JPS63146402A - Positive resistance-temperature coefficient resistor - Google Patents

Positive resistance-temperature coefficient resistor

Info

Publication number
JPS63146402A
JPS63146402A JP29227986A JP29227986A JPS63146402A JP S63146402 A JPS63146402 A JP S63146402A JP 29227986 A JP29227986 A JP 29227986A JP 29227986 A JP29227986 A JP 29227986A JP S63146402 A JPS63146402 A JP S63146402A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive resistance
resistance temperature
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29227986A
Other languages
Japanese (ja)
Inventor
誠之 寺門
和典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29227986A priority Critical patent/JPS63146402A/en
Publication of JPS63146402A publication Critical patent/JPS63146402A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発熱体または温度センサを構成する際に使用
する正抵抗温度係数抵抗体の組成物に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a composition of a positive resistance temperature coefficient resistor used in constructing a heating element or a temperature sensor.

(従来の技術) ポリエチレン、エチレン酢酸ビニル共重合体。(Conventional technology) Polyethylene, ethylene vinyl acetate copolymer.

アイオノマ、ポリプロピレン、ポリ弗化ビニリデン等の
結晶性重合体に、カーボンブラック等の導電性微粉末を
分散した組成物は、その融点近くの温度で結晶部分が無
定形化する際の急激な物性変化によって抵抗値が急激に
増大することが知られている。このために、その特性を
応用して、所定の温度に達すると電力が急激に低下し、
温度の暴走を発熱体自身が防止するとともに、熱負荷の
変動に応じて温度を一定に保つ方向に電力が自動的に制
御される、いわゆる自己制御発熱体としての検討がなさ
れてきた。
Compositions in which conductive fine powders such as carbon black are dispersed in crystalline polymers such as ionomers, polypropylene, and polyvinylidene fluoride have rapid physical property changes when the crystalline portions become amorphous at temperatures close to their melting points. It is known that the resistance value increases rapidly. For this reason, by applying its characteristics, the power decreases rapidly when a predetermined temperature is reached,
Studies have been conducted on so-called self-control heating elements, in which the heating element itself prevents temperature runaway and automatically controls power to maintain a constant temperature in response to fluctuations in heat load.

第4図ないし第6図により従来の正抵抗温度係数発熱体
を説明する。第4図ないし第6図は従来の正抵抗温度係
数発熱体の斜視図で、同図において、4は電気絶縁性と
熱伝導性に優れたセラミック基板、5a及び5bは電極
、6は結晶性重合体とカーボンブラックを主成分とする
正抵抗温度係数抵抗体、7は電気絶縁フィルム、8は金
属製均熱板である。
A conventional positive resistance temperature coefficient heating element will be explained with reference to FIGS. 4 to 6. Figures 4 to 6 are perspective views of conventional positive resistance temperature coefficient heating elements, in which 4 is a ceramic substrate with excellent electrical insulation and thermal conductivity, 5a and 5b are electrodes, and 6 is a crystalline A positive resistance temperature coefficient resistor whose main components are a polymer and carbon black, 7 is an electrical insulating film, and 8 is a metal heat-uniforming plate.

第4図は1例えば、特公昭55−40161号公報に示
されている従来技術に基づく代表的な正抵抗温度係数発
熱体の例で、ここに使われているセラミック基板はセラ
ミック係材料の焼結体からなるもので、一般にセラミッ
ク系の焼結体は、電気絶縁体でありながら極めて良好な
熱伝導特性を示すため、正抵抗温度係数抵抗体のほぼ全
面において一様な減度分布を維持する能力が高く、これ
に伴って正常な抵抗値分布と電位分布による安定した発
熱状態を保持することができ、高出力の正抵抗温度係数
発熱体を構成する場合に非常に有効であった。
Figure 4 shows an example of a typical positive resistance temperature coefficient heating element based on the conventional technology shown in Japanese Patent Publication No. 55-40161, and the ceramic substrate used here is made of ceramic material. Ceramic sintered bodies are generally electrical insulators but exhibit extremely good thermal conductivity, so they maintain a uniform decrement distribution over almost the entire surface of the positive resistance temperature coefficient resistor. This makes it possible to maintain a stable heat generation state due to normal resistance value distribution and potential distribution, making it very effective when constructing a high-output positive resistance temperature coefficient heating element.

