしても出力が長期にわたっ
て安定した自己温度制御性ヒータの提供を目的とするも
のである。
The present invention has been made based on the above, and an object of the present invention is to provide a self-temperature-controllable heater that generates a large amount of heat and has a stable output over a long period of time even when the supply voltage is increased.

r問題点を解決するための手段] 本発明の自己温度制御性ヒータは、電極間に、□結晶・
性プラスチックスに導電性付与剤を分散してなる正温度
係数の抵抗体を設けてなり、上記電極は発熱性を有する
高抵抗導体により構成したことを特徴とするものである
Means for Solving Problems] The self-temperature control heater of the present invention has □crystals between the electrodes.
The present invention is characterized in that it is provided with a resistor having a positive temperature coefficient, which is made by dispersing a conductivity-imparting agent in a plastic material, and that the electrode is constituted by a high-resistance conductor having heat generation properties.

本発明において、PTC特性を有する抵抗体は、結晶性
プラスチックに導電性付与剤を分散した組成物から構成
される装 結晶性プラスチックスとしては、ポリエチレン。
In the present invention, the resistor having PTC characteristics is composed of a composition in which a conductivity imparting agent is dispersed in a crystalline plastic, and the crystallized plastic is polyethylene.

ポリプロピレン、ポリふっ化ビニリデン、塩素化ポリエ
チレン、ポリアミドおよびこれらの共重合体が含まれる
がこれらに限定されるものではない。
These include, but are not limited to, polypropylene, polyvinylidene fluoride, chlorinated polyethylene, polyamide, and copolymers thereof.

また、導電性材料としては、カーボンブラック。Carbon black is also used as a conductive material.

グラファイト、有機ポリマでグラフトしたカーボンブラ
ック、金属粉等があげられる。
Examples include graphite, carbon black grafted with organic polymers, and metal powder.

この他に必要に応じて安定剤、架橋助剤、H燃剤側■助
剤等を含有させてもよい。
In addition, stabilizers, crosslinking aids, H fuel side aids, etc. may be included as required.

本発明においては、電極は発熱性を有する高抵抗導体に
より構成される。高抵抗導体を形成する材料としてはニ
クロム、ニクロム−クロム台金。
In the present invention, the electrode is made of a high-resistance conductor that generates heat. Nichrome and nichrome-chrome base metal are used as materials for forming high-resistance conductors.

鉄−クロム合金、カンタル等があげられ、また、白金の
ような導電性金属でも薄膜にして使用することができる
。高抵抗導体の形状はフィルム、ネット状、撚線などが
考えられるが、放熱性が良いフィルム状が好ましい。
Examples include iron-chromium alloy, kanthal, etc. Conductive metals such as platinum can also be used in the form of a thin film. The shape of the high resistance conductor may be a film, a net shape, a stranded wire, etc., but a film shape with good heat dissipation is preferred.

電極間に抵抗体を設番ノだ外周には必要に応じ絶縁体が
設けられる。絶縁体としてポリエチレン。
A resistor is provided between the electrodes, and an insulator is provided on the outer periphery as required. Polyethylene as an insulator.

シリコーンゴム、ポリイミド、エチレン−プロピレンゴ
ム等が使用され、これらにアルミナ、ブッ化硼素、シリ
カ等の高熱伝導性粉末を添加したものであってもよい。
Silicone rubber, polyimide, ethylene-propylene rubber, etc. are used, and highly thermally conductive powders such as alumina, boron fluoride, and silica may be added to these.

[実施例] 第1図に示すように、抵抗体1の上下面に高抵抗導体電
極2.3を設【ノ、外周に絶縁体4を被覆したヒータを
作成した。
[Example] As shown in FIG. 1, a heater was prepared in which high resistance conductor electrodes 2.3 were provided on the upper and lower surfaces of a resistor 1, and the outer periphery was coated with an insulator 4.

