JPS61192032A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61192032A
JPS61192032A JP3246885A JP3246885A JPS61192032A JP S61192032 A JPS61192032 A JP S61192032A JP 3246885 A JP3246885 A JP 3246885A JP 3246885 A JP3246885 A JP 3246885A JP S61192032 A JPS61192032 A JP S61192032A
Authority
JP
Japan
Prior art keywords
substrate
magnetic recording
magnetic
recording medium
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3246885A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuzawa
孝浩 松沢
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3246885A priority Critical patent/JPS61192032A/en
Publication of JPS61192032A publication Critical patent/JPS61192032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a simple magnetic recording medium which is used suitably to a vertical magnetic recording job with excellent magnetic characteristics and low production cost, by setting a substrate which is under a film formation mode into a floating state. CONSTITUTION:A substrate 20' is shifted to a take-up roll 23 from a supply roll 22 via a cylindrical can 21'. A pair of 1st targets Ta1 and Tb1 made of a soft magnetic material such as an Fe-Ni alloy, etc. which is used as a foundation layer are sputtered in the same way as conventional. Then a soft magnetic thin film is formed on the substrate 20' at a temperature equal to that of the can 21'. This substrate 20' is shifted along the can 21'. Then a pair of 2nd targets Ta2 and Tb2 made of a magnetic material such as a Co-Cr alloy, etc. which is used as a magnetic recording layer are sputtered as conventional. Thus a magnetic recording layer is obtained, when the substrate 20' is separated from the can 21' and set under a floating state. As a result, the sputtering radiant heat is stored on the substrate 20' and therefore the temperature of the substrate 20' rises up. Thus a film can be produced while the substrate 20' is heated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記録媒体の製造方法に関し、詳しくは対向
ターゲット式スパッタ法による垂直磁気記録用に好適な
磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a method for manufacturing a magnetic recording medium suitable for perpendicular magnetic recording using a facing target sputtering method.

〔従来技術] 近年の情報量の層加に伴い、高密度記録への要求が高ま
っている。これに対し、高融点金属や酸化物等の化合物
を始めとするほとんどすべての物質の薄膜化に利用でき
る等の利点を有するスパッタ法が注目されている。
[Prior Art] With the recent increase in the amount of information, the demand for high-density recording is increasing. In contrast, sputtering is attracting attention because it has the advantage that it can be used to thin films of almost all substances, including compounds such as high-melting point metals and oxides.

スパッタ法の一つとして、高薄膜形成速度、低基板濃度
および低ガス圧領域でのスパッタを可能にしたマグネト
ロンスパッタ法が開発されている。
As one of the sputtering methods, a magnetron sputtering method has been developed that enables sputtering at a high thin film formation rate, low substrate concentration, and low gas pressure region.

しかし、この方法において、非磁性体をターゲットとし
て用いる場合には高速成膜が可能であるが、磁性体をタ
ーゲットに用いる場合、ターゲット表面に平行な磁界を
印加できなくなるために、高速成膜が不可能であった。
However, in this method, high-speed film formation is possible when a non-magnetic material is used as the target, but when a magnetic material is used as the target, high-speed film formation is not possible because it is no longer possible to apply a magnetic field parallel to the target surface. It was impossible.

これに対し、磁性体をターゲットに用いてかつ高速成膜
が可能な方法として対向ターゲット式スパッタ法が提案
されている(応用物理、第48巻第6号、p558〜p
  559.1979年)。この対向ターゲット式スパ
ッタ法に用いられる装置は第5図に示す如く構成される
。即ち、真空槽1o内に一対のターゲットTa 、Tb
をスパッタ面TaS。
In contrast, a facing target sputtering method has been proposed as a method that uses a magnetic material as a target and is capable of high-speed film formation (Applied Physics, Vol. 48, No. 6, p. 558-p.
559.1979). The apparatus used in this facing target sputtering method is constructed as shown in FIG. That is, a pair of targets Ta and Tb are placed in the vacuum chamber 1o.
The sputtered surface is TaS.