しかし、このようなアルミナ焼結体等のセラミック系材
料は、大面積の発熱体または長尺の発熱体を構成する場
合には、製造技術的にも強度的にも実用に供し得るもの
はできなかった。
However, when constructing a large-area heating element or a long heating element, ceramic materials such as alumina sintered bodies cannot be used for practical purposes in terms of manufacturing technology and strength. There wasn't.

そこで、このセラミック系の基板材料に代わるものとし
て、例えば、特公昭57−43995号公報に示されて
いる第5図に示すような電気絶縁フィルム7と金属製均
熱板8からなる複合材料基板が用いられてきたが、電気
絶縁フィルム7の材料である樹脂の熱伝導率がセラミッ
クに比べて約2桁程低いため、複合材料の熱伝導率がセ
ラミックのそれを上回ることはなかった。従って、これ
らの発熱体の出力が不充分であるか、または発熱体の装
架面積が必要以上に大きくなり、誘導による漏れ電流が
危険な水準に達したりして用途が極めて限定されていた
Therefore, as an alternative to this ceramic substrate material, for example, a composite material substrate consisting of an electrically insulating film 7 and a metal heat-uniforming plate 8 as shown in FIG. 5 shown in Japanese Patent Publication No. 57-43995 However, since the thermal conductivity of the resin that is the material of the electrical insulating film 7 is about two orders of magnitude lower than that of ceramic, the thermal conductivity of the composite material has never exceeded that of ceramic. Therefore, the output of these heating elements is insufficient, or the mounting area of the heating element becomes larger than necessary, and the leakage current due to induction reaches a dangerous level, so that their applications are extremely limited.

そこで、正抵抗温度係数発熱体の構造に着目して、例え
ば、特開昭60−28195号公報、または第6図に示
すように、一対の電極5a、5bの間の距離を互いに接
近させることにより、基板の均熱効果に依存しないで、
正抵抗温度係数抵抗体6自身の熱の拡散能力を大幅に高
める方法が検討されるようになり、応用範囲の広い高出
力の正抵抗温度係数発熱体を実現する道が開かれた。
Therefore, focusing on the structure of the positive resistance temperature coefficient heating element, for example, as shown in Japanese Patent Application Laid-Open No. 60-28195 or as shown in FIG. Therefore, it does not depend on the uniform heating effect of the board,
A method of greatly increasing the heat dispersion ability of the positive resistance temperature coefficient resistor 6 itself has been studied, opening the way to realizing a high output positive resistance temperature coefficient heating element with a wide range of applications.

(発明が解決しようとする問題点) 第6図に示したような正抵抗温度係数発熱体は。(Problem that the invention attempts to solve) A positive resistance temperature coefficient heating element as shown in FIG.

高出力を発生するための構造としては非常に優れている
が、カーボンブラック等の比較的低抵抗の導電性微粉末
を分散することによって構成される正抵抗温度係数抵抗
体の耐電圧破壊特性や、非常に高抵抗が要求される体積
固有抵抗値の領域を考慮すると、解決しなければならな
いIIMが山積していた。まず、電極間隔が非常に接近
した正抵抗温度係数発熱体を構成するためには、耐電圧
破壊特性に優れた導電性微粉末を選定するだけでなく。
Although it has an excellent structure for generating high output, the withstand voltage breakdown characteristics of a positive resistance temperature coefficient resistor constructed by dispersing relatively low-resistance conductive fine powder such as carbon black, etc. Considering the area of volume resistivity that requires extremely high resistance, there were a large number of IIM issues that needed to be solved. First, in order to construct a positive resistance temperature coefficient heating element with very close electrode spacing, it is necessary not only to select a conductive fine powder with excellent voltage breakdown characteristics.

