JPS59226493A - Self-temperature controllable heater - Google Patents

Self-temperature controllable heater

Info

Publication number
JPS59226493A
JPS59226493A JP10134683A JP10134683A JPS59226493A JP S59226493 A JPS59226493 A JP S59226493A JP 10134683 A JP10134683 A JP 10134683A JP 10134683 A JP10134683 A JP 10134683A JP S59226493 A JPS59226493 A JP S59226493A
Authority
JP
Japan
Prior art keywords
resistance
heater
temperature
self
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10134683A
Other languages
Japanese (ja)
Inventor
永野 宏郎
島崎 行雄
伊東 亮一
「はつ」田 敏正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10134683A priority Critical patent/JPS59226493A/en
Publication of JPS59226493A publication Critical patent/JPS59226493A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は正の抵抗一温度係数(PTC)%性を有する自
己温度制御性ヒータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-temperature regulating heater having a positive resistance-temperature coefficient (PTC) % characteristic.

結晶性プラスチックに金属粉末、カーボンブラック、グ
ラファイトなどの導電性付与剤を1棟またil′i2独
以−4二分散させてなるPTC特性を有する抵抗体を一
対の箪惟間に設けてなる自己温度制御性ヒータは省エイ
・ルギー型ヒータとして応用分野が拡がりつつある。
A self-contained structure in which a resistor with PTC characteristics, which is made by dispersing a conductivity imparting agent such as metal powder, carbon black, or graphite in a crystalline plastic, is installed between a pair of drawers. The field of application of temperature control heaters is expanding as energy-saving and energy-saving heaters.

自己温度制御性ヒータとしての重要な、点は安定した出
力を長期にわたって維持できることであり、このために
は特に動作温度近傍でのPTC特性を大きくすることが
好ましい。
The important point of a self-temperature-controlling heater is that it can maintain stable output over a long period of time, and for this purpose, it is preferable to increase the PTC characteristic particularly near the operating temperature.

すなわち、第1図に示すように、製造条件の差あるいは
使用中における経口変化等によって抵抗値が変化し、2
10%性が異なった場合であっても、P T Ct’、
ti性の大きい場合(曲線A)N:PTC特性の小さい
場合(曲線B)に比して同じ抵抗値の変化に対して動作
温度の変動が小さいため、安定した特性を示すことにな
る。
In other words, as shown in Figure 1, the resistance value changes due to differences in manufacturing conditions or oral changes during use, etc.
Even if the 10% characteristics are different, P T Ct',
When the ti characteristic is large (curve A) N: Compared to the case where the PTC characteristic is small (curve B), the fluctuation in operating temperature is smaller for the same change in resistance value, so stable characteristics are exhibited.

しかしながら、210%性の大きいヒータは低温での抵
抗が小さくなるだめ、課電時の突入電流が大きくなる欠
点があり、低温から高温までの特性を必要とする装置で
は許容電流を越えてしまうことがあった。
However, a heater with a high 210% resistance has a small resistance at low temperatures, so it has the disadvantage of a large inrush current when applying electricity, which may exceed the allowable current for devices that require characteristics from low to high temperatures. was there.

これに対してPTC%件の小さいヒータはこのようなこ
とはないが、同時に高温狽域のPTCW性を小さくする
ため、初期動作温度の極端な上昇、また動作温度を低く
すればヒータの抵抗が大きくなり出力不足となる。更に
、使用中における抵抗変化が動作温度を極端な場合には
観能停止あるいは動作温度がポリマの冶:点を越える結
果熱暴走する危険がある。
On the other hand, heaters with a small PTC% ratio do not have this problem, but at the same time, in order to reduce the PTCW property in the high temperature range, the initial operating temperature may rise dramatically, and if the operating temperature is lowered, the resistance of the heater will increase. If it becomes large, the output will be insufficient. Furthermore, if the resistance change during use causes the operating temperature to become extreme, there is a risk that the performance will stop or that the operating temperature will exceed the temperature of the polymer, resulting in thermal runaway.