なお、5,6は電極2,3に接続された給電線であり、
その電極2.3への接続位置を図のように反対側とする
ことにより抵抗体1への印加電圧を均一・にでき、均一
な発熱となる。
Note that 5 and 6 are power supply lines connected to the electrodes 2 and 3,
By connecting the electrode 2.3 to the opposite side as shown in the figure, the voltage applied to the resistor 1 can be made uniform, resulting in uniform heat generation.

高抵抗導電体(N 1−Cr、80%−20%合金合金
膜(厚さ:20μm1幅: 1 cm、長さ21m)か
らなる電極2.3間に次のようにして作成した抵抗体1
(厚さ:5mm、幅l cm、長さ21m)をはさみ、
180℃で10分間加熱加圧して化学架橋さけた後、O
,Bmm厚さの低密度ポリエチレン(!!!度:0.9
20.メルトインデックス:1)からなる絶縁体4を被
覆した。
A resistor 1 was prepared between electrodes 2 and 3 made of a high resistance conductor (N1-Cr, 80%-20% alloy film (thickness: 20 μm, width: 1 cm, length 21 m) as follows.
(thickness: 5 mm, width 1 cm, length 21 m) with scissors,
After heating and pressurizing at 180°C for 10 minutes to avoid chemical crosslinking, O
, Bmm thick low density polyethylene (!!! degree: 0.9
20. An insulator 4 made of melt index: 1) was coated.

(抵抗体の作成) (1)中密度ポリエチレン   100重量部(密度:
0.935.メルトインデックス:1)(′2J  カ
ーボンブラック     25重量部(VuIlcan
XC−72) (3)トリメチロールプロパントリメタクリレート2重
量部 (414,4−−チオビス(6−タージヤリブヂルー3
−メチルフェノール)  0.2重量部(5)  ジク
ミルパーオキサイド  2.5重量部の配合割合でもっ
てバンバリーミキサで均一になるまで混練した後、押出
機で厚さ5#lII+1幅ICll1に押出成形してシ
ート化した。
(Creation of resistor) (1) Medium density polyethylene 100 parts by weight (density:
0.935. Melt index: 1) ('2J Carbon black 25 parts by weight (VuIlcan)
XC-72) (3) 2 parts by weight of trimethylolpropane trimethacrylate
- Methyl phenol) 0.2 parts by weight (5) Dicumyl peroxide Mixed at a mixing ratio of 2.5 parts by weight with a Banbury mixer until uniform, then extruded with an extruder to a thickness of 5 #lII + 1 width ICll1. It was made into a sheet.

比較例 第2図のように、電極22.23間に抵抗体21を押出
被覆し、外周に絶縁体24を押出被覆したヒータを作成
した。
Comparative Example As shown in FIG. 2, a heater was produced in which a resistor 21 was extruded and coated between electrodes 22 and 23, and an insulator 24 was extruded and coated around the outer periphery.

電極22.23は、外径0.26m+のニッケルメッキ
銅線を19本撚り合わせたものを使用し、間隔は10I
lll!Iにした。
The electrodes 22 and 23 are made of 19 twisted nickel-plated copper wires with an outer diameter of 0.26 m+, and the spacing is 10 I.
llll! I made it I.

電極22.23間に次の組成の抵抗体を厚さ5Mに押出
成型した後、20Mradの電子線を照射して架橋した
。次いで、O,E3mm厚さの低密度ポリエチレン(密
度:0.920.メルトインデックス:1)からなる絶
縁体24を被覆した。
A resistor having the following composition was extruded between the electrodes 22 and 23 to a thickness of 5M, and then crosslinked by irradiation with an electron beam of 20 Mrad. Next, an insulator 24 made of low density polyethylene (density: 0.920, melt index: 1) having a thickness of 3 mm was coated.