充分な抵抗温度特性を得ることによって、正抵抗温度特
性のピーク抵抗値を越えて暴走することのないように配
慮することが非常に重要な課題となった。また、体積固
有抵抗値も従来の10’〜102Ω1に対して、103
〜lOsΩ個の半導体領域が必要となり、導電性微粉末
の組成比を大幅に低減しなければならなくなった。その
結果、導電性微粉末同士の接触点の数も激減し、抵抗温
度特性が結晶性重合体の融点のみによって制御されるだ
けではなく、より低温域の線膨張係数によると思われる
不安定な成分をより多く含むようになった。さらに。
It has become a very important issue to obtain sufficient resistance-temperature characteristics so that the resistance does not go out of control beyond the peak resistance value of the positive resistance-temperature characteristics. In addition, the volume resistivity value is 103Ω, compared to the conventional 10’ to 102Ω1.
~lOsΩ semiconductor regions were required, and the composition ratio of the conductive fine powder had to be significantly reduced. As a result, the number of contact points between conductive fine powders has been drastically reduced, and the resistance-temperature characteristics are not only controlled by the melting point of the crystalline polymer, but also unstable, which is thought to be due to the coefficient of linear expansion at lower temperatures. Contains more ingredients. moreover.

経時変化において、結晶性重合体の結晶成長や導電性微
粉末の凝集によって、抵抗値や抵抗温度係数の大幅な変
化が生じるようになった0発熱体として評価しても、例
えば、10’Ω個レベルの高い体積固有抵抗値を持つ優
れた材料組成を選択すると、室温における抵抗値と安定
温度域における抵抗値との比が必要以上に大きくなり、
大電力を要する機器においては突入電力が許容値を大幅
に上回って、電流ブレーカが誤作動する可能性が避けら
れなかった。また、経時変化において、温度と電力の安
定性に欠け、実用に耐えるものではなかった0以上に述
べたように、導電性微粉末の組成比を調整するだけでは
固有抵抗値が103Ω】以上、ピーク抵抗値/常温抵抗
値が10’以上の有用な正抵抗温度係数抵抗体をつくり
出すことができなかった。
Over time, significant changes in resistance and temperature coefficient of resistance occur due to crystal growth of the crystalline polymer and agglomeration of the conductive fine powder.Even if evaluated as a zero heating element, for example, 10'Ω If an excellent material composition with a high volume resistivity value is selected, the ratio between the resistance value at room temperature and the resistance value in the stable temperature range will become larger than necessary.
In devices that require large amounts of power, the inrush power greatly exceeds the allowable value, making it unavoidable that the current breaker may malfunction. In addition, due to changes over time, it lacks stability in temperature and power, making it unsuitable for practical use. It has not been possible to create a useful positive temperature coefficient resistor having a peak resistance value/room temperature resistance value of 10' or more.

本発明は、結晶性重合体中に導電性微粉末を分散してな
る組成物を、電子線または有機過酸化物等で橋かけ結合
後粉砕し、その粒子を前記の結晶性重合体またはこれと
相溶性のある重合体中に分散してつくった組成物からな
る大きい体積固有抵抗値を持つ安定した正抵抗湿度係数
抵抗体を提供するものである。
The present invention involves cross-bonding a composition formed by dispersing conductive fine powder in a crystalline polymer with an electron beam or an organic peroxide, and then pulverizing the resulting particles. The object of the present invention is to provide a stable positive resistance humidity coefficient resistor having a high volume resistivity value, which is made of a composition dispersed in a polymer compatible with the present invention.