上記のような問題に対処するだめには、第2図に示すよ
うな低温領域での温度に対する抵抗増が小さく、動作温
度近傍で急激に大きくなる傾向のP T C特性を有す
るヒータが理想的であり、各独ポリマあるいは各棟導電
性伺与剤を組合せることが試みられているが、必ずしも
十分なものとidいえない。寸だ、ヒータに一定抵抗値
の抵抗器を直列に油含せて改良する方法もあるが、抵抗
器でのエイ・ルギー損失があり、省エネルギー効果が減
少することになる。
To deal with the above-mentioned problems, it is ideal to use a heater with PTC characteristics, as shown in Figure 2, in which the increase in resistance with respect to temperature in the low-temperature region is small and tends to increase rapidly near the operating temperature. Attempts have been made to combine various polymers or conductive agents, but this cannot necessarily be said to be sufficient. There is a way to improve this by placing a constant resistance resistor in series with the heater and soaking it in oil, but there is energy and energy loss in the resistor, which reduces the energy saving effect.

本発明は」=記に基いてなされたもので低温領域では小
さなPTCq性を崩し、高温領域では大きなP T C
L?+1(ji−を刊することによって突入電流が小さ
く、長期にわたって安定した動作特性を有する自己温度
制御性ヒータの提供を目的とするものである。
The present invention was made based on the following statement, and the small PTCq property is destroyed in the low temperature range, and the large PTCq property is broken down in the high temperature range.
L? By publishing +1 (ji-), the purpose of this publication is to provide a self-temperature-controlling heater that has low inrush current and stable operating characteristics over a long period of time.

すなわち、本発明の自己温度開側1性ヒータは、一対の
電極の少なくとも一方を01〜5Ω/mの抵抗値を有す
る高抵抗導体により構成したものである。
That is, in the self-temperature open-side monolithic heater of the present invention, at least one of the pair of electrodes is made of a high-resistance conductor having a resistance value of 01 to 5 Ω/m.

高抵抗導体は金橋、無機物、有機物およびこれらの組合
せなど特に制限ぐまなく、01〜5Ω/mの抵抗値を有
するものであればよい。0.1Ω/mよシ小さい場合に
はPTC%性の改良効果が小さい。まだ5Ω/mより大
きい場合には電極での発熱が大きくなって自己制御機能
が小さくなり、長期使用時の動作温度変動が大きくなる
。好捷しくけ0.5〜3Ω/mである7゜ 高抵抗導体は単線、撚線など構成は任意であり形状に左
右されない。さらに抵抗調整のだめ銅あるいはメッキm
=などの他の低抵抗導体と組み合せてもよい。また条長
により自己温度制rAj性ヒータならひに高抵抗導体の
抵抗は変化するので1史用栄長に応じて高抵抗導体の組
成を変えることは差支え、ない。
The high-resistance conductor may be a metal bridge, an inorganic material, an organic material, or a combination thereof, without any particular limitation, as long as it has a resistance value of 01 to 5 Ω/m. When the resistance is as small as 0.1 Ω/m, the effect of improving PTC% is small. If it is still greater than 5 Ω/m, the heat generation at the electrodes will increase, the self-control function will be reduced, and the operating temperature fluctuations will increase during long-term use. The 7° high resistance conductor, which has a good resistance of 0.5 to 3 Ω/m, can have any configuration such as a single wire or a twisted wire, and is not influenced by the shape. Furthermore, for resistance adjustment, copper or plating is required.
It may be combined with other low resistance conductors such as =. Furthermore, since the resistance of the high-resistance conductor changes depending on the length of the heater in the case of a self-temperature control heater, there is no problem in changing the composition of the high-resistance conductor depending on the length of the heater.

高抵抗導体を使用した場合課電端末を一方より取ると他
端末近傍では動作湿層の低下が認められることが今シ、
使用条長が長いと@VCは課電端末を両端よりとっても
よい。
When using a high-resistance conductor, if the power-carrying terminal is removed from one side, a decrease in the operating moisture layer is observed near the other terminal.
If the length used is long, @VC may have charging terminals from both ends.

本発明における正の抵抗温度係数を有する抵抗体の代表
的なものとしては、結晶性プラスチックに専電性付力」
1]を配合した組成物があけられ、イ・。
A typical example of a resistor having a positive temperature coefficient of resistance in the present invention is "exclusive electric force applied to crystalline plastic".
1] is opened, and a.

