JPH0555930B2 - - Google Patents

Info

Publication number
JPH0555930B2
JPH0555930B2 JP60209378A JP20937885A JPH0555930B2 JP H0555930 B2 JPH0555930 B2 JP H0555930B2 JP 60209378 A JP60209378 A JP 60209378A JP 20937885 A JP20937885 A JP 20937885A JP H0555930 B2 JPH0555930 B2 JP H0555930B2
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
incident angle
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60209378A
Other languages
Japanese (ja)
Other versions
JPS6267729A (en
Inventor
Takao Nakatsuka
Minoru Kume
Daisuke Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20937885A priority Critical patent/JPS6267729A/en
Priority to US06/864,357 priority patent/US4767516A/en
Priority to EP86106807A priority patent/EP0202645B1/en
Priority to DE8686106807T priority patent/DE3682942D1/en
Publication of JPS6267729A publication Critical patent/JPS6267729A/en
Publication of JPH0555930B2 publication Critical patent/JPH0555930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、量産化に適したスパツタ法による垂
直磁気記録媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing a perpendicular magnetic recording medium by a sputtering method suitable for mass production.

(ロ) 従来の技術 第9図に示すようにCo−Cr、Co−Cr−Rhな
どの強磁性金属の垂直磁化膜2を非磁性基板1上
にスパツタ形成して得られる垂直磁気記録媒体
は、残留磁束密度が大きく高密度記録に適してい
る。
(b) Prior art As shown in FIG. 9, a perpendicular magnetic recording medium obtained by sputtering a perpendicularly magnetized film 2 of a ferromagnetic metal such as Co-Cr or Co-Cr-Rh on a non-magnetic substrate 1 is , has a large residual magnetic flux density and is suitable for high-density recording.

例えば、PET、ポリアミド、ポリイミドなど
のプラスチツクフイルム等の非磁性基板上に、
Co−Crなどの磁化膜を高速スパツタ形成する方
法として対向ターゲツト式スパツタ法、マグネト
ロン式スパツタ法を応用することが提案されてい
る。(雑誌「応用物理第48巻第6号第557〜561頁
「新しいスパツタ膜形成技術の動向」) 第10図は一般的な対向ターゲツト式スパツタ
法を利用した磁気テープ製造装置の概略図であ
る。
For example, on a non-magnetic substrate such as a plastic film made of PET, polyamide, polyimide, etc.
It has been proposed to apply a facing target sputtering method and a magnetron sputtering method as a method for forming a magnetized film of Co--Cr or the like by high-speed sputtering. (Magazine Applied Physics Vol. 48, No. 6, pp. 557-561 "Trends in New Sputter Film Forming Technology") Figure 10 is a schematic diagram of a magnetic tape manufacturing apparatus using a general facing target sputtering method. .

この装置において、まず真空槽を十分排気した
後、Arガスを導入し、スパツタ電源4によりタ
ーゲツト5,5′(例えばCo−Cr合金板)に負の
高電圧を印加するとArガスがイオン化してプラ
ズマ放電が起る。この正に帯電したArイオンが
前記ターゲツトに衝突すると、ターゲツト表面の
粒子がスパツタされてキヤンローラ6によつて定
速移送される非磁性基板1上にCo−Crなどの磁
化膜が形成される。そしてキヤンローラ6の周面
の一部をキヤンマスク9で被覆し、キヤンローラ
6に纒周案内される非磁性基板1に対するスパツ
タ金属の入射角度を規制すると、基板上に垂直磁
化膜が形成される。
In this device, first, after sufficiently exhausting the vacuum chamber, Ar gas is introduced, and when a negative high voltage is applied to the targets 5 and 5' (for example, a Co-Cr alloy plate) using the sputter power supply 4, the Ar gas is ionized. Plasma discharge occurs. When these positively charged Ar ions collide with the target, particles on the surface of the target are sputtered and a magnetized film of Co--Cr or the like is formed on the non-magnetic substrate 1 which is transported at a constant speed by the can roller 6. A part of the circumferential surface of the can roller 6 is covered with a can mask 9 to regulate the angle of incidence of the sputtered metal onto the nonmagnetic substrate 1 which is guided around the can roller 6, thereby forming a perpendicularly magnetized film on the substrate.

第10図において、7は供給ローラ、8は巻取
ローラ、10,10′はプラズマ収束用の磁石を
示す。非磁性基板1上に堆積するスパツタ粒子の
初期入射角θiを一定値以下に制限することは、高
性能な垂直磁化膜を形成する上で不可欠である。
In FIG. 10, 7 is a supply roller, 8 is a take-up roller, and 10 and 10' are magnets for plasma convergence. Limiting the initial incident angle θi of sputtered particles deposited on the nonmagnetic substrate 1 to a certain value or less is essential for forming a high-performance perpendicularly magnetized film.