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、結晶性重合体
中に導電性微粉末を分散してなる組成物を、電子線また
は有機過酸化物等で橘かけ結合後粉砕して粒子化し、・
前記粒子を前記結晶性重合体または前記結晶性重合体と
相溶性のあるエラストマ、熱可塑性エラストマ等の重合
体中に分散してなる体積固有抵抗値が101Ω1より大
きい組成物からなるものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a composition in which conductive fine powder is dispersed in a crystalline polymer. After bonding with citrus paste, it is crushed to make particles,
It consists of a composition in which the particles are dispersed in the crystalline polymer or a polymer compatible with the crystalline polymer, such as an elastomer, a thermoplastic elastomer, etc., and the volume resistivity value is larger than 101Ω1.

(作 用) 本発明は、上記製造法により、高抵抗且つ高安定性の組
成物を製造することができ、低温域における線膨張係数
、結晶性重合体の結晶成長、または導電性微粉末の凝集
等の影響をほとんど受ける゛ことがなく、結晶性重合体
の融点近傍における急峻な正抵抗温度特性のみをより有
効に生かした安定した正抵抗温度係数抵抗体を構成する
ことができる。
(Function) The present invention can produce a composition with high resistance and high stability by the above-mentioned production method, and improves the linear expansion coefficient in a low temperature range, the crystal growth of a crystalline polymer, or the conductive fine powder. It is possible to construct a stable positive resistance temperature coefficient resistor that is hardly affected by agglomeration and the like and makes more effective use of only the steep positive resistance temperature characteristic near the melting point of the crystalline polymer.

(実施例) 本発明の一実施例を第1図ないし第3図により説明する
。第1図は本発明の一実施例の正抵抗温度係数抵抗体の
斜視図、第2図は同実施例の抵抗体組成物と従来技術に
基づく抵抗体組成物との抵抗温度試験結果を比較した図
、第3図は同実施例の抵抗体組成物と従来技術に基づく
抵抗体組成物との耐熱試験結果を比較した図である。第
1図において、1は正抵抗温度係数抵抗体、2a、2b
は金属板電極である。
(Example) An example of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a perspective view of a positive resistance temperature coefficient resistor according to an embodiment of the present invention, and FIG. 2 is a comparison of resistance temperature test results between the resistor composition of the same embodiment and a resistor composition based on the conventional technology. FIG. 3 is a diagram comparing the heat resistance test results between the resistor composition of the same example and the resistor composition based on the prior art. In Figure 1, 1 is a positive resistance temperature coefficient resistor, 2a, 2b
is a metal plate electrode.

第1図において、正抵抗温度係数抵抗体1は厚さ1■で
、これに一対の金属板電極2a及び2bが接合されてい
る。正抵抗温度係数抵抗体1は、高密度ポリエチレンに
サーマルブラックを混練することにより、ピーク抵抗値
と常温抵抗値との比が6桁を上回る正抵抗温度特性を持
つものである。
In FIG. 1, a positive resistance temperature coefficient resistor 1 has a thickness of 1 cm, and a pair of metal plate electrodes 2a and 2b are bonded to it. The positive resistance temperature coefficient resistor 1 has a positive resistance temperature characteristic in which the ratio of the peak resistance value to the room temperature resistance value exceeds 6 digits by kneading thermal black into high density polyethylene.

第1図に示す構成の発熱体において、金属板電極2a及
び2bの間に100Vの電圧を印加するには、正抵抗温
度係数抵抗体1は104Ωルベルの非常に高い固有抵抗
値を必要とするが、単にカーボンブラックの添加量を調
整するだけでは、突入電力に対応する20℃の抵抗値と
安定温度域である100℃の抵抗値の変化倍率は15倍
を越え、固有抵抗値が10t′〜10”Ω1の場合の抵
抗湿度特性を平行移動することはできない、そこで、正
抵抗温度係数抵抗体1を次の手順で製造した。
In the heating element having the configuration shown in FIG. 1, in order to apply a voltage of 100 V between the metal plate electrodes 2a and 2b, the positive resistance temperature coefficient resistor 1 needs to have a very high specific resistance value of 104 Ω lebel. However, by simply adjusting the amount of carbon black added, the change ratio between the resistance value at 20°C, which corresponds to the inrush power, and the resistance value at 100°C, which is the stable temperature range, would be more than 15 times, and the specific resistance value would be 10t'. It is not possible to translate the resistance-humidity characteristics in the case of ~10''Ω1, so a positive resistance temperature coefficient resistor 1 was manufactured using the following procedure.

