JP2000243387A - Hydrogen storage alloy electrode and its manufacture - Google Patents

Hydrogen storage alloy electrode and its manufacture

Info

Publication number
JP2000243387A
JP2000243387A JP11362137A JP36213799A JP2000243387A JP 2000243387 A JP2000243387 A JP 2000243387A JP 11362137 A JP11362137 A JP 11362137A JP 36213799 A JP36213799 A JP 36213799A JP 2000243387 A JP2000243387 A JP 2000243387A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
alloy powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11362137A
Other languages
Japanese (ja)
Other versions
JP3796085B2 (en
Inventor
Nobuyuki Higashiyama
信幸 東山
Teruhiko Imoto
輝彦 井本
Yohei Hirota
洋平 廣田
Kikuko Katou
菊子 加藤
Mamoru Kimoto
衛 木本
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36213799A priority Critical patent/JP3796085B2/en
Publication of JP2000243387A publication Critical patent/JP2000243387A/en
Application granted granted Critical
Publication of JP3796085B2 publication Critical patent/JP3796085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode in which hydrogen gas absorbing power can be enhanced and low-temperature discharging characteristics can be improved. SOLUTION: In a hydrogen storage alloy electrode including a hydrogen storage alloy having a CaCu5 type crystalline structure and being expressed by a stoichiometric ratio of ABx and MmNiaCobAlcMd (wherein Mn represents a misch metal; M, Mn and/or Cu; atomic ratios a, b, c and d are as follows: 3.0<=a<=5.2, 0<=b<=1.2, 0.1<=c<=0.9 and 0.1<=d<=0.8; and the sum X of the atomic ratios a, b, c and d is as follows: 4.4<=X<=5.4), the hydrogen storage alloy contains powder produced by mixing with hydrogen storage alloy powder having X of 5.0 or more with hydrogen storage alloy powder having X of 5.0 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・水素蓄
電池の負極として用いられる水素吸蔵合金電極に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a nickel-metal hydride storage battery.

【0002】[0002]

【従来の技術】水素を可逆的に吸蔵・放出する水素吸蔵
合金から作製した水素吸蔵合金電極を負極として利用し
たニッケル・水素蓄電池がある。ニッケル・水素蓄電池
は、高容量、高出力であり、さらに単位体積及び単位重
量当たりのエネルギー密度も高い蓄電池として知られて
いる。
2. Description of the Related Art There is a nickel-hydrogen storage battery using a hydrogen storage alloy electrode made of a hydrogen storage alloy that reversibly stores and releases hydrogen as a negative electrode. Nickel-metal hydride storage batteries are known as storage batteries having high capacity, high output, and high energy density per unit volume and unit weight.

【0003】ニッケル・水素蓄電池には、さらなる高容
量化が求められている。高容量化を阻害する1つの要因
として、充電時、特に急速充電時や過充電時に水素吸蔵
合金電極にて、充電反応の副反応として水素ガスが発生
し、電池内圧が上昇する問題がある。この問題を解決す
るためには、水素を電極内で効率的に吸収させる必要が
ある。そこで、水素吸蔵合金粉末に撥水処理を施して、
電池中で水素吸蔵合金粉末と電解液を直接接触させない
ようにして、水素と水素吸蔵合金粉末との気固反応を促
進させた水素吸蔵合金電極も知られている。
There is a demand for higher capacity nickel-hydrogen storage batteries. One factor that hinders the increase in capacity is the problem that hydrogen gas is generated as a side reaction of the charging reaction at the hydrogen storage alloy electrode during charging, particularly during rapid charging or overcharging, and the internal pressure of the battery increases. In order to solve this problem, it is necessary to absorb hydrogen efficiently in the electrode. Therefore, water-repellent treatment is applied to the hydrogen storage alloy powder,
There is also known a hydrogen storage alloy electrode in which a gas-solid reaction between hydrogen and the hydrogen storage alloy powder is promoted by preventing direct contact between the hydrogen storage alloy powder and the electrolytic solution in the battery.

【0004】撥水処理を施すと、水素(気相)と水素吸蔵
合金(固相)との反応は促進されるが、逆に、電解液(液
相)を介した水素吸蔵合金の電池反応が阻害されてしま
う問題があった。
When the water repellent treatment is performed, the reaction between hydrogen (gas phase) and the hydrogen storage alloy (solid phase) is accelerated. On the contrary, the battery reaction of the hydrogen storage alloy via the electrolyte (liquid phase) is accelerated. There is a problem that is hindered.