TbSが空間を隔てて平行に対面するように配置すると
共に、基板20はターゲットTa 、Tbの側方に設け
た基板ホルダー21によりターゲットTa 、Tbの空
間の側方に該空間に対面するように配置する。そして真
空槽10の回りに設けたコイル30もしくは真空槽10
内に内蔵された永久磁石31によりスパッタ面Ta S
、Tb Sに垂直な方向のプラズマ収束磁界Hを発生さ
せるようにしである。なお、ターゲットTa、Tbはそ
れぞれ鉄製のターゲットホルダー11a、11bにより
保持され、シールド12a、12bにより保護されてい
る。
TbS are arranged so as to face each other in parallel across a space, and the substrate 20 is arranged so as to face the space on the side of the targets Ta and Tb by means of a substrate holder 21 provided on the sides of the targets Ta and Tb. Deploy. A coil 30 or a vacuum chamber 10 provided around the vacuum chamber 10
A permanent magnet 31 built in the sputtering surface TaS
, Tb to generate a plasma convergence magnetic field H in a direction perpendicular to S. Note that the targets Ta and Tb are held by iron target holders 11a and 11b, respectively, and protected by shields 12a and 12b.

上記装置を用いて薄膜を形成するには、図面に省略した
排気系により排気口40から真空槽10内を排気し、た
後、図面に省略したガス導入系により導入口50を通し
てアルゴン等のスパッタガスを導入し、直流電源からな
るスパッタ電源60によりシールド12a、12bおよ
び真空槽1oを陽極(接地)にし、ターゲットTa、7
bを陰極にしてスパッタ電圧を供給すると共にコイル3
0または真空槽10内に内蔵された永久磁石31により
前記磁界Hを発生させることによりスパッタが行なわれ
、基板20上にターゲットTa 、 Tbに対応した組
成の薄膜が形成される。
To form a thin film using the above apparatus, the inside of the vacuum chamber 10 is evacuated from the exhaust port 40 using the exhaust system not shown in the drawing, and then argon or the like is sputtered through the inlet 50 by the gas introduction system not shown in the drawing. A gas is introduced, and the shields 12a, 12b and the vacuum chamber 1o are made anodes (grounded) by the sputtering power supply 60 consisting of a DC power supply, and the targets Ta, 7 are
b is used as a cathode to supply sputtering voltage and coil 3
Sputtering is performed by generating the magnetic field H using a permanent magnet 31 built in the vacuum chamber 10 or the vacuum chamber 10, and a thin film having a composition corresponding to the targets Ta and Tb is formed on the substrate 20.

この時、前述の構成によりスパッタ面TaS、TbSに
垂直なプラズマ収束磁界Hが印加されているので、対向
するターゲット7a 、 Tb f!Iの空間内に高エ
ネルギー電子が閉じ込められ、この空間内のスパッタガ
スのイオン化が促進されてスパッタ速度が大きくなり、
高速の薄膜形成が可能となる。
At this time, since the plasma convergence magnetic field H perpendicular to the sputtering surfaces TaS and TbS is applied by the above-mentioned configuration, the opposing targets 7a, Tb f! High-energy electrons are confined within the space of I, promoting ionization of the sputtering gas within this space and increasing the sputtering speed.
High-speed thin film formation becomes possible.

また、基板20は従来のスパッタ装置の如くターゲット
に対向せず、ターゲットTa 、Tbの側方に配置さi
でいるので、基板20への高いエネルギーを有するイオ
ンや電子の衝突がほとんどなくなり、かつ、ターゲット
Ta、’Tbからの熱輻射も小さく基板温度の上昇を防
ぎ、低温での膜形成を可能としている。
In addition, the substrate 20 is not opposed to the target as in conventional sputtering equipment, but is placed to the side of the targets Ta and Tb.
As a result, collisions of high-energy ions and electrons with the substrate 20 are almost eliminated, and thermal radiation from the targets Ta and 'Tb is also small, preventing a rise in substrate temperature and allowing film formation at low temperatures. .

しかしながら、例えばCo−Qr層を磁気記録層としF
e−Ni層を下地層とする垂直磁気記録媒体においては
、磁気記録層のco−Cr層を成膜する際、基板の種類
(例えばガラス類、アルミ等の非磁性金属類、プラスチ
ック類等)を問わず基板濃度が、得られるco−Qr層
の磁気特性に大きな影響があり、実用に供し得る磁気特
性を得るには基板温度を150℃程度に加熱する必要が
あった。一方、下地層としてのFe−Ni軟磁性柱層の
成膜は、基板濃度が室部程度の低温が好ましく、基板温
度を150℃にした場合、l”e−Ni層の軟磁気特性
が著しく劣化してしまう性質を有している。
However, for example, if a Co-Qr layer is used as a magnetic recording layer, F
In a perpendicular magnetic recording medium with an e-Ni layer as the underlayer, when forming the co-Cr layer of the magnetic recording layer, the type of substrate (e.g. glass, non-magnetic metal such as aluminum, plastic, etc.) Regardless of the substrate concentration, the magnetic properties of the obtained co-Qr layer are greatly affected, and it is necessary to heat the substrate temperature to about 150° C. to obtain magnetic properties that can be put to practical use. On the other hand, it is preferable to form the Fe-Ni soft magnetic columnar layer as the underlayer at a low temperature such that the substrate concentration is about the same as that in a room. It has the property of deteriorating.