まず、高密度ポリエチレンとサーマルブラックを1対1
の比率で混練しつつ、有機過酸化物であるジクミールバ
ーオキサイドをポリエチレンに対して2%添加し、熱処
理を施すことによって橋かけ結合反応を完了させた後に
J冷凍粉砕によって平均粒子径100μ閣の粒子をつく
り、この粒子を高密度ポリエチレンにカーボンブラック
を32%混入した混合物の中で再度混練した後、アニー
ルを施すことによって体積固有抵抗値104Ωcmの抵
抗体組成物を得た。第2図は、本発明の一実施例による
この抵抗体組成物と、単に高密度ポリエチレンとカーボ
ンブラックを混練した従来技術に基づく抵抗体組成物と
の抵抗温度試験結果を比較した図であるが、同図から明
らかなように、従来技術に基づく抵抗体組成物の場合は
、102Ω口までが安定領域であるが、本発明の−i施
例による抵抗体組成物の場合は、lOsΩ1の高抵抗領
域までに安定領域を拡大することができたものと考える
ことができる。第3図は1本発明の一実施例による抵抗
体組成物と従来技術に基づく抵抗体組成物との耐熱試験
結果を示しているが、同図から明らかなように、本発明
によるものは、高抵抗値であるにも拘らず安定している
のに対し、従来のものは、高密度ポリエチレンの結晶成
長またはカーボンブラックの凝集によるものと思われる
影響を強く受け、抵抗値だけでなく抵抗温度特性も大き
く変化している1以上に示したように、本発明の一実施
例による抵抗体組成物は、高抵抗領域において導電性微
粉末同士の接触状態を良好に保つことができる手段を提
供するもので、特に1本来、抵抗値が不安定になりがち
であった正抵抗温度係数抵抗体組成物に対して有効なも
のである。なお、材料としては、高密度ポリエチレンと
サーマルブラックとの組合わせに限定されるものではな
く、中密度ポリエチレン、低密度ポリエチレン、リニア
ポリエチレン、エチレン酢酸ビニル共重合体、エチレン
アクリル酸共重合体、アイオノマ、ポリアミド、ポリ弗
化ビニリデン、ポリエステル等の結晶性樹脂、さらに、
カーボンブラックの中で顕著な正抵抗温度特性を示す導
電材料であるチャンネルブラック、ファーネスブラック
、アセチレンブラック、ランプブラック等との組合わせ
についても同等の効果を有するものである。
First, mix high-density polyethylene and thermal black 1:1.
While kneading the polyethylene at a ratio of The particles were kneaded again in a mixture of high-density polyethylene and 32% carbon black, and then annealed to obtain a resistor composition having a volume resistivity of 104 Ωcm. FIG. 2 is a diagram comparing the results of a resistance temperature test between this resistor composition according to an embodiment of the present invention and a resistor composition based on the prior art simply kneading high-density polyethylene and carbon black. As is clear from the figure, in the case of the resistor composition based on the conventional technology, the stable region is up to 102Ω, but in the case of the resistor composition according to the -i embodiment of the present invention, the range is as high as lOsΩ1. It can be considered that the stable region was expanded to the resistance region. FIG. 3 shows the results of a heat resistance test of a resistor composition according to one embodiment of the present invention and a resistor composition based on the prior art, and as is clear from the figure, the resistor composition according to the present invention Although it has a high resistance value, it is stable, whereas the conventional one is strongly affected by the crystal growth of high-density polyethylene or the agglomeration of carbon black, and the resistance value as well as the resistance temperature As shown above, the resistor composition according to one embodiment of the present invention provides a means for maintaining good contact between conductive fine powders in a high resistance region. This is particularly effective for positive resistance temperature coefficient resistor compositions, which originally tended to have unstable resistance values. The material is not limited to the combination of high-density polyethylene and thermal black, but also medium-density polyethylene, low-density polyethylene, linear polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, and ionomer. , polyamide, polyvinylidene fluoride, polyester, and other crystalline resins;
Similar effects can be obtained in combination with channel black, furnace black, acetylene black, lamp black, etc., which are conductive materials that exhibit remarkable positive resistance temperature characteristics among carbon blacks.

