JPS6119058A - Hydrogen occlusion electrode - Google Patents

Hydrogen occlusion electrode

Info

Publication number
JPS6119058A
JPS6119058A JP59139708A JP13970884A JPS6119058A JP S6119058 A JPS6119058 A JP S6119058A JP 59139708 A JP59139708 A JP 59139708A JP 13970884 A JP13970884 A JP 13970884A JP S6119058 A JPS6119058 A JP S6119058A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
hydrogen storage
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139708A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59139708A priority Critical patent/JPS6119058A/en
Publication of JPS6119058A publication Critical patent/JPS6119058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To mechanically suppress expansion of an electrode to prevent peeling off of a hydrogen occlusion alloy by arranging a hydrogen permeable metal thin film on the surface of hydrogen occlusion alloy electrode. CONSTITUTION:LaNi 5 which has hydrogen occluding ability is mechanically crushed to form fine powder. 1-5wt% polytetrafluoroethylene is mixed to LaNi5 powder and they are kneaded to make polytetrafluoroethylene fibrous, and molded at a pressure of 1ton/cm<2> to form a hydrogen occulusion alloy electrode measuring 30mm. in diameter and 2mm. in thickness. The surface of the hydrogen occlusion alloy electrode is covered with a platinum foil. Thereby, expansion of the electrode is mechanically suppressed and peeling off of the hydrogen occlusion alloy from a substrate is prevented.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は蓄電池の負極として用いられる水素吸蔵電極に
関し、特に高エネルギー密度で且つ長寿命に改良された
水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of a storage battery, and particularly to a hydrogen storage electrode that has been improved to have a high energy density and a long life.

(ロ)従来技術 従来からよく用いられる蓄、電池としては鉛電池及びニ
ッケルーカドミウム電池があるが、近年これらの電池よ
り軽量で且つ高容量となる可能性があるということで、
特に低圧で水素を可逆的に吸蔵・放出することのできる
水素吸蔵合金を水素極として用いたニッケルー水素電池
などが注目されている。
(b) Prior Art Storage batteries that have been commonly used in the past include lead batteries and nickel-cadmium batteries, but in recent years it has been discovered that they have the potential to be lighter and have higher capacity than these batteries.
In particular, nickel-metal hydride batteries that use hydrogen storage alloys as hydrogen electrodes that can reversibly absorb and release hydrogen at low pressure are attracting attention.

この水素を吸蔵及び放出することのできる水素吸蔵合金
を備えた負極は、■特公昭49−25135号公報にみ
られるように水素吸蔵合金粉末に固着剤を加えてなるペ
ース°トを支持体に塗着、乾燥した後焼結して得たもの
、■特開昭53−103541号公報に見られるように
水素吸蔵合金粉末及びアセチレンブラックを結着剤によ
り支持体に固着して得たものなど従来より種々の提案が
なされているが、かかる電極に用いられる水素吸蔵合金
は水素の吸蔵及び放出により結晶格子の間隔が広がり合
金粉末の微粉化が起こるため、これらの合金を水素吸蔵
材として用いた場合には合金粉末の微粉化による脱落が
生じ、電池容量、機゛械的強度及び電導性の低下が著し
く、長期にわたって電池性能を維持することが困難であ
った。
A negative electrode equipped with a hydrogen storage alloy that can store and release hydrogen is made of a paste made by adding a binder to hydrogen storage alloy powder as a support, as shown in Japanese Patent Publication No. 49-25135. Those obtained by coating, drying, and sintering, and those obtained by fixing hydrogen storage alloy powder and acetylene black to a support with a binder as shown in JP-A No. 53-103541. Although various proposals have been made in the past, it has not been possible to use these alloys as hydrogen storage materials because the spacing of the crystal lattice of the hydrogen storage alloys used in such electrodes expands as hydrogen is absorbed and released, causing the alloy powder to become pulverized. If the alloy powder is pulverized and falls off, the battery capacity, mechanical strength, and conductivity are significantly reduced, making it difficult to maintain battery performance over a long period of time.