また、工業的規模で例えば、垂直磁気記録用フロッピー
ディスクを製造するためには、プラスチック等の基板を
真空下で水冷または加熱可能な円筒キャンに周沿させた
状態で搬送しつつ成膜することが一般的に行なわれてい
る。
In addition, in order to manufacture, for example, floppy disks for perpendicular magnetic recording on an industrial scale, a film must be formed while transporting a substrate such as plastic along its circumference in a water-cooled or heated cylindrical can under vacuum. is commonly practiced.

従って、前記の如く磁気記録層と下地層とを異なる温度
で成膜する必要がある場合、各層を同一のキャン上で成
膜することは困難であり、複数個のキ゛ヤンを用いるか
、または各層を別々につけることになり、製造装置が複
雑化、高価化し、磁気記録媒体の製・造コストの上昇の
原因となっており、より簡便な装置で、製造コストも安
く、かつ良好な磁気特性を有する特に垂直磁気記録媒体
の製造方法の開発が望まれていた。
Therefore, when it is necessary to deposit the magnetic recording layer and the underlayer at different temperatures as described above, it is difficult to deposit each layer on the same can, and it is necessary to use multiple cans or to deposit each layer on the same can. This makes the manufacturing equipment more complicated and expensive, causing an increase in manufacturing costs for magnetic recording media. In particular, it has been desired to develop a method for manufacturing a perpendicular magnetic recording medium having the following characteristics.

[発明の目的] 本発明は上記の事情に鑑み為されたもので、本発明の目
的は、簡便で、製造コストも安価で、かつ良好な磁気特
性を有する垂直磁気記録用に好適な磁気記録媒体の製造
方法を提供することである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetic recording medium suitable for perpendicular magnetic recording that is simple, inexpensive to manufacture, and has good magnetic properties. An object of the present invention is to provide a method for manufacturing a medium.

[発明の構成] 本発明の上記目的は、陰極となる一対のターゲットを、
そのスパッタ面が空間を隔てて対面するよう配置し、該
ターゲットを貫く方向に磁界を発生する手段により磁界
を発生しながら、前記ターゲット間の側方に前記空間に
対面するように配置した基板上に、スパッタにより磁性
薄膜を形成する磁気記録媒体の製造方法において、成膜
中の前記基板を浮遊状態にして成膜する磁気記録媒体の
製造方法により達成される。
[Structure of the Invention] The above object of the present invention is to provide a pair of targets serving as cathodes,
The sputtering surfaces are arranged so as to face each other across a space, and while a magnetic field is generated by a means for generating a magnetic field in a direction penetrating the targets, the substrates are arranged so as to face the space on the side between the targets. This is achieved by a method of manufacturing a magnetic recording medium in which a magnetic thin film is formed by sputtering, in which the substrate during film formation is placed in a floating state.

[発明の具体的構成] 本発明の製造方法において、成膜中の基板を浮遊状態に
するとは、基板を基板支持体であるキャンおよび他のロ
ーラー等の支持部材から離した状態でスパッタ成膜する
ことをいい、基板を浮遊状態にすることにより、スパッ
タ成膜時の熱が基板上にたまり、基板の加熱を必要とす
る例えば、Co−Cr等からなる磁気記録層の成膜時に
、外部熱源からの加熱が必要がなくなるか、またはその
加熱量が少なくてすむ。
[Specific Structure of the Invention] In the manufacturing method of the present invention, placing the substrate in a floating state during film formation means forming a sputter film while the substrate is separated from support members such as a can and other rollers that are substrate supports. By keeping the substrate in a floating state, heat during sputtering film formation accumulates on the substrate, and when forming a magnetic recording layer made of Co-Cr or the like, which requires substrate heating, for example, external Heating from a heat source is not required or the amount of heating is reduced.

以下、本発明を2面により具体的に説明する。Hereinafter, the present invention will be specifically explained from two aspects.

第1図は本発明の製造方法を実施するための装置の一例
の要部を示す説明図である。
FIG. 1 is an explanatory diagram showing essential parts of an example of an apparatus for carrying out the manufacturing method of the present invention.