【0005】そこで、特開平4−162353号公報に
は、片方の水素吸蔵合金粉末にのみ撥水処理を施した二
種類の水素吸蔵合金粉末を用いて作製し、水素ガス吸収
能の向上を図った水素吸蔵合金電極が開示されている。
Therefore, Japanese Patent Application Laid-Open No. 4-162353 discloses that two types of hydrogen storage alloy powders, each of which has been subjected to a water-repellent treatment to only one of the hydrogen storage alloy powders, are used to improve the hydrogen gas absorbing ability. A hydrogen storage alloy electrode is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記電
極では、二種の水素吸蔵合金として、共にAB5(但し、
原子比)で表わされる同じ化学量論比の水素吸蔵合金を
用いているため、低温時の放電特性が十分でない問題が
あった。
However, in the above electrode, AB 5 (however, two types of hydrogen storage alloys)
Since the hydrogen storage alloy having the same stoichiometric ratio represented by (atomic ratio) is used, there was a problem that the discharge characteristics at low temperatures were not sufficient.

【0007】本発明の目的は、さらなる水素ガス吸収能
の向上と、低温放電特性の向上を達成することのできる
水素吸蔵合金電極を提供することである。
An object of the present invention is to provide a hydrogen storage alloy electrode which can further improve the hydrogen gas absorbing ability and the low temperature discharge characteristics.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の水素吸蔵合金電極は、CaCu5型結晶構
造を有し、化学量論比ABXで表わされる水素吸蔵合金
であって、MmNiaCobAlcd(但し、Mmはミッ
シュメタル、MはMn及び/又はCuであり、原子比
a、b、c、dは、夫々3.0≦a≦5.2、0≦b≦
1.2、0.1≦c≦0.9、0.1≦d≦0.8、且つ原
子比a、b、c、dの合計値X=a+b+c+dが4.
4≦X≦5.4)で表わされる水素吸蔵合金を含有する水
素吸蔵合金電極において、Xの値が5.0以上である水
素吸蔵合金粉末と、Xの値が5.0未満である水素吸蔵
合金粉末を混合した粉末を含むようにしたものである。
In order to solve the above problems, a hydrogen storage alloy electrode of the present invention is a hydrogen storage alloy having a CaCu 5 type crystal structure and represented by a stoichiometric ratio AB X. , MmNi a Co b Al c M d ( where, Mm is the mischmetal, M is Mn and / or Cu, the atomic ratio a, b, c, d, respectively 3.0 ≦ a ≦ 5.2,0 ≦ b ≦
1.2, 0.1 ≦ c ≦ 0.9, 0.1 ≦ d ≦ 0.8, and the total value X = a + b + c + d of the atomic ratios a, b, c, d is 4.
In a hydrogen storage alloy electrode containing a hydrogen storage alloy represented by the formula: 4 ≦ X ≦ 5.4), a hydrogen storage alloy powder having a value of X of 5.0 or more and a hydrogen storage alloy powder having a value of X of less than 5.0 The powder contains a mixture of the occlusion alloy powder.

【0009】本発明の水素吸蔵合金電極は、例えば、上
記Xの値が5.0以上である水素吸蔵合金粉末と、Xの
値が5.0未満である水素吸蔵合金粉末を、夫々所定量
に秤量し、秤量された水素吸蔵合金粉末を増粘剤と共に
混合してスラリーを作製し、得られたスラリーを集電体
上に塗布することによって製造することができる。
The hydrogen-absorbing alloy electrode of the present invention comprises, for example, a hydrogen-absorbing alloy powder having a value of X of 5.0 or more and a hydrogen-absorbing alloy powder having a value of X less than 5.0, each having a predetermined amount. , A slurry is prepared by mixing the weighed hydrogen storage alloy powder with a thickener, and the obtained slurry is applied on a current collector to produce the slurry.

【0010】Xの値が5.0未満である水素吸蔵合金粉
末は、粉末の表面に撥水処理を施すことが望ましい。ま
た、Xの値が5.0未満である水素吸蔵合金粉末は、酸
性水溶液による表面処理(酸処理)又は水素還元処理を施
しておくことが望ましい。なお、Xの値が5.0未満で
ある水素吸蔵合金粉末に撥水処理と、酸処理又は水素還
元処理の両方を実施する場合には、酸処理又は水素還元
処理は、撥水処理の前に施す。
It is desirable that the surface of the hydrogen storage alloy powder having a value of X of less than 5.0 be subjected to a water-repellent treatment. It is desirable that the hydrogen storage alloy powder having a value of X less than 5.0 be subjected to a surface treatment (acid treatment) or a hydrogen reduction treatment with an acidic aqueous solution. When both the water repellent treatment and the acid treatment or the hydrogen reduction treatment are performed on the hydrogen storage alloy powder in which the value of X is less than 5.0, the acid treatment or the hydrogen reduction treatment is performed before the water repellent treatment. Apply to

【0011】[0011]