(ハ) 発明が解決しようとする問題点本発明が解決し
ようとする問題点は水素吸蔵電極の充放電によって生じ
る水素吸蔵合金の微粉化による脱落に起因する電池容量
、機械的強度及び電導性の低下などの電池性能の劣化で
ある。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are problems in terms of battery capacity, mechanical strength, and electrical conductivity caused by drop-off due to pulverization of hydrogen storage alloys caused by charging and discharging of hydrogen storage electrodes. This is a deterioration in battery performance such as a drop in battery performance.

(ニ) 問題点を解決するための手段 本発明の水素吸蔵電極はかかる点を解決するために水素
吸蔵合金を備えた電極の表面に水素を透過する金属の薄
膜を配したものである。
(d) Means for Solving the Problems In order to solve these problems, the hydrogen storage electrode of the present invention has a hydrogen-permeable metal thin film arranged on the surface of the electrode provided with a hydrogen storage alloy.

(ホ)作用 水素を透過することのできる金属の薄膜を表面有する水
素吸蔵電極は、充放電の際に表面の金属薄膜を介して水
素の吸蔵放出が行なえ、また該金属薄膜によって電極内
の水素吸蔵合金自体が酸化物あるいは水酸化物に変化す
ることを抑制する共に電極の膨張を機械的に抑え水素吸
蔵合金の脱落及び支持体からの剥離を抑制する。
(e) Function A hydrogen storage electrode having a thin metal film on its surface that can permeate hydrogen can absorb and release hydrogen through the metal thin film on the surface during charging and discharging. It suppresses the hydrogen storage alloy itself from changing into an oxide or hydroxide, and also mechanically suppresses the expansion of the electrode, thereby suppressing the hydrogen storage alloy from falling off and peeling from the support.

(へ)実施例 負極に水素吸蔵電極を用い、正極に金属酸化物を用いる
代表的な電池であるニッケルー水素電池を作製し、かか
る電池を用いて本発明の一実施例を以下に示し説明する
(f) Example A nickel-metal hydride battery, which is a typical battery using a hydrogen storage electrode as a negative electrode and a metal oxide as a positive electrode, was prepared, and an example of the present invention using such a battery will be shown and explained below. .

水素吸蔵能力を有するLaN i sを機械的に粉砕し
て微粉化し、次いでこのようにして得た微粉末に小さな
せん断力で簡単に繊維化し塑性変形するポリテトラフル
オロエチレン粉末を、LaNi5粉末の重量に対して1
〜5%添加して混合機で均一に混合すると同時にポリテ
トラプルオロエチレンを繊維化させ、これを分取し1 
ton/cm2の圧力で加圧成型することにより直径3
0)、厚み2mmの水素吸蔵電極を得る。この水素吸蔵
電極の表面をPd箔で包み本発明の水素吸蔵電極とする
LaNi s, which has hydrogen storage capacity, is mechanically pulverized into a fine powder, and then polytetrafluoroethylene powder, which easily fiberizes and plastically deforms with a small shearing force, is added to the fine powder obtained in this way, with a weight of LaNi5 powder. 1 for
~5% was added and mixed uniformly with a mixer, at the same time the polytetrafluoroethylene was made into fibers, which was fractionated into 1
Diameter 3 by pressure molding at a pressure of ton/cm2
0), a hydrogen storage electrode with a thickness of 2 mm is obtained. The surface of this hydrogen storage electrode is wrapped with Pd foil to provide the hydrogen storage electrode of the present invention.

こうして得られた水素吸蔵電極を理論容量が500mA
Hである公知のニッケル正極と組み合わせ電解液を注ぎ
、電解液リッチな状態のアルカリ蓄電池(A)を作製し
た。また比較として前記水素吸蔵電極を表面に金属の薄
膜を配さすに用いその他は電池(A>と同一の比較電池
(B>を作製した。
The hydrogen storage electrode thus obtained has a theoretical capacity of 500 mA.
A known nickel positive electrode (H) was combined with an electrolyte solution to prepare an alkaline storage battery (A) rich in electrolyte solution. As a comparison, a comparative battery (B>) which was otherwise the same as the battery (A>) was prepared except that the hydrogen storage electrode was provided with a metal thin film on its surface.