一方、初期入射角θiを小さくすると、スパツタ
金属(粒子)の非磁性基板上への堆積率が悪くな
り、量産効率が著しく低下するという問題を残
す。
On the other hand, if the initial incident angle θi is made small, the deposition rate of sputtered metal (particles) on the non-magnetic substrate becomes poor, leaving the problem that mass production efficiency is significantly reduced.

またキヤンローラ6を加熱して非磁性基板1を
高温に保持することはその上に高保磁力を持つ垂
直磁化膜を形成する上で不可欠である。
Further, heating the can roller 6 to maintain the nonmagnetic substrate 1 at a high temperature is essential for forming a perpendicularly magnetized film having a high coercive force thereon.

一方非磁性基板温度を一定温度以上に加熱させ
ることは、PETフイルム等、耐熱性の低い基板
等への熱損傷を発生させ、またポリアミド、ポリ
イミドフイルム等の耐熱性を有する基板の場合で
も磁化膜形成中に基板自身のしわを生じさせ垂直
磁化膜の形成を困難にするという問題を残すこと
になる。
On the other hand, heating a non-magnetic substrate above a certain temperature can cause thermal damage to substrates with low heat resistance such as PET film, and even in the case of heat-resistant substrates such as polyamide and polyimide films, magnetized films This leaves the problem that the substrate itself wrinkles during formation, making it difficult to form a perpendicularly magnetized film.

(ハ) 発明が解決しようとする問題点 本発明はスパツタ中の非磁性基板温度の上昇に
よる熱損傷及びしわの発生を防ぐことにより、高
性能な垂直磁気記録媒体を量産性よく製造するた
めの方法を提供するものである。
(c) Problems to be Solved by the Invention The present invention provides a method for mass-producing high-performance perpendicular magnetic recording media by preventing heat damage and wrinkles caused by the rise in temperature of non-magnetic substrates during sputtering. The present invention provides a method.

(ニ) 問題点を解決するための手段 定速移送される非磁性基板を比較的高温(T1
℃以上)に保ち、その上にCo−Cr等の強磁性金
属をスパツタ法により入射角θ1(但しθ1≦15°)で
被着して少くとも700O″e以上の高保磁力を呈し
後の工程でその上に被着するスパツタ粒子のエピ
タキシヤルな結晶成長を可能とする第1薄膜を形
成すると共に、前記第1薄膜上にスパツタされた
強磁性金属を上記非磁性基板の温度を比較的低温
(T2℃以下、但しT2<T1)に保ち乍ら入射角θ2
(θ2≫θ1)で被着せしめ第2薄膜をエピタキシヤ
ルに成長形成する。
(d) Measures to solve the problem A non-magnetic substrate that is transferred at a constant speed is heated to a relatively high temperature (T1
℃ or above), and then deposit a ferromagnetic metal such as Co-Cr on top of it by a sputtering method at an incident angle of θ1 (however, θ1≦15°) to exhibit a high coercive force of at least 700 O″e or more, and then apply it in subsequent steps. to form a first thin film that enables epitaxial crystal growth of sputtered particles deposited thereon, and to reduce the temperature of the nonmagnetic substrate to a relatively low temperature so that the ferromagnetic metal sputtered on the first thin film is heated to a relatively low temperature. (T2℃ or less, however, T2<T1) while keeping the incident angle θ2
(θ2≫θ1) and a second thin film is epitaxially grown.

(ホ) 作用 PET等の耐熱性の低いフィルム基板上に第1
薄膜を形成する際に、基板温度T1以上で、且つ
入射角θ1(但しθ1≦15°)でスパツタリングするこ
とにより、高保磁力でその上に後の工程で低温で
被着するスパツタ粒子のエピタキシヤルな結晶成
長を可能とする薄膜を形成する。その後基板温度
T2<T1(T2は基板の融点に比して著しく低い)
の関係にある基板温度T2で第1薄膜上に強磁性
金属を入射角θ2(θ2≫θ1)でスパツタリングしエ
ピタキシヤルに結晶成長させて第2薄膜を形成さ
せると基板の熱損傷を無くし、高性能な垂直磁化
膜が堆積効率よく形成される。
(e) Action: The first layer is placed on a film substrate with low heat resistance such as PET.
When forming a thin film, by sputtering at a substrate temperature of T1 or higher and at an incident angle of θ1 (however, θ1≦15°), sputtered particles are deposited on top of the thin film with high coercive force at a low temperature in a subsequent process. Forms a thin film that enables crystal growth. Then the substrate temperature
T2<T1 (T2 is significantly lower than the melting point of the substrate)
If a ferromagnetic metal is sputtered on the first thin film at an incident angle θ2 (θ2≫θ1) at a substrate temperature T2 with the relationship of A high performance perpendicular magnetization film can be deposited with high efficiency.