【作用及び効果】Xの値が5.0以上である水素吸蔵合
金粉末は、B成分に対するMmの成分が少ないから、合
金表面において電気化学的な反応を阻害すると考えられ
るMmの水酸化物の生成量も少ないために低温時の放電
特性にすぐれ、充放電反応に有利である。また、Xの値
が5.0未満である水素吸蔵合金粉末は、水素をより安
定な状態で吸蔵することができ、過充電状態において電
池内で発生する水素ガスの吸収能が高い。従って、これ
ら両水素吸蔵合金粉末を混合した水素吸蔵合金粉末から
作製した水素吸蔵合金電極は、低温放電特性と電池内圧
特性の両方にすぐれる。電池内圧特性を向上させること
によって、電池の高容量化も達成できる。なお、作製さ
れた水素吸蔵合金電極の放電容量を高めるために、Xの
値は下限を4.4、上限を5.4としている。
[Operation and Effect] In the hydrogen storage alloy powder having a value of X of 5.0 or more, the amount of Mm relative to the B component is small, so that the hydroxide of Mm is considered to inhibit an electrochemical reaction on the alloy surface. Since the generation amount is small, it has excellent discharge characteristics at low temperatures, and is advantageous for charge / discharge reactions. Further, the hydrogen storage alloy powder having a value of X less than 5.0 can store hydrogen in a more stable state, and has a high ability to absorb hydrogen gas generated in the battery in an overcharged state. Therefore, a hydrogen storage alloy electrode produced from a hydrogen storage alloy powder obtained by mixing these two hydrogen storage alloy powders has excellent low-temperature discharge characteristics and battery internal pressure characteristics. By improving the battery internal pressure characteristics, a higher capacity of the battery can be achieved. In order to increase the discharge capacity of the produced hydrogen storage alloy electrode, the lower limit of the value of X is 4.4 and the upper limit of the value of X is 5.4.

【0012】上記水素吸蔵合金電極において、Xの値が
5.0未満である水素吸蔵合金粉末に撥水処理を施すこ
とにより、水素吸蔵合金粉末の表面に被膜が形成され
て、電解液と直接接触しにくくなるから、特に、過充電
時及び急速充電時に生じる水素の吸収を効率的に行なう
ことができる。さらに、Xの値が5.0未満である水素
吸蔵合金粉末に、酸処理又は水素還元処理を施すことに
より、水素吸蔵合金粉末の表面は活性化され、B成分リ
ッチとなるので、水素吸蔵合金粉末表面に電解液が濡れ
やすくなり、放電効率が向上する。Xの値が5.0未満
である水素吸蔵合金粉末に、酸処理又は水素還元処理を
施した後、さらに撥水処理を施すと、酸処理又は水素還
元処理によって予めB成分リッチとなった水素吸蔵合金
粉末に、撥水処理による被膜が形成され、電解液と接触
しにくくなるから、水素の吸収効率もさらに向上し、低
温放電特性、内圧特性の両方が向上する。
In the above-mentioned hydrogen-absorbing alloy electrode, a film is formed on the surface of the hydrogen-absorbing alloy powder by subjecting the hydrogen-absorbing alloy powder having a value of X to less than 5.0 to a water-repellent treatment. Since contact becomes difficult, hydrogen absorbed particularly during overcharge and rapid charge can be efficiently absorbed. Further, by subjecting the hydrogen storage alloy powder having a value of X to less than 5.0 to an acid treatment or a hydrogen reduction treatment, the surface of the hydrogen storage alloy powder is activated and becomes rich in the B component. The electrolyte is easily wetted on the powder surface, and the discharge efficiency is improved. When the hydrogen-absorbing alloy powder having a value of X less than 5.0 is subjected to an acid treatment or a hydrogen reduction treatment, and further subjected to a water-repellent treatment, hydrogen that has been previously rich in the B component by the acid treatment or the hydrogen reduction treatment is obtained. A film is formed on the occlusion alloy powder by the water-repellent treatment, which makes it difficult to come into contact with the electrolytic solution. Therefore, the hydrogen absorption efficiency is further improved, and both the low-temperature discharge characteristics and the internal pressure characteristics are improved.

【0013】[0013]