(抵抗体の組成) (1)中密度ポリエチレン   100重量部(密度:
0.935.メルトインデックス:1)(a カーボン
ブラック     25重量部(V・u l canX
C−72) +3)  トリメヂロルールプロパントリメタクリレー
、                2重量部(4)4
.4′−チオビス(6−ターシャリブチル−3−メチル
フェノール) 0.2重量部の配合割合でもってバンバ
リーミキサで均一になるまで混練した後ペレット化した
(Composition of resistor) (1) Medium density polyethylene 100 parts by weight (density:
0.935. Melt index: 1) (a carbon black 25 parts by weight (V・ul canX
C-72) +3) Trimedyloryl propane trimethacrylate, 2 parts by weight (4) 4
.. 4'-thiobis(6-tert-butyl-3-methylphenol) The mixture was kneaded at a blending ratio of 0.2 parts by weight in a Banbury mixer until uniform, and then pelletized.

実施例および比較例で作成したヒータの特性についての
評価結果は第1表の通りである。
Table 1 shows the evaluation results regarding the characteristics of the heaters prepared in Examples and Comparative Examples.

第  1  表 特性の評価は次に基づいて行った。Table 1 Characteristics were evaluated based on the following.

(1)  出力の測定は、10℃に温度調整した恒温槽
中に長さ1mの試料を入れて一定に保温した後、第3図
のJ:うに配線した測定装冒に交流電圧を課電した時の
電流値を測定して次式により求めた。
(1) To measure the output, place a 1 m long sample in a constant temperature bath adjusted to 10°C and keep it at a constant temperature, then apply an AC voltage to the measurement equipment wired as shown in Figure 3. The current value at that time was measured and calculated using the following formula.

出カー電圧×電流 なお、第3図において30は試料、31は電流計。Output voltage x current In addition, in FIG. 3, 30 is a sample, and 31 is an ammeter.

32は電圧計、33は電源である。32 is a voltmeter, and 33 is a power source.

(2)課電劣化後の抵抗変化率は、課電電圧を実用電圧
(100V)の5倍の500Vで、常温雰囲気中で10
00時間連続課電した後、電極間の抵抗値を測定し、そ
の値の初期値に対する変化率を次式により求めたもので
ある。
(2) The resistance change rate after deterioration due to charging is 10% at room temperature at an applied voltage of 500V, which is 5 times the practical voltage (100V).
After continuously applying electricity for 00 hours, the resistance value between the electrodes was measured, and the rate of change of that value with respect to the initial value was determined using the following equation.

抵抗変化率(%) −[R(look) /R(0) 
、x io。
Resistance change rate (%) - [R (look) /R (0)
, x io.

ここで、1λ(O):初期の抵抗値 R(1000): 1000時間連続課電劣化後の抵抗
値 である。
Here, 1λ(O): initial resistance value R(1000): resistance value after 1000 hours of continuous electrification deterioration.

第1表から明らかな通り、本発明の実施例では出力にお
いて比較例より4侶以−に大きく、また促進課電劣化後
の特性においても非常に安定していることが確かめられ
た。
As is clear from Table 1, it was confirmed that the output of the example of the present invention was four times higher than that of the comparative example, and that the characteristics were also very stable after accelerated charging deterioration.

[発明の効果] 以上説明してぎた通り、本発明によれば出力が大ぎく、
しかも長期課電劣化安定性に優れた自己温度制御性ヒー
タを得られることになる。
[Effect of the invention] As explained above, according to the present invention, the output is large,
Furthermore, it is possible to obtain a self-temperature-controllable heater with excellent long-term electrification deterioration stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の横断面説明図。 第2図は比較例で使用したヒータの横断面説明図。 第3図は出力測定の配線図である。 1・・・抵 抗 体、 2.3・・・電   極。 代理人 弁理士 佐 藤 不二雄 ACり FIG. 1 is a cross-sectional explanatory diagram of one embodiment of the present invention. FIG. 2 is a cross-sectional explanatory diagram of a heater used in a comparative example. FIG. 3 is a wiring diagram for output measurement. 1...Resistor, 2.3...Electric pole. Agent: Patent Attorney Fujio Sato AC Ri