(ヘ) 実施例 本発明の基礎となる実験 (1) 第10図の対向ターゲツト式スパツタ装置を
用いて、ポリイミドフイルムベース上にCo−
Crをスパツタリングする際に、初期入射角θiと
フイルムベース上に形成されたCo−Cr膜の残
留磁化比MV/MHとの関係を測定した。第2
図は、測定結果を初期入射角θiを横軸に、残留
磁化比MV/MHを縦軸にとつて表わしたもの
である。
(F) Example Experiment (1) As the basis of the present invention, using the facing target sputtering apparatus shown in FIG.
When sputtering Cr, the relationship between the initial incident angle θi and the residual magnetization ratio MV/MH of the Co--Cr film formed on the film base was measured. Second
The figure shows the measurement results with the initial incident angle θi on the horizontal axis and the residual magnetization ratio MV/MH on the vertical axis.

この図から明らかなように初期入射角θiが小
さい程、Co−Cr膜の残留磁化比MV/MHが
大きくなる。MV/MHが1以上であることが
垂直磁化膜の条件であるから、第2図か明らか
な様に、Co−Cr垂直磁化膜を得るには初期入
射角θiを15°以内に制限する必要があることが
分る。
As is clear from this figure, the smaller the initial incident angle θi, the larger the residual magnetization ratio MV/MH of the Co--Cr film. Since the condition for a perpendicularly magnetized film is that MV/MH is 1 or more, as is clear from Figure 2, it is necessary to limit the initial incident angle θi to within 15° to obtain a Co-Cr perpendicularly magnetized film. It turns out that there is.

(2) 同様に、第10図の装置を用いて、ポリイミ
ドフイルムベース上に、Co−Crをスパツタリ
ングする際に、初期入射角θiとフイルムベース
上に形成されるCo−Cr膜の堆積効率の関係を
測定した。第3図に初期入射角θi(横軸)とCo
−Cr膜の堆積効率(縦軸)との関係を示す。
(2) Similarly, when sputtering Co-Cr onto a polyimide film base using the apparatus shown in Figure 10, the initial incident angle θi and the deposition efficiency of the Co-Cr film formed on the film base are The relationship was measured. Figure 3 shows the initial incident angle θi (horizontal axis) and Co
-Relationship with Cr film deposition efficiency (vertical axis) is shown.

第10図のスパツタ装置の構造上、初期入射
角θi=45°はキヤンマスク9を取外した状態と
同等である。ここではキヤンマスク9を取外し
たときの堆積効率を1として規格化した。この
図から分るように初期入射角θi=15°(即ち
MV/MH=1)のとき堆積効率は0.7となる。
MV/MHが1.5以上の更に高性能なCo−Cr垂
直磁化膜(MV/MHが大きい程、高記録密度
に適する)を得るためには、第2図から初期入
射角θi=5°以内に制限する必要があるが、この
とき堆積効率は0.5以下に低下する。
Due to the structure of the sputtering apparatus shown in FIG. 10, the initial incident angle θi=45° is equivalent to the state in which the can mask 9 is removed. Here, the deposition efficiency when the can mask 9 was removed was standardized as 1. As can be seen from this figure, the initial incident angle θi = 15° (i.e.
When MV/MH=1), the deposition efficiency is 0.7.
In order to obtain a higher performance Co-Cr perpendicularly magnetized film with an MV/MH of 1.5 or more (the larger the MV/MH is, the more suitable it is for high recording density), the initial incident angle θi should be within 5°, as shown in Figure 2. Although it is necessary to limit the amount, in this case the deposition efficiency decreases to 0.5 or less.

前述の2つの実験(1)(2)から、高速スパツタ法
により高性能な垂直磁化膜を移動する非磁性基
板上に形成するには、スパツタ粒子の初期入射
角θiを小さくする必要があり、その結果スパツ
タ粒子の堆積効率が低下するという背反する要
因があることが判つた。
From the above two experiments (1) and (2), in order to form a high-performance perpendicularly magnetized film on a moving non-magnetic substrate using the high-speed sputtering method, it is necessary to reduce the initial incident angle θi of the sputtered particles. As a result, it was found that there is a contradictory factor in that the deposition efficiency of spatter particles decreases.

(3) 上述の実験結果に基づいて、本発明者等はポ
リイミドフイルムベース上にCo−Crをスパツ
タリング被着させる際に、第1薄膜21(第4
図)を小さい初期入射角でスパツタリング被着
せしめ、垂直対水平残留磁化比が1以上でエピ
タキシヤルな結晶成長を可能とする第1薄膜を
形成し、その上にθ2≫θ1の角度で第2薄膜22
(第4図)をスパツタリング被着させれば垂直
対水平残留磁化比が1以上の薄膜が効率よく形
成されるのではないかという予測を基に、初期
入射角θi=5°でCo−Cr膜の第1薄膜21を種々
の膜厚で形成し、更にその上に初期入射角θi=
45°でCo−Cr膜の第2薄膜22を全厚tが0.3μ
mになるように形成したときの第1薄膜の膜厚
と全層Co−Cr膜の残留磁化比MV/MHとの
関係を求めた。第5図は第1薄膜21の厚みを
横軸、垂直対水平残留磁化比MV/MHを縦軸
にとり、実験(3)の結果を示すものである。
(3) Based on the above experimental results, the present inventors have determined that the first thin film 21 (the fourth
(Fig.) is sputtered at a small initial incidence angle to form a first thin film with a vertical to horizontal residual magnetization ratio of 1 or more and which enables epitaxial crystal growth. thin film 22
Based on the prediction that a thin film with a vertical-to-horizontal residual magnetization ratio of 1 or more could be efficiently formed by sputtering Co-Cr (Fig. 4) at an initial incident angle of θi = 5°. The first thin film 21 of the film is formed with various film thicknesses, and the initial incident angle θi=
At 45°, the second thin film 22 of Co-Cr film has a total thickness t of 0.3μ.
The relationship between the thickness of the first thin film and the residual magnetization ratio MV/MH of the full-layer Co--Cr film was determined when the film was formed to have a thickness of m. FIG. 5 shows the results of experiment (3), with the horizontal axis representing the thickness of the first thin film 21 and the vertical to horizontal residual magnetization ratio MV/MH representing the vertical axis.