第1図において、第5図と同一のものは同じ番号を付し
説明を省略する。同図においては、真空槽10内に2組
のターゲット対が設けられ、二層膜構造薄膜の連続成膜
を可能としている。同図右側のターゲット対Ta+、T
el+  は下地層となる軟磁性材料(例えば、Fe−
Nt金合金)からなり、同図左側のターゲット対Ta2
 、Tb2 は磁気記録層となる磁性材料〈例えばco
−Cr合金等〉からなる。
In FIG. 1, the same parts as in FIG. 5 are given the same numbers, and their explanation will be omitted. In the figure, two pairs of targets are provided in a vacuum chamber 10, making it possible to continuously form a thin film with a two-layer structure. Target pair Ta+, T on the right side of the figure
el+ is a soft magnetic material (for example, Fe-
Nt gold alloy), and the target on the left side of the figure is Ta2.
, Tb2 is a magnetic material (e.g. co
-Cr alloy, etc.).

それぞれのターゲット対の間に、巻き出しロール22か
ら送り出された基板20′が円筒型キャン21′の周壁
に接触して移送され、次いで巻き取りロール23に巻き
取られる如くなっている。
A substrate 20' fed out from the unwinding roll 22 is transferred between each pair of targets in contact with the circumferential wall of a cylindrical can 21', and is then wound up on a winding roll 23.

ここで、前記ターゲット対Ta1 、Tb1 により下
地層が基板20′上に成膜される位置は、基板20’が
前記円筒型キャン21′に接触してキャン温度と同程度
に冷却されている位置である。一方、前記ターゲット対
Ta2 、Tbx  により磁気記録層が前記基板20
’上に形成された下地層上に成膜される位置は、基板2
0′が前記円筒型キャン21′から離れて巻き取りロー
ル23に巻き取られる途中の浮遊状態にある位置である
Here, the position where the base layer is formed on the substrate 20' by the target pair Ta1 and Tb1 is the position where the substrate 20' is in contact with the cylindrical can 21' and is cooled to the same temperature as the can temperature. It is. On the other hand, the magnetic recording layer is formed on the substrate 20 by the target pair Ta2 and Tbx.
'The position where the film is formed on the base layer formed on the substrate 2
0' is a floating position in the middle of being taken up by the take-up roll 23 after leaving the cylindrical can 21'.

また、磁気記録層が成膜される位置の近傍に、ハロゲン
ランプ等の簡便な加熱手段24を設け、基板20’ を
適度の温度に加熱することは好ましい態様である。
Further, it is a preferable embodiment to provide a simple heating means 24 such as a halogen lamp near the position where the magnetic recording layer is formed to heat the substrate 20' to an appropriate temperature.

上記の装置を用いて、垂直磁気記録用に適した二層膜構
造の磁性薄膜を形成するには、巻き出しロール22から
円筒型キャン21′を介して巻き取りロール23に基板
20’を移送させながら、まず最初に、下地層となるF
e−Ni合金等の軟磁性材料からなる第1のターゲット
対7al  、Tb+  を従来装置と同様にスパッタ
し、円筒型キャン21′の温度とほぼ同じ温度で基板2
0’上に軟磁性maを形成する。次いで、上記軟磁性薄
膜が形成された基板20′は円筒型キャン21′に沿っ
て移送され、キャン21′から離れて浮遊状態にある位
置にある時に、磁気記録層となるco−Cr合金等の磁
性材料からなる第2のターゲット対Ta2  、Tb2
 を従来装置と同様にスパッタし、磁気記録層を形成す
る。この磁気記録層の成膜時には、基板20′が円筒型
キャン21′から離れ浮遊状態にあるため、スパッタに
よる輻射熱は基板20′上にたまり基板20′の温度は
上昇し、基板を゛加熱しなから成膜を行うのと同様の効
果が得られる。この際、さらに基板20’を、より高温
の所望の濃度にするためにハロゲンランプ等の簡便な加
熱手段24を用いて基板20′を加熱する場合において
は、基板20′が浮遊状態にあるため熱が逃げずより少
ない熱量を加えるだけで所望の温度に加熱することがで
きる。
In order to form a magnetic thin film with a two-layer structure suitable for perpendicular magnetic recording using the above-mentioned apparatus, the substrate 20' is transferred from the unwinding roll 22 to the winding roll 23 via the cylindrical can 21'. First, while applying
A first target pair 7al, Tb+ made of a soft magnetic material such as an e-Ni alloy is sputtered in the same manner as in the conventional apparatus, and the substrate 2 is sputtered at approximately the same temperature as the cylindrical can 21'.
A soft magnetic ma is formed on 0'. Next, the substrate 20' on which the soft magnetic thin film is formed is transferred along the cylindrical can 21', and when it is in a floating position away from the can 21', a co-Cr alloy, etc., which will become a magnetic recording layer, is transferred. A second target pair made of magnetic materials Ta2, Tb2
is sputtered in the same manner as in the conventional apparatus to form a magnetic recording layer. During the formation of this magnetic recording layer, the substrate 20' is separated from the cylindrical can 21' and is in a floating state, so radiant heat from sputtering accumulates on the substrate 20', increasing the temperature of the substrate 20' and heating the substrate. The same effect as forming a film from scratch can be obtained. At this time, when the substrate 20' is further heated using a simple heating means 24 such as a halogen lamp to bring the substrate 20' to a desired concentration at a higher temperature, the substrate 20' is in a floating state. Heat does not escape and can be heated to the desired temperature by simply adding less heat.