Claims (1)

【特許請求の範囲】[Claims] (1)電極間に、結晶性プラスチックスに導電性付与剤
を分散してなる正温度係数の抵抗体を設けてなり、上記
電極は発熱性を有する高抵抗導体により構成したことを
特徴とする自己温度制御性ヒータ。
(1) A resistor with a positive temperature coefficient, which is made by dispersing a conductivity imparting agent in crystalline plastic, is provided between the electrodes, and the electrode is made of a high-resistance conductor having heat generation properties. Self-temperature control heater.
JP3827685A 1985-02-27 1985-02-27 Self-temperature controlling heater Pending JPS61198590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3827685A JPS61198590A (en) 1985-02-27 1985-02-27 Self-temperature controlling heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3827685A JPS61198590A (en) 1985-02-27 1985-02-27 Self-temperature controlling heater

Publications (1)

Publication Number Publication Date
JPS61198590A true JPS61198590A (en) 1986-09-02

Family

ID=12520784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3827685A Pending JPS61198590A (en) 1985-02-27 1985-02-27 Self-temperature controlling heater

Country Status (1)

Country Link
JP (1) JPS61198590A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824793A (en) * 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
US4829017A (en) * 1986-09-25 1989-05-09 Texas Instruments Incorporated Method for lubricating a high capacity dram cell
US5064777A (en) * 1990-06-28 1991-11-12 International Business Machines Corporation Fabrication method for a double trench memory cell device
US5300450A (en) * 1988-06-01 1994-04-05 Texas Instruments Incorporated High performance composed pillar DRAM cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176647A (en) * 1974-09-27 1976-07-02 Raychem Corp
JPS5287682A (en) * 1975-09-17 1977-07-21 Raychem Corp Heattrestorable article
JPS59226493A (en) * 1983-06-07 1984-12-19 日立電線株式会社 Self-temperature controllable heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176647A (en) * 1974-09-27 1976-07-02 Raychem Corp
JPS5287682A (en) * 1975-09-17 1977-07-21 Raychem Corp Heattrestorable article
JPS59226493A (en) * 1983-06-07 1984-12-19 日立電線株式会社 Self-temperature controllable heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824793A (en) * 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
US4829017A (en) * 1986-09-25 1989-05-09 Texas Instruments Incorporated Method for lubricating a high capacity dram cell
US5300450A (en) * 1988-06-01 1994-04-05 Texas Instruments Incorporated High performance composed pillar DRAM cell
US5064777A (en) * 1990-06-28 1991-11-12 International Business Machines Corporation Fabrication method for a double trench memory cell device

Similar Documents

Publication Publication Date Title
US4388607A (en) Conductive polymer compositions, and to devices comprising such compositions
US4910389A (en) Conductive polymer compositions
FI80820B (en) Self-regulating electrical heating device
EP0219678B1 (en) Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
US4382024A (en) Electrically conductive rubber
EP0123540A2 (en) Conductive polymers and devices containing them
JPS61198590A (en) Self-temperature controlling heater
KR100224945B1 (en) Conductive polymer composition
KR0151677B1 (en) Heating treatment method of conductivity heating element
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JPS61285686A (en) Self-temperature controlling heater
JPH0130264B2 (en)
JPS59226493A (en) Self-temperature controllable heater
CN115244631A (en) PPTC heaters and materials with stable power and self-limiting characteristics
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JPH03187201A (en) Thermosensible electric resistance composition body
JP2638862B2 (en) Positive low temperature coefficient heating element
JPS5963688A (en) Panel heater and method of producing same
GB2033707A (en) Conductive polymer compositions of an electrical device
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPS58164187A (en) Self-temperature controllable heater
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JPH0359985A (en) Heating body with positive resistance temperature coefficient
JPH0359984A (en) Heating body with positive resistance temperature coefficient
JPH0359986A (en) Heating body with positive resistance temperature coefficient