結晶性プラスチックとしてはポリエチレン、ポリプロピ
レン、ボリノッ化ビニリデン、」益素化ポリエチレン、
ポリエステル、ポリアミIS1 ポリープデシー1、ポ
リメチルペンテン−1、エチレン−酢酸ビニル共重せ体
、エチレン−プロピレン共重合体、エチレン−四弗化エ
チレン共重合体等があけられるが、これに駆足されるも
のではない。これらの結晶性プラスチックは単独もしく
は2棟以上組合せて使用できる。丑だ、結晶性プラスチ
ックにはエチレン−ゾロピレンゴム、クロロスルフォン
化ポリエチレンゴム、フッ素ゴム、シリコーンゴム等の
ゴムを14事もし7くは2 、lli以上混合してモヨ
イ。尋1==、、 IJE 1寸力犀]としては、カー
ボンシラツク、グラファイト、金楓粉、勺′熾ポリマを
グラフト結合させたカーボンブラック等があげられる。
Crystalline plastics include polyethylene, polypropylene, vinylidene boronodide, polyethylene polyethylene,
Polyester, polyamide IS1 polypdc 1, polymethylpentene-1, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-tetrafluoroethylene copolymer, etc. It's not something you can do. These crystalline plastics can be used alone or in combination of two or more. For crystalline plastics, 14 or 7 or 2 or more rubbers such as ethylene-zolopyrene rubber, chlorosulfonated polyethylene rubber, fluorine rubber, and silicone rubber are mixed together. Examples of the carbon black include carbon silk, graphite, maple powder, and carbon black to which a pineapple polymer is grafted.

これらの導電性付与剤は単独もしくは2柚以上組合せて
使用できる。なお、抵抗体には結晶性プラスチックおよ
び導電性付与剤の他、酸化防止剤、安だ剤、滑剤、界面
活性剤、反応性モノマ、有機過酸化物等を含有させても
差し支えない。また、抵抗体を形成する組成物はそのま
ま使用してもよいし、化学架橋、電子線照射架橋、シラ
ングラフト水架橋等によって架橋してもよい。
These conductivity imparting agents can be used alone or in combination of two or more. In addition to the crystalline plastic and the conductivity imparting agent, the resistor may contain antioxidants, stabilizers, lubricants, surfactants, reactive monomers, organic peroxides, and the like. Further, the composition forming the resistor may be used as it is, or may be crosslinked by chemical crosslinking, electron beam irradiation crosslinking, silane graft water crosslinking, or the like.

次に実施例によシ本発明の詳細な説明する。Next, the present invention will be explained in detail by way of examples.

第3図は本発明における自己温度制御性ヒータの一例の
N丁面図を示したもので、1は′電極、2は抵抗体であ
る。
FIG. 3 shows an N cross-sectional view of an example of the self-temperature-controlling heater according to the present invention, where 1 is an electrode and 2 is a resistor.

実施例1 低密度ポリエチレン(密度0.923、メルトインデッ
クス0.2.5 ) l Ooi量置部カーボンブラッ
ク(パルカンXC−72,キヤゲット社製)28重置部
を140℃でロール混線して抵抗体用混和物を作成した
Example 1 Low-density polyethylene (density 0.923, melt index 0.2.5) Ooi weighing section Carbon black (Palcan XC-72, manufactured by Carget Co., Ltd.) 28 overlapping sections were mixed with rolls at 140°C to increase resistance. A mixture for the body was prepared.

次に外径0.26 tmuφのクロメル線を7本撚り合
せて外径1 、.3 tnmφの高抵抗撚線導体(鳩捧
抵抗296Ω/m)を作成し、これを2本型&(電極間
隔5鯛)として上記抵抗体用混4u’$!II k 1
80 ℃’T:JM−G 2 mm’。
Next, seven chromel wires with an outer diameter of 0.26 tmuφ are twisted together to form an outer diameter of 1, . Create a 3 tnmφ high-resistance stranded conductor (pigeon resistance 296Ω/m) and use it as a 2-piece type & (electrode spacing 5) for the above resistor mix 4u'$! II k 1
80°C'T: JM-G 2 mm'.