図面は電池(A)及び(B)のサイクル特性図であり、
0.1clt流で15時間充電した後、終止電圧1.O
Vとして0.2c11.流で放電するというサイクル条
件で充放電を繰り返し行ない、初期容量を100として
表わしている。
The drawing is a cycle characteristic diagram of batteries (A) and (B),
After charging for 15 hours with a 0.1clt current, the final voltage was 1. O
V as 0.2c11. The initial capacity is expressed as 100 after repeated charging and discharging under cycle conditions of discharging with current.

図面から明らかなように本発明の水素吸蔵電極を備えた
電池(A)は比較電池(B)に比しサイクル寿命が向上
していることがわかる。これは電池(B)が充放電に伴
う水素吸蔵合金の水素の吸蔵及び放出によって、水素吸
蔵合金の結晶格子間隔が広がり水素吸蔵電極が膨張する
と共に水素吸蔵合金の微粉化が進み該合金の脱落が生じ
るため200サイクル経過時くらいから急激な容量が低
下が起こるのに対して、電池(A)では水素吸蔵電極の
表面がPdの薄膜に覆われることにより補強きれている
ので電極の膨張が抑制きれ、これによって水素吸蔵合金
の水素吸蔵による膨張、即ち結晶格子の変形が抑制され
て水素吸蔵合金の微粉化及び微粉化による水素吸蔵合金
の脱落が起こり難くなるため、電極の機械的強度が維持
されると共に導電性の低下が著しく抑制きれてより長期
にわたって電池容量が維持できたものと考えられる。
As is clear from the drawings, the battery (A) equipped with the hydrogen storage electrode of the present invention has an improved cycle life compared to the comparative battery (B). This is because the hydrogen storage alloy absorbs and releases hydrogen as the battery (B) charges and discharges, and as a result, the crystal lattice spacing of the hydrogen storage alloy expands, the hydrogen storage electrode expands, and the hydrogen storage alloy becomes pulverized, causing the alloy to fall off. However, in battery (A), the surface of the hydrogen storage electrode is covered with a thin Pd film, which is fully reinforced, so the expansion of the electrode is suppressed. This suppresses the expansion of the hydrogen storage alloy due to hydrogen absorption, that is, the deformation of the crystal lattice, making it difficult for the hydrogen storage alloy to become pulverized and fall off due to pulverization, thereby maintaining the mechanical strength of the electrode. It is thought that the decrease in conductivity was significantly suppressed and the battery capacity was maintained for a longer period of time.

更に放電時に電解液と接して酸化物あるいは水酸化物に
変化して水素吸蔵能力を失う水素吸蔵台金、例えばCa
Ni5のように水素吸蔵能力を持たない水酸化カルシウ
ムに変化してしまう水素吸蔵合金を用いて水素吸蔵電極
を作製した場合に於いては、本発明のように電極の表面
を水素を透過する金属の薄膜によって保護すれば水素吸
蔵合金は電解液と接し難い状態となるため、水素吸蔵合
金が酸化物あるいは水酸化物となって水素吸蔵能力を失
うことによる容量減少が抑制され、充放電時に起こる水
素の吸蔵・放出が長期間にわたって安定して行なわれる
ことになる。
Furthermore, hydrogen storage metals, such as Ca
When a hydrogen storage electrode is made using a hydrogen storage alloy such as Ni5, which changes into calcium hydroxide, which does not have hydrogen storage ability, it is necessary to use a metal that allows hydrogen to pass through the surface of the electrode, as in the present invention. By protecting the hydrogen storage alloy with a thin film, it becomes difficult for the hydrogen storage alloy to come into contact with the electrolyte, which suppresses the capacity loss caused by the hydrogen storage alloy becoming an oxide or hydroxide and losing its hydrogen storage ability, which occurs during charging and discharging. Hydrogen storage and release will be performed stably over a long period of time.