また、前記の結晶性樹脂に加えて、結晶性樹脂と相溶性
のある樹脂との組合わせにおいても類似の効果が得られ
る0例えば、ポリエチレン系の樹脂とオレフィン系の熱
可塑性エラストマとの組合わせにおいて、橋かけ結合処
理を省略して熱可塑性エラストマと混練した場合は、1
03Ω1を越えるあたりから20℃と100℃との抵抗
値の変化倍率の増大現象がみられる。また、耐熱特性に
おいても、変化倍率の増大に伴って、抵抗値の大幅な変
化現象が生じることから、同様のメカニズムによるもの
と結論づけられる。従って、相溶性のある結晶性樹脂同
士、または相溶性のある結晶性樹脂とエラストマとの組
合わせについても本発明を適用することができる。相溶
性のある結晶性樹脂とエラストマとの組合わせについて
は、オレフィン系の結晶性樹脂とエチレンプロピレン系
エラストマ、弗素系結晶性樹脂と弗素系エラストマ、ポ
リエステル系の結晶性樹脂とポリエステル系エラストマ
等があり、混練手順をどのように調整しても、導電性微
粉末が希薄な均一分散状態となって分散状態の安定性に
欠ける場合に、その効果が発揮される。なお、エラスト
マの中でも、加硫しないで使用される熱可塑性エラスト
マについては、導電性微粉末の凝集現象が極端に生じ易
く、本発明の効果が最大限に発揮される。ポリエチレン
とエチレンプロピレン・ポリプロピレン共重合熱可塑性
エラストマとの組合わせは、その代表的な例の一つであ
る。
In addition to the above-mentioned crystalline resin, similar effects can also be obtained by combining a crystalline resin with a compatible resin. For example, a combination of a polyethylene-based resin and an olefin-based thermoplastic elastomer. In the case where the cross-linking treatment is omitted and the thermoplastic elastomer is kneaded, 1
A phenomenon in which the change ratio of the resistance value increases between 20° C. and 100° C. is observed when the resistance value exceeds 0.03 Ω1. Furthermore, in terms of heat resistance properties, a significant change in resistance value occurs as the change factor increases, so it can be concluded that a similar mechanism is involved. Therefore, the present invention can also be applied to combinations of compatible crystalline resins or combinations of compatible crystalline resins and elastomers. Combinations of compatible crystalline resins and elastomers include olefin-based crystalline resins and ethylene propylene-based elastomers, fluorine-based crystalline resins and fluorine-based elastomers, polyester-based crystalline resins and polyester-based elastomers, etc. However, no matter how the kneading procedure is adjusted, the effect is exhibited when the conductive fine powder is in a dilute and uniformly dispersed state and the stability of the dispersed state is lacking. Note that among elastomers, thermoplastic elastomers used without vulcanization are extremely prone to agglomeration of conductive fine powder, and the effects of the present invention are maximized. A typical example is the combination of polyethylene and an ethylene-propylene/polypropylene copolymer thermoplastic elastomer.

(発明の効果) 本発明によれば、正抵抗温度係数が異常に増大したり、
経時変化によって抵抗値と抵抗温度特性が大きく変動す
る等、不安定で実用に耐えられない従来の問題点を解決
することができ、その結果。
(Effects of the Invention) According to the present invention, the temperature coefficient of positive resistance increases abnormally,
As a result, we were able to solve the problems of conventional methods that were unstable and impractical, such as large fluctuations in resistance value and resistance temperature characteristics due to changes over time.