幅10mmに押出被覆し、20MRadの′電子線を照
射し架倫してヒータを傅/こ。
It was extruded and coated to a width of 10 mm, irradiated with an electron beam of 20 MRad, and then assembled into a heater.

実施例 2 2本の′屯倹として、外径0.14+mn中のアルメル
線を19本撚り合ぜた外径0.7 mmφの高抵抗撚線
導体(導体抵抗1.13Ω/m)を用いた以外は実施例
1と1司様にしてヒー7りL 、;4) /二。
Example 2 A high-resistance stranded wire conductor (conductor resistance 1.13 Ω/m) with an outer diameter of 0.7 mmφ, which is made by twisting 19 alumel wires with an outer diameter of 0.14 + mn, was used as two conductors. Example 1 and Example 1 were used except for the following.

実施例 3 2本の′電極として外径02履φのクロメル轟ヲ7本撚
り合せた外径]Ommφの冒抵抗撚線導体(uh体抵抗
50Ω/)n)を用いた以外は実施例1と同様にしてヒ
ータをイ(すだ。
Example 3 Example 1 except that a highly resistive stranded wire conductor (uh body resistance 50 Ω/n) with an outer diameter of 0 mmφ, which was made by twisting 7 pieces of chromel wire with an outer diameter of 02 mmφ, was used as the two electrodes. Turn on the heater in the same way as above.

比11反例 1 2本の電極として外径0.51、H1ζ・のり+1メル
単線(4体抵抗56Ω/〕n)を用いた以外は実施?l
J1と同様にしてヒータを得た。
Ratio 11 Counterexample 1 Is it implemented except for using two electrodes with an outer diameter of 0.51 and H1ζ/glue + 1 mel solid wire (4-body resistance 56Ω/]n)? l
A heater was obtained in the same manner as J1.

比リタ例 2 2本の′電極として外径0.16岨ψの銀メツキ導線7
本と外径0.16 mmφのアルメル線12本とを撚シ
合せた外径0.8 mmφの撚線導体(得体抵抗0.0
9Ω/〃1)を用いた以外は実施例1と同様にしてヒー
タケ得た。
Example 2 Silver-plated conductor wire 7 with an outer diameter of 0.16 ψ serves as two electrodes.
A stranded wire conductor with an outer diameter of 0.8 mmφ (obtained resistance of 0.0
A heater was obtained in the same manner as in Example 1 except that 9Ω/〃1) was used.

比較1ull  3 2本の電極として外径0.2 muφの銀メツキ導線を
19本撚り合せた外径1.0 +nmφの撚線カ7体(
導体抵抗0.02Ω/m)を用いた以外は実施例1と同
様にしてヒータを得だ。
Comparison 1ull 3 As two electrodes, 19 silver-plated conductive wires with an outer diameter of 0.2 muφ were twisted together to form 7 twisted wires with an outer diameter of 1.0 + nmφ (
A heater was obtained in the same manner as in Example 1 except that a conductor resistance (0.02 Ω/m) was used.

比較例 4 高密度ポリエチレン(密度0.923、メルトインデイ
ノクス0.25)100重量部、カーrJ:?7 jノ
ック(・SルカンXC−72,キャボット社製)8重量
部およびグラファイト26重量部を140 ’Cのロー
ルテ混練して抵抗体用混和物を作成した。
Comparative Example 4 100 parts by weight of high-density polyethylene (density 0.923, Melt Indeinox 0.25), Carr rJ:? A mixture for a resistor was prepared by kneading 8 parts by weight of 7J Knock (S Lucan XC-72, manufactured by Cabot Corp.) and 26 parts by weight of graphite in a roll oven at 140'C.

次に比較例3と同じ撚線専体孕2本の電極(型物間隔5
胡)とし、実施例1と同様にしてヒータを得だ。
Next, two electrodes containing only the same stranded wires as in Comparative Example 3 (type spacing 5
A heater was obtained in the same manner as in Example 1.