この図からMV/MHが1以上のCo−Cr膜
を得るには第1薄膜の膜厚を0.02μm以上にす
ればよいことが分る。第1薄膜の膜厚が0.05μ
m以上でMV/MHが最大値1.5になる。このよ
うに第1薄膜を初期入射角θiを十分小さくして
形成すれば結晶粒子が膜面に垂直に成長し易く
なり更にその上に第2薄膜を初期入射角θiを極
力大きくして形成しても、第2薄膜の膜は第1
薄膜の上にエピタクシヤルに結晶成長するた
め、第2薄膜も垂直配向性のよい結晶粒子層と
なり、その結果残留磁化比MV/MHの大きい
膜を得ることができる。従つて、第2薄膜を高
い堆積効率で形成することができるので高性能
な垂直磁気記録媒体の量産性が向上する。
From this figure, it can be seen that in order to obtain a Co--Cr film with MV/MH of 1 or more, the thickness of the first thin film should be 0.02 μm or more. The thickness of the first thin film is 0.05μ
m or more, MV/MH reaches the maximum value of 1.5. In this way, if the first thin film is formed with a sufficiently small initial angle of incidence θi, the crystal grains will easily grow perpendicular to the film surface, and furthermore, the second thin film can be formed on top of it with the initial angle of incidence θi as large as possible. Even if the second thin film is
Since crystals grow epitaxially on the thin film, the second thin film also becomes a crystal grain layer with good vertical orientation, and as a result, a film with a large residual magnetization ratio MV/MH can be obtained. Therefore, since the second thin film can be formed with high deposition efficiency, mass productivity of high-performance perpendicular magnetic recording media is improved.

(4) 第10図の対向ターゲツト式スパツタ装置を
用いて、ポリイミドフイルムベース上にCo−
Crをスパツタリングする際に、フイルム基板
温度とフイルム基板上に形成されたCo−Cr膜
の垂直方向保磁力Hc⊥の関係を測定した。第
6図は、測定結果を基板温度を横軸に垂直方向
保磁力を縦軸にとつて表わしたものである。
(4) Using the opposed target sputtering device shown in Fig. 10, Co-sputter is applied onto the polyimide film base.
When sputtering Cr, the relationship between the film substrate temperature and the perpendicular coercive force Hc⊥ of the Co--Cr film formed on the film substrate was measured. FIG. 6 shows the measurement results with the substrate temperature on the horizontal axis and the vertical coercive force on the vertical axis.

この図から明らかな様に基板温度Tsが高い
程Co−Cr膜の垂直方向保磁力Hc⊥が高くな
る。リングヘツドによる垂直磁気記録では少な
くとも垂直方向保磁力Hc⊥が700O″e以上、好
ましくは1000O″e程度の膜が必要であるから、
第6図から明らかな様に、Co−Cr垂直磁化膜
を得るには基板温度を少なくとも100℃以上好
ましくは110〜120℃程度にする必要がある。こ
の様な実験結果から明らかな如く、高速スパツ
タ法により高性能な垂直磁化膜を移動する非磁
性基板上に形成するには、基板温度を高くする
必要があるが、高エネルギーのスパツタ粒子の
堆積により基板温度が更に上昇するためPET
フイルム等の耐熱性の低い基板上には膜形成が
困難になる。実験に依ればPETフイルムに熱
損傷、しわ発生なく、膜厚0.3μmを膜形成でき
る基板温度は70℃以下であることが確認され
た。
As is clear from this figure, the higher the substrate temperature Ts, the higher the vertical coercive force Hc⊥ of the Co--Cr film. Perpendicular magnetic recording using a ring head requires a film with a perpendicular coercive force Hc⊥ of at least 700 O"e or more, preferably about 1000 O"e.
As is clear from FIG. 6, in order to obtain a Co--Cr perpendicular magnetization film, it is necessary to raise the substrate temperature to at least 100°C or more, preferably about 110 to 120°C. As is clear from these experimental results, in order to form a high-performance perpendicularly magnetized film on a moving non-magnetic substrate using the high-speed sputtering method, it is necessary to raise the substrate temperature; Because the substrate temperature further increases due to PET
It becomes difficult to form a film on a substrate with low heat resistance such as a film. According to experiments, it has been confirmed that the substrate temperature at which a film can be formed to a thickness of 0.3 μm without causing thermal damage or wrinkles on the PET film is 70°C or lower.