本発明に用いられる軟磁性を有する磁性材料としては、
Fe −Nr 、Co −Ta 、Co−MO等が挙げ
られ、磁気記録層に用いられる磁性材料としては、Go
 −Cr 1Co −Rh 、Co −V。
The magnetic material having soft magnetism used in the present invention includes:
Examples of magnetic materials used in the magnetic recording layer include Fe-Nr, Co-Ta, Co-MO, and Go.
-Cr1Co-Rh, Co-V.

Go −Mo 、Co−W、Go =Cr −Rh 、
C。
Go-Mo, Co-W, Go=Cr-Rh,
C.

−Cr −V等が挙げられる。-Cr -V etc. are mentioned.

上記強磁性材料の薄膜を形成させる基板としては、ガラ
ス、アルミニウム、高分子基板があげられる。このうち
高分子基板では、膜堆積速度が大きすぎた場合、基板が
熱負けをおこしてしまうことがある。
Examples of the substrate on which the thin film of the ferromagnetic material is formed include glass, aluminum, and polymer substrates. Among these, in the case of a polymer substrate, if the film deposition rate is too high, the substrate may suffer from heat loss.

一方、工業的には、成膜速度は速いほどよいので、用い
る基板によって許される膜堆積速度の上限が存在する。
On the other hand, industrially, the faster the film deposition rate, the better; therefore, there is an upper limit to the film deposition rate allowed depending on the substrate used.

実験によりこの上限を求めた結果、ポリエステル系の高
分子基板(融点的300℃)では1500A / wi
n 、商品名カプトンで代表される耐熱性のポリイミド
基板では50GOA / sinをこえると基板が劣化
してしまうことがわかった。もちろん、この上限は、本
明細書記載の対向ターゲット式スパッタ法固有のもので
あり、例えばRF2極スパッタなどでは、成膜時に、基
板に2次電子が多量に入射するために水沫によるよりも
基板が加熱されやすく、従って同じ基板材料に対する膜
堆積速度の上限は上記数値よりもかなり低いものとなる
As a result of determining this upper limit through experiments, it is 1500A/wi for a polyester polymer substrate (melting point 300℃)
It has been found that in a heat-resistant polyimide substrate represented by the product name Kapton, the substrate deteriorates when it exceeds 50 GOA/sin. Of course, this upper limit is specific to the facing target sputtering method described in this specification. For example, in RF two-pole sputtering, etc., a large amount of secondary electrons are incident on the substrate during film formation. is likely to be heated, and therefore the upper limit of film deposition rate for the same substrate material is much lower than the above values.

[実施例] 以下、本発明をさらに具体的に実施例および比較例によ
り説明するが本発明はこれらにより限定されるものでは
ない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

比較例1 第1因に示した装置の同図右側のスパッタのみを用いて
、キャン21′の温度を20℃に保ち、ポリエチレンテ
レフタレート基板をキャン21′に接触した状態でQO
−Cr合金(Cr20wt%)の薄膜を以下の条件で形
成した。
Comparative Example 1 Using only the sputtering device on the right side of the figure of the apparatus shown in the first factor, the temperature of the can 21' was kept at 20°C, and QO was performed with the polyethylene terephthalate substrate in contact with the can 21'.
A thin film of -Cr alloy (Cr20wt%) was formed under the following conditions.