実施例1〜3および比較例1〜4で侍られたヒータのP
 T C%性曲線をそれぞれ第4図および第5図に示す
。1だ、各側のヒータの特性を下表に示す。
P of the heater served in Examples 1 to 3 and Comparative Examples 1 to 4
The TC% curves are shown in Figures 4 and 5, respectively. 1. The characteristics of the heaters on each side are shown in the table below.

各種特性の測定は次による。Measurement of various characteristics is as follows.

(1)  電極間抵抗=10mのヒータを一20℃なら
びに20℃の恒温槽に1時間放置し、2本の電極間抵抗
をホイートストーンブリッジで測定。
(1) A heater with an inter-electrode resistance of 10 m was left in a thermostat at -20°C and 20°C for 1 hour, and the resistance between the two electrodes was measured using a Wheatstone bridge.

(2)  突入電流:(1)と同殊に恒温槽に放置し、
電極間に50H7,,100Vの′電圧を印加したとき
の最大′電流を測定。
(2) Inrush current: Same as (1), leave it in a constant temperature oven,
Measure the maximum current when a voltage of 50H7, 100V is applied between the electrodes.

(3ン 動作温l用:室温でli電極間50Hz、10
0Vの電圧を印加し、ヒータ表面に固定した熱電対によ
り10分後の温度を自動記録計により測定。
(For 3-ring operation temperature: 50 Hz, 10 Hz between the li electrodes at room temperature
A voltage of 0 V was applied, and the temperature was measured 10 minutes later using an automatic recorder using a thermocouple fixed to the surface of the heater.

(4)課電サイク、ル:室温で主極間に50)Iz、1
00Vの電圧を30分0N−15分OFFのサイクルで
1000回1味シ返し印加した。
(4) Charge cycle, Le: 50) Iz, 1 between main electrodes at room temperature
A voltage of 00 V was applied 1000 times in a cycle of 30 minutes ON and 15 minutes OFF.

第4図、第5図および上表からも明らかな通り、本発明
の範囲にある実□1り!11〜3のヒータは突入。
As is clear from Figures 4 and 5 and the table above, there are only □1 examples within the scope of the present invention! Heaters 11-3 rush in.

電流が小さく、シかも課電サイクル酸の動作温度も初期
の動作温度と殆んど変化しないものである。
The current is small and the operating temperature of the energized cycle acid does not change much from the initial operating temperature.

これに対し、比較例1および4のヒータは突入電流を小
さくできるものの、課電サイクル後の動作温度の低下が
著しい。比較例2および3け突入−流が大きく、信頼性
に欠ける。
On the other hand, although the heaters of Comparative Examples 1 and 4 can reduce the inrush current, the operating temperature after the energization cycle decreases significantly. Comparative Example 2 and 3-digit inrush - Large flow and lack of reliability.

以上説明してきた通り、本発明(・;t 1’3、’j
ff’j ?:、 j 、−(低抗値が0.1〜5Ω/
mの高抵抗導イ、11−用いたものであり、これによっ
てPTC符性を太きぐした場合であっても突入電流が小
さく長Jυ]にわ/°ζ−)で安定した動作温度を維持
できる自己温度開側l性ヒータを侍ることか可能となる
As explained above, the present invention (・;t 1'3, 'j
ff'j? :, j, -(low resistance value 0.1~5Ω/
This uses a high-resistance conductor of 11-m, which maintains a stable operating temperature at a low inrush current even when the PTC code is widened. It becomes possible to use a self-temperature open-side heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はpTc%件の変動による動作温度の変動の説明
図、第2図は理想的なPTC特件の説り]図、第3図は
本発明のヒータの二側の断面説明図、第4図は本発明の
実施例のPTC特性の説明図、第5図は比較例のPTC
I侍件の説明図である。
Fig. 1 is an explanatory diagram of the variation in operating temperature due to variation in pTc%, Fig. 2 is an explanation of the ideal PTC characteristic], Fig. 3 is an explanatory diagram of the cross section of the second side of the heater of the present invention, Fig. 4 is an explanatory diagram of PTC characteristics of an example of the present invention, and Fig. 5 is an explanatory diagram of PTC characteristics of a comparative example.
It is an explanatory diagram of I attendant.