(5) 上述の実験結果に基づいて本発明者らは、
PETフイルムベース上にCo−Crをスパツタリ
ング被着させる際に第1薄膜21(第4図)を
高い基板温度T1で膜厚を薄くしてスパツタリ
ング被着せしめ、高垂直方向保磁力でエピタキ
シヤルな結晶成長可能とする第1薄膜を形成
し、その上にT1よりも低温の基板温度T2で第
2薄膜22(第4図)をスパツタリング被着さ
せれば高垂直方向保磁力の薄膜が形成されるの
ではないかという予測を基に、基板温度Ts(1)
=120℃でCo−Cr膜の第1薄膜21を種々の膜
厚で形成し更にその上に第2薄膜22を基板温
度60℃、全厚が0.3μmになるように形成したと
きの第1薄膜の膜厚と全層Co−Cr膜の垂直方
向保磁力Hc⊥の関係を求めた、第7図は第1
薄膜21の膜厚を横軸、垂直方向保磁力Hc⊥
を縦軸にとつて示したものである。
(5) Based on the above experimental results, the present inventors
When depositing Co-Cr on a PET film base by sputtering, the first thin film 21 (Fig. 4) is thinned and deposited by sputtering at a high substrate temperature T1, and is epitaxially deposited with a high vertical coercive force. If a first thin film that enables crystal growth is formed and a second thin film 22 (Fig. 4) is sputtered onto it at a substrate temperature T2 lower than T1, a thin film with a high perpendicular coercive force is formed. Based on the prediction that the substrate temperature Ts(1)
The first thin film 21 of the Co-Cr film was formed at various thicknesses at 120°C, and the second thin film 22 was further formed thereon at a substrate temperature of 60°C with a total thickness of 0.3 μm. The relationship between the thickness of the thin film and the perpendicular coercive force Hc⊥ of the full-layer Co-Cr film was determined, and Figure 7 is shown in Figure 1.
The horizontal axis is the film thickness of the thin film 21, and the vertical coercive force Hc⊥
is plotted on the vertical axis.

この図からHc⊥(垂直方向の保磁力)が
1000O″e程度のCo−Cr膜を得るには第1薄膜
の膜厚を0.02μm以上にすればよいことがわか
る。
From this figure, Hc⊥ (vertical coercive force) is
It can be seen that in order to obtain a Co--Cr film of about 1000 O''e, the thickness of the first thin film should be 0.02 μm or more.

次に基板温度T1=120℃でCo−Cr膜の第1
薄膜21を形成し、更にその上に第2薄膜22
を種々の基板温度T2で全厚が0.3μmになる様
に形成したときの第2薄膜の基板温度T2と全
層Co−Cr膜の垂直方向保磁力Hc⊥の関係を求
めた。第8図は、第2薄膜22の基板温度Ts
(2)を横軸、垂直方向保磁力Hc⊥を縦軸にとつ
て示したものである。
Next, at the substrate temperature T1 = 120℃, the first layer of Co-Cr film
A thin film 21 is formed, and a second thin film 22 is further formed thereon.
The relationship between the substrate temperature T2 of the second thin film and the vertical coercive force Hc⊥ of the full-layer Co--Cr film was determined when the second thin film was formed at various substrate temperatures T2 so as to have a total thickness of 0.3 μm. FIG. 8 shows the substrate temperature Ts of the second thin film 22.
(2) is shown on the horizontal axis and the vertical coercive force Hc⊥ is shown on the vertical axis.

この図からHc⊥が700O″e以上のCo−Cr膜を
得るには第2薄膜の基板温度Ts(2)を40℃以上
にすればよいことがわかる。
From this figure, it can be seen that in order to obtain a Co--Cr film with Hc⊥ of 700 O″e or more, the substrate temperature Ts(2) of the second thin film should be set to 40° C. or more.

上述の実験により、第1薄膜形成時の基板温
度を120℃、膜厚を0.02μm以上とし、第2薄膜
の基板温度を60℃、全厚を0.3μmとすれば垂直
方向保磁力Hc⊥が1000O″e程度となる。
According to the above experiment, if the substrate temperature during the formation of the first thin film is 120°C and the film thickness is 0.02 μm or more, and the substrate temperature of the second thin film is 60°C and the total thickness is 0.3 μm, the vertical coercive force Hc⊥ is It will be about 1000O″e.