電極間の距離を接近させることにより高出力化を達成で
きる高抵抗且つ高安定性の正抵抗温度係数抵抗体が得ら
れる。この抵抗体を用いた正抵抗温度係数発熱体は、突
入時に比較して安定時の電力が非常に大きくなる問題と
、発熱温度並びに電力の長期安定性の問題を解決するこ
とができ1発熱体の用途として、パネルヒータや床暖房
機器等の大出力機器にも適用できる。また、高出力化正
抵抗温度係数発熱体は装架率を低くすることができるた
め、大型機器を構成した場合にも、発熱体からの誘導漏
れ電流を低減することができるという特長を有している
By reducing the distance between the electrodes, a high resistance and high stability positive resistance temperature coefficient resistor that can achieve high output can be obtained. A positive resistance temperature coefficient heating element using this resistor can solve the problems of the power being extremely large during stable conditions compared to the time of rush, and the long-term stability of heat generation temperature and power. It can also be applied to high output equipment such as panel heaters and floor heating equipment. In addition, since the high output positive resistance temperature coefficient heating element can be installed at a low installation rate, it has the advantage of reducing induced leakage current from the heating element even when large equipment is configured. ing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同実施例の抵抗体と従来技術に基づく抵
抗体との抵抗温度特性を比較した図、第3図は同実施例
の抵抗体と従来技術に基づく抵抗体との耐熱試験結果を
比較した図、第4図ないし第6図は従来の正抵抗温度係
数発熱体の斜視図である。 1・・・正抵抗温度係数抵抗体、 2a、 2b・・・
金属板電極。 特許出願人 松下電器産業株式会社 第1図 1−0王込jIL温茂孤軟低机体 2a、2b−金Ait練 第2図 イ本矛貢固有jiLtL撓(n1cm)第3因 、 ・ 温度(°C) 第4図
FIG. 1 is a perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention, FIG. 2 is a diagram comparing the resistance temperature characteristics of the resistor of the same embodiment and a resistor based on the conventional technology, The figure is a diagram comparing the results of a heat resistance test between the resistor of the same embodiment and a resistor based on the prior art, and FIGS. 4 to 6 are perspective views of conventional positive resistance temperature coefficient heating elements. 1...Positive resistance temperature coefficient resistor, 2a, 2b...
Metal plate electrode. Patent Applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 1-0 OgomejIL Onmogo Soft Low Machine Body 2a, 2b - Gold Ait Exercise Figure 2 Ihongokkotsu SpecificjiLtL Deflection (n1cm) 3rd factor, ・ Temperature (°C ) Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)結晶性重合体中に導電性微粉末を分散してなる組
成物を、電子線または有機過酸化物等で橋かけ結合後粉
砕して粒子化し、前記粒子を前記結晶性重合体または前
記結晶性重合体と相溶性のある重合体中に分散してなる
組成物からなることを特徴とする正抵抗温度係数抵抗体
(1) A composition in which conductive fine powder is dispersed in a crystalline polymer is cross-bonded with an electron beam or an organic peroxide, and then pulverized into particles. A positive resistance temperature coefficient resistor comprising a composition dispersed in a polymer that is compatible with the crystalline polymer.
(2)正抵抗温度係数抵抗体の体積固有抵抗値が10^
3Ωcmよりも高抵抗値であることを特徴とする特許請
求の範囲第(1)項記載の正抵抗温度係数抵抗体。
(2) The volume resistivity value of the positive resistance temperature coefficient resistor is 10^
A positive resistance temperature coefficient resistor according to claim (1), characterized in that it has a resistance value higher than 3 Ωcm.
(3)結晶性重合体と相溶性のある重合体がエラストマ
であることを特徴とする特許請求の範囲第(1)項記載
の正抵抗温度係数抵抗体。
(3) A positive resistance temperature coefficient resistor according to claim (1), wherein the polymer compatible with the crystalline polymer is an elastomer.
(4)結晶性重合体と相溶性のある重合体が熱可塑性エ
ラストマであることを特徴とする特許請求の範囲第(1
)項記載の正抵抗温度係数抵抗体。
(4) Claim No. 1, characterized in that the polymer compatible with the crystalline polymer is a thermoplastic elastomer.
) Positive resistance temperature coefficient resistor.
JP29227986A 1986-12-10 1986-12-10 Positive resistance-temperature coefficient resistor Pending JPS63146402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29227986A JPS63146402A (en) 1986-12-10 1986-12-10 Positive resistance-temperature coefficient resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29227986A JPS63146402A (en) 1986-12-10 1986-12-10 Positive resistance-temperature coefficient resistor