尚、本実施例では水素吸蔵電極の表面に配する金属の薄
膜としてPdを示したが、電極内の水素吸蔵合金が水素
を吸蔵・放出しなければならないことから、前記金属と
してはPdの他に水素を透過するTi、 Ni、 V、
 Zr、 Nb、旧、Ta、 Cuが適している。また
、水素吸蔵合金としてLaNi5を使用したが、本発明
は他の水素吸蔵合金金てに適用されるものであり、水素
吸蔵電極表面の金属の薄膜の形成する方法についても実
施例に限定されるものではなく、蒸着法、メッキ法など
によっても行なうことができる。
In this example, Pd is shown as the metal thin film disposed on the surface of the hydrogen storage electrode, but since the hydrogen storage alloy in the electrode must absorb and release hydrogen, other metals such as Pd may be used as the metal. Ti, Ni, V, which permeate hydrogen to
Zr, Nb, old, Ta, and Cu are suitable. In addition, although LaNi5 was used as the hydrogen storage alloy, the present invention is applicable to other hydrogen storage alloy metals, and the method for forming the metal thin film on the surface of the hydrogen storage electrode is also limited to the examples. It can also be performed by a vapor deposition method, a plating method, etc.

(ト) 発明の効果 本発明の水素吸蔵電極は、電極表面に水素を透過する金
属の薄膜を配したものであるから充放電に伴う水素の吸
蔵・放出による水素吸蔵合金の微粉化が抑制され、水素
吸蔵合金の脱落、電極の機械的強度の低下及び導電性の
低下が抑制され、より長期にわたって高容量を維持する
ことができ
(G) Effects of the Invention Since the hydrogen storage electrode of the present invention has a thin metal film that allows hydrogen to pass through the electrode surface, pulverization of the hydrogen storage alloy due to storage and release of hydrogen during charging and discharging is suppressed. This suppresses the falling off of the hydrogen storage alloy, the decrease in mechanical strength of the electrode, and the decrease in conductivity, making it possible to maintain high capacity for a longer period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の水素吸蔵電極を用いた電池と比較電池の
サイクル特性図である。 (A)・・・本発明の水素吸蔵電極を用いた電池、(B
)・・・比較電池。
The drawing is a cycle characteristic diagram of a battery using the hydrogen storage electrode of the present invention and a comparative battery. (A)...Battery using the hydrogen storage electrode of the present invention, (B
)...Comparison battery.

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を備えた電極であって、該電極表面
に水素を透過する金属の薄膜を配したことを特徴とする
水素吸蔵電極。
(1) A hydrogen storage electrode comprising a hydrogen storage alloy, characterized in that a thin metal film that transmits hydrogen is disposed on the surface of the electrode.
(2)前記水素を透過する金属が、Ti、Ni、V、Z
r、Nb、Hf、Ta、Cu、Pdのうち少なくとも一
種からなる特許請求の範囲第(1)項記載の水素吸蔵電
極。
(2) The hydrogen permeable metal is Ti, Ni, V, Z
The hydrogen storage electrode according to claim (1), comprising at least one of r, Nb, Hf, Ta, Cu, and Pd.
JP59139708A 1984-07-05 1984-07-05 Hydrogen occlusion electrode Pending JPS6119058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139708A JPS6119058A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139708A JPS6119058A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Publications (1)

Publication Number Publication Date
JPS6119058A true JPS6119058A (en) 1986-01-27

Family

ID=15251567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139708A Pending JPS6119058A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6119058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316348A (en) * 1986-07-08 1988-01-23 Nec Corp Shared control system for data transfer area
JP2008093799A (en) * 2006-10-13 2008-04-24 Vessel Industrial Co Ltd Portable power tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316348A (en) * 1986-07-08 1988-01-23 Nec Corp Shared control system for data transfer area
JP2008093799A (en) * 2006-10-13 2008-04-24 Vessel Industrial Co Ltd Portable power tool

Similar Documents

Publication Publication Date Title
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
JPS6119063A (en) Hydrogen occlusion electrode
JPS6119058A (en) Hydrogen occlusion electrode
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP2883450B2 (en) Hydrogen storage alloy material and method for producing the same
JP3198896B2 (en) Nickel-metal hydride battery
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3454780B2 (en) Alkaline storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH0562674A (en) Alkaline storage battery
JP2000285914A (en) Hydrogen storage alloy
JP2000243387A (en) Hydrogen storage alloy electrode and its manufacture
JPS6147076A (en) Metal-hydrogen alkaline storage battery