この様に第1薄膜を基板温度を十分高くして
極薄く形成すれば第2薄膜基板温度を低くして
も第2薄膜は第1薄膜の上にエピタキシヤルに
結晶成長するため第2薄膜において高垂直方向
保磁力の膜を得ることができる。
In this way, if the first thin film is formed extremely thin at a sufficiently high substrate temperature, the second thin film will epitaxially grow crystals on top of the first thin film even if the second thin film substrate temperature is lowered. A film with high perpendicular coercive force can be obtained.

第1薄膜は極薄いため、高エネルギーのスパ
ツタ粒子の堆積による基板温度の上昇が低く、
従つてPET等耐熱性の低いフイルム上にも基
板熱損傷無く膜形成することができる。
Since the first thin film is extremely thin, the rise in substrate temperature due to deposition of high-energy spatter particles is low.
Therefore, it is possible to form a film on a film with low heat resistance such as PET without causing thermal damage to the substrate.

製造装置 第1図は、本発明の製造方法を実施するための
装置の一実施例を示すものである。この装置は基
本的に対向ターゲツト方式のスパツタリング装置
を採用している。
Manufacturing Apparatus FIG. 1 shows an embodiment of an apparatus for carrying out the manufacturing method of the present invention. This equipment basically employs a facing target type sputtering equipment.

この装置では、真空槽3の中央にそれぞれ背面
にプラズマ集束用の永久磁石10,10′を備え
るCo−Crの対向ターゲツト5,5′を配し、その
左右の開口に面して一対のキヤンローラ6,6を
配置している。前記各キヤンローラの周面を纒周
して移送されるPET(或はポリイミド)フイルム
1は供給ロール7−キヤンローラ6−案内ロール
11,11,11,11−キヤンロール6′−巻
取ロール8の経路で略定速で移送される。
In this device, opposed Co-Cr targets 5 and 5' each having a permanent magnet 10 and 10' for plasma focusing on the back are placed in the center of a vacuum chamber 3, and a pair of can rollers are placed facing the left and right openings. 6,6 is placed. The PET (or polyimide) film 1 that is wrapped around the circumferential surface of each of the can rollers and transferred is routed through the supply roll 7 - the can roller 6 - the guide rolls 11, 11, 11, 11 - the can roll 6' - the take-up roll 8. It is transported at a substantially constant speed.

キヤンローラ6,6′の周面に沿つて案内され
るPETフイルム1は、いずれも同じ面がスパツ
タリング装置Sの開口側に面する様に案内され
る。両キヤンロール6,6′へのスパツタ粒子の
入射角及び膜堆積速度は水冷式のキヤンマスク
9,9′により調整することが出来る。実施例で
は、供給ロール7側のキヤンマスク9の初期入射
角θiaを5°に設定し、巻取りローラ8側のキヤン
マスク9′の初期入射角θibを5°に設定した。
The PET film 1 is guided along the circumferential surfaces of the can rollers 6 and 6' so that the same surface faces the opening side of the sputtering device S. The angle of incidence of sputtered particles onto both can rolls 6, 6' and the film deposition rate can be adjusted by water-cooled can masks 9, 9'. In the example, the initial incident angle θia of the can mask 9 on the supply roll 7 side was set to 5°, and the initial incident angle θib of the can mask 9' on the take-up roller 8 side was set to 5°.

上記PETフイルム(非磁性基板)の温度は前
記両キヤンロール6,6′をロールに内蔵するヒ
ータ等によつて加熱しロール温度を調整すること
により任意に設定することが出来る。この実施例
では、供給ロール7側のキヤンローラ6に巻付け
られその上に第1薄膜が形成されるPETフイル
ム1の温度を120℃に設定し、巻取ローラ18側
のキヤンローラ6′に巻付けられその上に第2薄
膜が形成されるPETフイルム1の温度を60℃に
設定した。この様な構成で、まず、真空槽内を1
×10-6Torrに排気した後、Arガスを導入して2
×10-3Torrとし、PETフイルムを、15cm/min
の送り速度で移動させながら、スパツタ電力密度
10w/cm2でCo−Crd膜を形成すると膜厚0.3μm垂
直方向保磁力Hc⊥が1000O″eの良好な垂直磁化
膜を、PETフイルム上に熱損傷なくかつしわ発
生もなく形成することができた。
The temperature of the PET film (non-magnetic substrate) can be arbitrarily set by heating both the can rolls 6, 6' with a heater built into the rolls and adjusting the roll temperature. In this embodiment, the temperature of the PET film 1, which is wound around the can roller 6 on the supply roll 7 side and on which the first thin film is formed, is set to 120°C, and the PET film 1 is wound around the can roller 6' on the take-up roller 18 side. The temperature of the PET film 1 on which the second thin film was formed was set at 60°C. With this configuration, first, the inside of the vacuum chamber is
After exhausting to ×10 -6 Torr, Ar gas was introduced and
×10 -3 Torr, PET film 15cm/min
Sputter power density while moving at a feed rate of
When a Co-Crd film is formed at 10w/cm 2 , a perpendicularly magnetized film with a thickness of 0.3 μm and a perpendicular coercive force Hc⊥ of 1000 O″e can be formed on a PET film without thermal damage or wrinkles. did it.