予備排気      2.OX 10  T 0rrA
r圧      1,5 mTorr投入電力    
   5kw 膜堆積速度     1,500Å/分基板搬送速度 
   5cm/分 膜  厚           2,500 A形成し
た薄膜のVSMヒステリシスを第2図に示す。得られた
薄膜の基板面に対して垂直方向の保磁力(以下HCL 
と表わす)および水平方向の保磁力(以下、HO//で
表わす)、ざらに基板面垂直方向の異方性磁界(面内方
向のヒステリシスループに原点から接線をひき、飽和磁
化Msとの交点の磁界とする。)(以下、Hk上で表わ
す)はそれぞれ、Hc上−1200e 、He// −
1400e 、Hk上−2,5000eであった。Hc
上は小さく、磁気記録媒体としては実用に供し得ないも
のであった。また、結晶のC軸の垂直配向度合を示す(
002)面のロッキング曲線の半値幅は5.6°と良好
であった。
Preliminary exhaust 2. OX 10 T 0rrA
r pressure 1.5 mTorr input power
5kw Film deposition rate 1,500Å/min Substrate transport speed
Figure 2 shows the VSM hysteresis of a thin film formed at 5 cm/min and a thickness of 2,500 A. The coercive force (hereinafter referred to as HCL) in the direction perpendicular to the substrate surface of the obtained thin film
(denoted as ) (hereinafter expressed as Hk) are −1200e and He// − on Hc, respectively.
It was 1,400e and -2,5000e on Hk. Hc
The top was small and could not be put to practical use as a magnetic recording medium. It also indicates the degree of vertical orientation of the C-axis of the crystal (
The half width of the rocking curve of the 002) surface was 5.6°, which was good.

実施例1 第1図に示した装置の同図左側のスパッタのみを用いて
、ポリイミド系基板(膜jj50μm)を浮遊した状態
でCo−Cr合金(Cr20wt%)のallを形成し
た以外は前記比較例1と同一切条件で行った。
Example 1 Same as the above comparison except that all of the Co-Cr alloy (Cr 20 wt%) was formed with the polyimide substrate (film jj 50 μm) floating using only the sputtering on the left side of the apparatus shown in FIG. The experiment was carried out under all the same conditions as in Example 1.

形成したIIJIIのVSMヒステリシスを第3図に示
す。得られた3111のHc上、Hoe/ およびHk
lはそれぞれ、)(01=  80008 %HC//
 = 27006 、 Hk 上−s、5sooe r
あり、比較例1と比べて大幅に改良されていた。また、
前記ロッキング曲線の半値幅は6.4°であった。
FIG. 3 shows the VSM hysteresis of the formed IIJII. On the Hc of the obtained 3111, Hoe/ and Hk
l is respectively )(01=80008%HC//
= 27006, Hk upper-s, 5sooer
This was a significant improvement compared to Comparative Example 1. Also,
The half width of the rocking curve was 6.4°.

比較例2 第1図に示した装置において、同図左側のターゲット対
Taユ 、Tb2  で成膜される位置が、キャン21
′を挟んで第1のターゲット対Ta+  、TtN  
と対称の位置にあり、キャン21′に基板20′が接触
した状態で成膜されるようにした以外は同様の装置を用
いて、以下の条件で二層膜構造の磁気記録媒体を製造し
た。
Comparative Example 2 In the apparatus shown in FIG. 1, the position where the film is formed by the target pair Ta Yu and Tb2 on the left side of the figure is located at the can 21.
′ between the first target pair Ta+, TtN
A magnetic recording medium with a two-layer film structure was manufactured under the following conditions using the same apparatus except that the film was formed with the substrate 20' in contact with the can 21'. .

下地層としてTa+  、Tbt  のターゲツト材に
Fe−Ni合金(Fe19wt%)を用いて5,0OO
Aのl:e −N t 蒲11 [Hc 5 Qe 、
ui700(ut: ハ初透磁率月を設け、この上にT
az 、Tl12  のターゲツト材にQo−Cr合金
(Cr20wt%)を比較例1で用いたと同様の条件で
成膜した。
Using Fe-Ni alloy (Fe19wt%) as the target material of Ta+ and Tbt as the base layer, 5,0OOO
A's l:e -N t 蒲11 [Hc 5 Qe,
ui700 (ut: HA initial permeability month is provided, and T is placed on top of this.
A film was formed under the same conditions as in Comparative Example 1 when Qo-Cr alloy (Cr 20 wt%) was used as the target material of az and Tl12.

実施例2 第1図に示した装置を用いて、磁気記録層のco−Qr
層を浮遊°状態で成膜した以外は比較例2と同一の条件
で二層膜構造の磁気記録媒体を製造した。
Example 2 Using the apparatus shown in FIG.
A magnetic recording medium having a two-layer film structure was manufactured under the same conditions as in Comparative Example 2 except that the layers were formed in a floating state.