Claims (1)

【特許請求の範囲】[Claims] 1、一対の電極の間に結晶性プラスチックと導電性付与
剤との混合物からなる正温度係数の抵抗体を設けてなる
自己温要制御性ヒータにおいて、上記一対の′電極の少
なくとも一方を0.1−、5Ω/mの抵抗値を有する高
抵抗導体により構成したことを特徴とする自己温度制御
性ヒータ。
1. In a self-heat controllable heater comprising a positive temperature coefficient resistor made of a mixture of a crystalline plastic and a conductivity imparting agent between a pair of electrodes, at least one of the pair of electrodes is set to 0. 1-. A self-temperature control heater, characterized in that it is constructed of a high-resistance conductor having a resistance value of 5 Ω/m.
JP10134683A 1983-06-07 1983-06-07 Self-temperature controllable heater Pending JPS59226493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10134683A JPS59226493A (en) 1983-06-07 1983-06-07 Self-temperature controllable heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10134683A JPS59226493A (en) 1983-06-07 1983-06-07 Self-temperature controllable heater

Publications (1)

Publication Number Publication Date
JPS59226493A true JPS59226493A (en) 1984-12-19

Family

ID=14298271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10134683A Pending JPS59226493A (en) 1983-06-07 1983-06-07 Self-temperature controllable heater

Country Status (1)

Country Link
JP (1) JPS59226493A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086790A (en) * 1983-10-18 1985-05-16 松下電器産業株式会社 Flexible heating wire
JPS61198590A (en) * 1985-02-27 1986-09-02 日立電線株式会社 Self-temperature controlling heater
JPS63284048A (en) * 1987-05-14 1988-11-21 Sanraizu Kogyo Kk Mirror equipped with heater for vehicle
US4882466A (en) * 1988-05-03 1989-11-21 Raychem Corporation Electrical devices comprising conductive polymers
JPH08239485A (en) * 1985-04-02 1996-09-17 Raychem Corp Production of conductive polymer element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160004A (en) * 1980-04-21 1981-12-09 Raychem Corp Ptc circuit protecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160004A (en) * 1980-04-21 1981-12-09 Raychem Corp Ptc circuit protecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086790A (en) * 1983-10-18 1985-05-16 松下電器産業株式会社 Flexible heating wire
JPH0479479B2 (en) * 1983-10-18 1992-12-16 Matsushita Electric Ind Co Ltd
JPS61198590A (en) * 1985-02-27 1986-09-02 日立電線株式会社 Self-temperature controlling heater
JPH08239485A (en) * 1985-04-02 1996-09-17 Raychem Corp Production of conductive polymer element
JPS63284048A (en) * 1987-05-14 1988-11-21 Sanraizu Kogyo Kk Mirror equipped with heater for vehicle
US4882466A (en) * 1988-05-03 1989-11-21 Raychem Corporation Electrical devices comprising conductive polymers
JPH0218887A (en) * 1988-05-03 1990-01-23 Raychem Corp Electric device

Similar Documents

Publication Publication Date Title
US4246468A (en) Electrical devices containing PTC elements
US4238812A (en) Circuit protection devices comprising PTC elements
US4910389A (en) Conductive polymer compositions
AU607666B2 (en) Flexible, elongated positive temperature coefficient heating assembly and method
US4314145A (en) Electrical devices containing PTC elements
EP0417097B1 (en) Heating element and method for making such a heating element
US4329726A (en) Circuit protection devices comprising PTC elements
CA1071281A (en) Heat-recoverable laminated heater with ptc layer operating above switching temperature
US4334148A (en) PTC Heaters
US4382024A (en) Electrically conductive rubber
JPS6265401A (en) Regulating method for ordinary heating temperature in thermosensitive electric resistance compositiion
US5057673A (en) Self-current-limiting devices and method of making same
JPS59226493A (en) Self-temperature controllable heater
JPH053120B2 (en)
US4908156A (en) Self-regulating heating element and a process for the production thereof
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
KR960033167A (en) Heat treatment method of conductive polymer heating element
CA1187309A (en) Electrical device containing ptc element
JPS5963688A (en) Panel heater and method of producing same
JPS61198590A (en) Self-temperature controlling heater
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPS6240394Y2 (en)
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPS58209885A (en) Self-temperature controllable heater