発明者等の実験に依れば高性能なCo−Cr垂直
磁気記録媒体をPETフイルム等の耐熱性の無い
基板上でも製造し得ることが確認できた。
According to experiments conducted by the inventors, it has been confirmed that a high-performance Co--Cr perpendicular magnetic recording medium can be manufactured even on a non-heat-resistant substrate such as a PET film.

上記実施例では対向ターゲツト式スパツタ法で
プラスチツクフイルム上にCo−Cr膜を形成する
場合について述べたが、本発明はこれに限定する
ものでなく、マグネトロン式スパツタ法でも、
Co−Cr膜以外のCo−Cr−Rh等の垂直磁化膜で
も同様の効果が得られることが判つた。
In the above embodiment, a case was described in which a Co-Cr film was formed on a plastic film by a facing target sputtering method, but the present invention is not limited to this, and a magnetron sputtering method may also be used.
It has been found that similar effects can be obtained with perpendicularly magnetized films such as Co-Cr-Rh other than Co-Cr films.

上記実施例では対向ターゲツト式スパツタ法で
プラスチツクフイルム上にCo−Cr膜を形成する
場合について述べたが、本発明はこれに限定する
ものでなく、マグネトロン式スパツタ法でも、
Co−Cr膜以外のCo−Cr−Rh等の垂直磁化膜で
も同様の効果が得られる。
In the above embodiment, a case was described in which a Co-Cr film was formed on a plastic film by a facing target sputtering method, but the present invention is not limited to this, and a magnetron sputtering method may also be used.
Similar effects can be obtained with perpendicularly magnetized films such as Co-Cr-Rh other than Co-Cr films.

本発明を垂直磁気記録媒体の製法に応用する場
合にはスパツタリングする強磁性金属の堆積効率
を向上するために第1薄膜形成時の入射角θ1を絞
り、第2薄膜形成時の入射角θ2を出来るだけ開放
することが望ましい。
When the present invention is applied to the manufacturing method of perpendicular magnetic recording media, in order to improve the deposition efficiency of sputtering ferromagnetic metal, the incident angle θ1 when forming the first thin film is narrowed down, and the incident angle θ2 when forming the second thin film is reduced. It is desirable to open it up as much as possible.

(ト) 発明の効果 本発明によれば、PET等の耐熱性の低いフイ
ルム基板上に高保磁力の磁性層を能率よく形成出
来、特に、垂直対水平残留磁化率の高い高性能な
垂直磁気記録媒体の量産効率の良い製造法を提供
することができる。
(G) Effects of the Invention According to the present invention, a magnetic layer with high coercive force can be efficiently formed on a film substrate with low heat resistance such as PET, and in particular, high-performance perpendicular magnetic recording with high vertical to horizontal residual magnetic susceptibility can be achieved. It is possible to provide a manufacturing method that is efficient in mass production of media.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本発明に係り、第1図は製
造装置の概略図、第2図は初期入射角θi対Co−
Cr膜の残留磁化比の関係を示す図、第3図は初
期入射角θi対Co−Cr膜の堆積効率化の関係を示
す図、第4図は磁気媒体の部分断面図、第5図は
Co−Crの第1薄膜厚対Co−Crの(第1薄膜+第
2薄膜)のMV/MHの関係を示す図、第6図は
基板温度対保持磁力Hcの関係を示す図、第7図
はCo−Crの(第1薄膜の膜厚)対Co−Crの(第
1薄膜+第2薄膜)の保磁力の関係を示す図、第
8図は第2薄膜の基板温度対Co−Cr膜の保磁力
を関係を示す図である。第9図及び第10図は従
来例に係り、第9図は磁気記録媒体の部分断面
図、第10図は製造装置の概略図である。 1……PETフイルム、6,6′……キヤンロー
ラ、5,5′……対向ターゲツト、7……供給ロ
ーラ、18……巻取ローラ、9……キヤンマス
ク。
1 to 8 relate to the present invention, FIG. 1 is a schematic diagram of a manufacturing apparatus, and FIG. 2 is an initial incident angle θi vs. Co-
Figure 3 is a diagram showing the relationship between the residual magnetization ratio of the Cr film, Figure 3 is a diagram showing the relationship between the initial incident angle θi and the deposition efficiency of the Co-Cr film, Figure 4 is a partial cross-sectional view of the magnetic medium, and Figure 5 is the diagram showing the relationship between the initial incident angle θi and the deposition efficiency of the Co-Cr film.
Figure 6 is a diagram showing the relationship between the first thin film thickness of Co-Cr and MV/MH of Co-Cr (first thin film + second thin film). Figure 6 is a diagram showing the relationship between substrate temperature and holding magnetic force Hc. The figure shows the relationship between the coercive force of Co-Cr (thickness of the first thin film) versus Co-Cr (first thin film + second thin film), and Figure 8 shows the relationship between the substrate temperature of the second thin film and Co-Cr. FIG. 3 is a diagram showing the relationship between the coercive force of a Cr film. 9 and 10 relate to a conventional example, where FIG. 9 is a partial sectional view of a magnetic recording medium, and FIG. 10 is a schematic diagram of a manufacturing apparatus. 1... PET film, 6, 6'... Can roller, 5, 5'... Opposing target, 7... Supply roller, 18... Winding roller, 9... Can mask.