得られた磁気記録媒体を単磁極ヘッド(主磁極厚0.3
μ信)で記録再生を行った時、050(再生出力が低記
録密度での半分になる記録密度)として78 kbpi
が得られた。
The obtained magnetic recording medium was used in a single magnetic pole head (main magnetic pole thickness 0.3
78 kbpi as 050 (recording density where the playback output is half of that at low recording density)
was gotten.

また、前記比較例2で得られた磁気記録媒体を同じく記
録再生した場合、低記録密度での再生出力値は実施例2
の半分であり、第2ピーク第3ピークはみられなかった
Furthermore, when the magnetic recording medium obtained in Comparative Example 2 was similarly recorded and reproduced, the reproduction output value at low recording density was as compared to that of Example 2.
The second and third peaks were not observed.

実施W42、比較例2の結果を第4図に示す。The results of Example W42 and Comparative Example 2 are shown in FIG.

実施例3 実施例1の製造方法において、ざらに磁気記録層の成膜
時に基板20′の裏面側より□ハロゲンランプ(150
W)で基板20′を100℃に加熱しながら行った以外
は同様にして二層膜構造の磁気記録媒体を得た。
Example 3 In the manufacturing method of Example 1, a □ halogen lamp (150
A magnetic recording medium having a two-layer structure was obtained in the same manner except that the substrate 20' was heated to 100° C. with W).

得られた磁気記録媒体の磁気特性を以下に示す。The magnetic properties of the obtained magnetic recording medium are shown below.

HCI     950 0e He//     300 0e Hk   6,000 0e 上 [発明の具体的効果〕 ltJ&!の如く、本発明においては基板を浮遊状態に
して対向ターゲット式スパッタ法により成膜することに
より、垂直磁化膜としての特性が著しく向上し、さらに
低電力、簡便な加熱手段を付加することにより、薄膜の
特性を容易に制−することが可能となり、低コストで良
好な垂直磁気記録用に好適な磁気記録媒体の製造が可能
となった。さらに、二層を連続成膜する場合に、下地層
をつける際のキャン温度を自由に設定できるのでco 
−CrJl等の磁気記録層の薄膜製造条件に左右されず
良好な下地層をつくることができる。
HCI 950 0e He// 300 0e Hk 6,000 0e Above [Specific effects of the invention] ltJ&! In the present invention, the properties of a perpendicularly magnetized film are significantly improved by depositing the film using the facing target sputtering method while the substrate is in a floating state, and by adding a low-power, simple heating means, It has become possible to easily control the properties of thin films, and it has become possible to manufacture magnetic recording media suitable for perpendicular magnetic recording at low cost and with good quality. Furthermore, when forming two layers in succession, the can temperature when applying the base layer can be freely set, so the CO
- A good underlayer can be produced regardless of the thin film manufacturing conditions of the magnetic recording layer such as CrJl.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に用いられる磁気記録媒体の
製造装置の説明図、第2図は従来方法で得られた磁性薄
膜のVSMヒステリシス曲線、第3図は本発明の製造方
法で得られた磁性薄膜のVSMヒステリシス曲線、第4
図は本発明の製造方法および従来法で得られた磁気記録
媒体を記録再生した際の再生出力と記録密度との関係を
示す図、第5図は従来方式の磁気記録媒体の製造装置の
説明図である。 10・・・真空槽、    20.20’ ・・・基 
板、22・・・巻き出しロール、23・・・轡き取りロ
ール、24・・・加熱手段、 Ta  、  Tb  、  Ta+   、 Tb 
1  、  Tax   、  Tb 2・・・ターゲ
ット、   60川スパッタ電源特許出願人 小西六写
真工業株式会社 代 理 人 弁理士 市之瀬 宮夫ニジ・fiF’A大
、ヲ理 1誦よ
FIG. 1 is an explanatory diagram of a magnetic recording medium manufacturing apparatus used in the manufacturing method of the present invention, FIG. 2 is a VSM hysteresis curve of a magnetic thin film obtained by the conventional method, and FIG. 3 is a diagram showing the VSM hysteresis curve obtained by the manufacturing method of the present invention. VSM hysteresis curve of the magnetic thin film obtained by
The figure shows the relationship between the reproduction output and the recording density when recording and reproducing magnetic recording media obtained by the manufacturing method of the present invention and the conventional method. Figure 5 is an explanation of the conventional magnetic recording medium manufacturing apparatus. It is a diagram. 10...Vacuum chamber, 20.20'...Group
Plate, 22... unwinding roll, 23... skimming roll, 24... heating means, Ta, Tb, Ta+, Tb
1, Tax, Tb 2...Target, 60 River Sputter Power Supply Patent Applicant Roku Konishi Photo Industry Co., Ltd. Representative Patent Attorney Ichinose Miyao Niji FIF'A University, Recite 1.