Publications (1)

Publication Number Publication Date
JPS63146402A true JPS63146402A (en) 1988-06-18

Family

ID=17779692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29227986A Pending JPS63146402A (en) 1986-12-10 1986-12-10 Positive resistance-temperature coefficient resistor

Country Status (1)

Country Link
JP (1) JPS63146402A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217608A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0217609A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0221601A (en) * 1988-07-08 1990-01-24 Matsushita Electric Ind Co Ltd Heater having positive resistance temperature coefficient
JPH02234380A (en) * 1989-03-07 1990-09-17 Matsushita Electric Ind Co Ltd Positive-resistance temperature coefficient heating body
JPH02278687A (en) * 1989-04-19 1990-11-14 Fujii Kinzoku Kako Kk Bar-like exothermic body
JP2002526911A (en) * 1998-09-25 2002-08-20 ブアンズ・インコーポレイテッド A two-stage method for producing positive temperature coefficient polymeric materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132984A (en) * 1974-09-13 1976-03-19 Matsushita Electric Ind Co Ltd TEIKOTAI
JPS61144001A (en) * 1984-12-18 1986-07-01 松下電器産業株式会社 Resistor composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132984A (en) * 1974-09-13 1976-03-19 Matsushita Electric Ind Co Ltd TEIKOTAI
JPS61144001A (en) * 1984-12-18 1986-07-01 松下電器産業株式会社 Resistor composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217608A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0217609A (en) * 1988-07-06 1990-01-22 Matsushita Electric Ind Co Ltd Positive resistance temperature coefficient heating element
JPH0221601A (en) * 1988-07-08 1990-01-24 Matsushita Electric Ind Co Ltd Heater having positive resistance temperature coefficient
JPH02234380A (en) * 1989-03-07 1990-09-17 Matsushita Electric Ind Co Ltd Positive-resistance temperature coefficient heating body
JPH02278687A (en) * 1989-04-19 1990-11-14 Fujii Kinzoku Kako Kk Bar-like exothermic body
JP2002526911A (en) * 1998-09-25 2002-08-20 ブアンズ・インコーポレイテッド A two-stage method for producing positive temperature coefficient polymeric materials

Similar Documents

Publication Publication Date Title
US5747147A (en) Conductive polymer composition and device
US4910389A (en) Conductive polymer compositions
JPS643322B2 (en)
JPH0428743B2 (en)
JPH049361B2 (en)
Lin et al. A varistor–polymer composite with nonlinear electrical-thermal switching properties
JPS63146402A (en) Positive resistance-temperature coefficient resistor
JP2638862B2 (en) Positive low temperature coefficient heating element
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JPH0217609A (en) Positive resistance temperature coefficient heating element
JPH0218902A (en) Positive temperature coefficient heater
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JP2586486B2 (en) Positive resistance temperature coefficient heating element
JPH10223406A (en) Ptc composition and ptc element employing it
JP2531025B2 (en) Planar heating element
JPH03269982A (en) Positive resistance temperature coefficient heating body
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
JPS63146379A (en) Positive resistane-temperature coefficient heater
JPH03176980A (en) Heating element with positive resistance temperature coefficient
JPH02304892A (en) Exothermal body with positive temperature coefficient of resistance
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JP2688061B2 (en) Positive resistance temperature coefficient heating element