Claims (1)

【特許請求の範囲】[Claims] 1 スパツタ法により非磁性基板上に強磁性金属
膜を形成する垂直磁気記録媒体の製造方法におい
て、定速移送される前記非磁性基板を比較的高温
(T1℃以上)に保ち、その上に強磁性金属をスパ
ツタ法により入射角θ1(但しθ1≦15°)で被着して
少くとも700Oe以上の高保磁力を呈し後の工程で
その上に被着するスパツタ粒子のエピタキシヤル
な結晶成長を可能とする第1薄膜を形成すると共
に、前記第1薄膜上に上記非磁性基板の温度を比
較的低温(T2℃以下、但しT2<T1)に保ち乍ら
入射角θ2(θ2≫θ1)の角度でスパツタにより被着
せしめ第2薄膜をエピタキシヤルに成長形成する
ことを特徴とする垂直磁気記録媒体の製造方法。
1 In a method of manufacturing a perpendicular magnetic recording medium in which a ferromagnetic metal film is formed on a non-magnetic substrate by a sputtering method, the non-magnetic substrate, which is transferred at a constant speed, is kept at a relatively high temperature (T1°C or higher), and a strong Magnetic metal is deposited at an incident angle of θ1 (however, θ1≦15°) using the sputtering method, exhibiting a high coercive force of at least 700 Oe, and enabling epitaxial crystal growth of sputtered particles deposited thereon in a later process. A first thin film is formed on the first thin film, and an incident angle θ2 (θ2≫θ1) is formed on the first thin film while keeping the temperature of the nonmagnetic substrate at a relatively low temperature (T2°C or lower, however, T2<T1). 1. A method of manufacturing a perpendicular magnetic recording medium, comprising epitaxially growing a second thin film by sputtering.
JP20937885A 1985-05-20 1985-09-20 Production of magnetic recording medium Granted JPS6267729A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20937885A JPS6267729A (en) 1985-09-20 1985-09-20 Production of magnetic recording medium
US06/864,357 US4767516A (en) 1985-05-20 1986-05-19 Method for making magnetic recording media
EP86106807A EP0202645B1 (en) 1985-05-20 1986-05-20 Method and apparatus for making magnetic recording media
DE8686106807T DE3682942D1 (en) 1985-05-20 1986-05-20 METHOD AND DEVICE FOR PRODUCING MAGNETIC RECORDING CARRIERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20937885A JPS6267729A (en) 1985-09-20 1985-09-20 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6267729A JPS6267729A (en) 1987-03-27
JPH0555930B2 true JPH0555930B2 (en) 1993-08-18

Family

ID=16571927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20937885A Granted JPS6267729A (en) 1985-05-20 1985-09-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6267729A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156552B2 (en) 2008-09-08 2013-03-06 富士フイルム株式会社 Method for producing gas barrier film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS59129944A (en) * 1983-01-12 1984-07-26 Anelva Corp Method and device for manufacturing magnetic recording medium
JPS59210531A (en) * 1983-05-16 1984-11-29 Teijin Ltd Magnetic recording medium and its reproduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680831A (en) * 1979-11-30 1981-07-02 Toshiba Corp Producing device for magnetic recording medium
JPS59129944A (en) * 1983-01-12 1984-07-26 Anelva Corp Method and device for manufacturing magnetic recording medium
JPS59210531A (en) * 1983-05-16 1984-11-29 Teijin Ltd Magnetic recording medium and its reproduction

Also Published As

Publication number Publication date
JPS6267729A (en) 1987-03-27

Similar Documents

Publication Publication Date Title
EP0202645B1 (en) Method and apparatus for making magnetic recording media
JPH0555930B2 (en)
JPH0721560A (en) Production of magnetic recording medium
JPS6039157A (en) Manufacture of amorphous magnetic alloy
JPS59147422A (en) Formation of magnetic layer
JPS59162622A (en) Vertical magnetic recording material and its production
JPS6280832A (en) Manufacture of magnetic recording medium
JPH0154776B2 (en)
JP2613294B2 (en) Thin film formation method
JPH059849B2 (en)
JPS61276124A (en) Production of vertical magnetic recording medium
JPS61283031A (en) Production of vertical magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPH01155520A (en) Production of perpendicular magnetic recording medium
JPS61192032A (en) Production of magnetic recording medium
JPH0565043B2 (en)
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPH0311531B2 (en)
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS60205830A (en) Production of thin film
JPH0512765B2 (en)
JPH0656650B2 (en) Magnetic recording medium
JPS58125235A (en) Manufacture of magnetic recording medium
JPH057767B2 (en)