Claims (4)

【特許請求の範囲】[Claims] (1)陰極となる一対のターゲットを、そのスパッタ面
が空間を隔てて対面するよう配置し、該ターゲットを貫
く方向に磁界を発生する手段により磁界を発生しながら
、前記ターゲット間の側方に前記空間に対面するように
配置した基板上に、スパッタにより磁性薄膜を形成する
磁気記録媒体の製造方法において、成膜中の前記基板を
浮遊状態にして成膜することを特徴とする磁気記録媒体
の製造方法。
(1) A pair of targets serving as cathodes are arranged so that their sputtering surfaces face each other with a space between them, and while a magnetic field is generated by means of generating a magnetic field in a direction that penetrates the targets, a magnetic field is generated laterally between the targets. A method of manufacturing a magnetic recording medium in which a magnetic thin film is formed by sputtering on a substrate arranged to face the space, characterized in that the film is formed while the substrate is in a floating state. manufacturing method.
(2)前記基板がポリエステルからなり、かつ磁性薄膜
の形成速度が1500Å/分以下であることを特徴とす
る第(1)項記載の磁気記録媒体の製造方法。
(2) The method for manufacturing a magnetic recording medium according to item (1), wherein the substrate is made of polyester and the magnetic thin film is formed at a rate of 1500 Å/min or less.
(3)前記基板が耐熱性高分子からなり、かつ磁性薄膜
の形成速度が5000Å/分以下であることを特徴とす
る第(1)項記載の磁気記録媒体の製造方法。
(3) The method for manufacturing a magnetic recording medium according to item (1), wherein the substrate is made of a heat-resistant polymer and the magnetic thin film is formed at a rate of 5000 Å/min or less.
(4)前記浮遊状態で成膜中の基板を加熱手段により加
熱することを特徴とする第(2)項または第(3)項記
載の磁気記録媒体の製造方法。
(4) The method for manufacturing a magnetic recording medium according to item (2) or item (3), characterized in that the substrate during film formation in the floating state is heated by a heating means.
JP3246885A 1985-02-20 1985-02-20 Production of magnetic recording medium Pending JPS61192032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246885A JPS61192032A (en) 1985-02-20 1985-02-20 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246885A JPS61192032A (en) 1985-02-20 1985-02-20 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61192032A true JPS61192032A (en) 1986-08-26

Family

ID=12359802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246885A Pending JPS61192032A (en) 1985-02-20 1985-02-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61192032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086276A1 (en) * 2006-01-25 2007-08-02 Ulvac, Inc. Spattering device and film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086276A1 (en) * 2006-01-25 2007-08-02 Ulvac, Inc. Spattering device and film forming method
KR101006057B1 (en) 2006-01-25 2011-01-06 울박, 인크 Spattering and film forming method
JP4717896B2 (en) * 2006-01-25 2011-07-06 株式会社アルバック Sputtering apparatus and film forming method
US8147657B2 (en) 2006-01-25 2012-04-03 Ulvac, Inc. Sputtering device and film forming method

Similar Documents

Publication Publication Date Title
US4767516A (en) Method for making magnetic recording media
JPH0411625B2 (en)
JPS61192032A (en) Production of magnetic recording medium
JPS60182711A (en) Method and apparatus for forming magnetic thin-film
JPS59162622A (en) Vertical magnetic recording material and its production
JP2971558B2 (en) Magnetic recording tape excellent in abrasion resistance and corrosion resistance and method of manufacturing the same
JPS6152361A (en) Formation of thin film
JPH0555930B2 (en)
JP2613294B2 (en) Thin film formation method
JPS61187127A (en) Manufacture of magnetic recording medium
EP0479109B1 (en) Process for fabrication of magneto-optic recording medium
JPH0451889B2 (en)
JPS61196430A (en) Production of magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPS62151563A (en) Thin film forming device
JPS58108035A (en) Manufacture of flexible magnetic recording medium
JPS61242332A (en) Device for producing vertical magnetic recording medium
JPS60205830A (en) Production of thin film
JPS641855B2 (en)
JP2003100543A (en) Method of forming magnetic film
JPH0548530B2 (en)
JPH0528487A (en) Production of magnetic recording medium
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPS60117420A (en) Method for forming continuous thin film
JPS6126938A (en) Production of vertically magnetized recording medium