【発明の実施の形態】MmNiaCobAlcd(但し、
Mmはミッシュメタルであって、La、Ce、Pr、N
dなどの希土類金属の混合物、MはMn及び/又はCu
であり、原子比a、b、c、dは、夫々3.0≦a≦5.
2、0≦b≦1.2、0.1≦c≦0.9、0.1≦d≦
0.8、且つ原子比a、b、c、dの合計値X=a+b
+c+dが4.4≦X≦5.4)で表わされ、Xが5.0以
上である水素吸蔵合金粉末と、Xが5.0未満である水
素吸蔵合金粉末の調製方法は、特に限定されるものでは
ない。例えば、各金属を所定量に秤量した後、アーク溶
解によって溶解し、鋳造法によってインゴットを作製
し、インゴットを粉砕することによって調製することが
できる。調製された水素吸蔵合金粉末には、適宜篩い分
け等を行なって、粒度調節を行なう。
BEST MODE FOR CARRYING OUT THE INVENTION MmNi a Co b Al c M d (however,
Mm is a misch metal, La, Ce, Pr, N
a mixture of rare earth metals such as d, M is Mn and / or Cu
And the atomic ratios a, b, c, and d are respectively 3.0 ≦ a ≦ 5.
2, 0 ≦ b ≦ 1.2, 0.1 ≦ c ≦ 0.9, 0.1 ≦ d ≦
0.8 and the total value X of atomic ratios a, b, c and d = X + a + b
+ C + d is represented by 4.4 ≦ X ≦ 5.4), and the method of preparing the hydrogen storage alloy powder in which X is 5.0 or more and the method of preparing the hydrogen storage alloy powder in which X is less than 5.0 are particularly limited. It is not something to be done. For example, it can be prepared by weighing each metal to a predetermined amount, dissolving it by arc melting, producing an ingot by a casting method, and crushing the ingot. The prepared hydrogen storage alloy powder is appropriately sieved or the like to adjust the particle size.

【0014】Xが5.0未満である水素吸蔵合金粉末に
実施される撥水処理は、水素吸蔵合金粉末をPTFE懸
濁液中で撹拌、混練し、溶媒成分を除去するために真空
減圧乾燥を行なえばよい。撥水処理を施すことによっ
て、水素吸蔵合金粉末の表面に撥水被膜が形成され、電
解液と水素吸蔵合金粉末が直接接触しない。従って、水
素と水素吸蔵合金粉末との気固反応が円滑に行なわれ
る。
The water-repellent treatment performed on the hydrogen-absorbing alloy powder in which X is less than 5.0 is performed by stirring and kneading the hydrogen-absorbing alloy powder in a PTFE suspension, and drying under vacuum to remove the solvent component. Should be performed. By performing the water-repellent treatment, a water-repellent film is formed on the surface of the hydrogen-absorbing alloy powder, so that the electrolyte and the hydrogen-absorbing alloy powder do not come into direct contact. Therefore, the gas-solid reaction between hydrogen and the hydrogen storage alloy powder is smoothly performed.

【0015】Xが5.0未満である水素吸蔵合金粉末に
実施される酸処理は、水素吸蔵合金粉末をpH1.0程
度の酸性水溶液に投入し、撹拌の後、減圧乾燥すること
によって実施することができる。酸処理を実施すること
によって、水素吸蔵合金粉末の表面が活性化され、B成
分リッチとなる。水素吸蔵合金粉末表面のB成分、特に
Ni、Coは、水素との反応点となるため、水素吸蔵・
放出を活発化させることができる。
The acid treatment performed on the hydrogen storage alloy powder in which X is less than 5.0 is carried out by putting the hydrogen storage alloy powder into an acidic aqueous solution having a pH of about 1.0, stirring, and then drying under reduced pressure. be able to. By performing the acid treatment, the surface of the hydrogen storage alloy powder is activated, and the B component becomes rich. Since the B component, particularly Ni and Co, on the surface of the hydrogen storage alloy powder becomes a reaction point with hydrogen, hydrogen storage and
Release can be activated.

【0016】Xが5.0未満である水素吸蔵合金粉末に
実施される水素還元処理は、水素吸蔵合金粉末を水素ガ
ス雰囲気下で100〜500℃に加熱することによって
実施することができる。水素還元処理を実施することに
よって、酸処理の場合と同様に、水素吸蔵合金粉末表面
がB成分リッチとなり、水素の吸蔵・放出が活発化され
る。
The hydrogen reduction treatment performed on the hydrogen storage alloy powder in which X is less than 5.0 can be performed by heating the hydrogen storage alloy powder to 100 to 500 ° C. in a hydrogen gas atmosphere. By performing the hydrogen reduction treatment, similarly to the case of the acid treatment, the surface of the hydrogen storage alloy powder becomes rich in the B component, and the storage and release of hydrogen are activated.

【0017】水素吸蔵合金電極は、Xの値が5.0以上
である水素吸蔵合金粉末と、Xの値が5.0未満である
水素吸蔵合金粉末を所定量に秤量して、ポリエチレンオ
キサイド水溶液などの増粘剤と共に混合し、Niメッシ
ュ、パンチングメタルなどの集電体上に塗布することに
よって作製できる。
The hydrogen storage alloy electrode is prepared by weighing a predetermined amount of a hydrogen storage alloy powder having an X value of 5.0 or more and a predetermined amount of a hydrogen storage alloy powder having a X value of less than 5.0. It can be produced by mixing with a thickener such as, and applying the mixture on a current collector such as a Ni mesh or a punched metal.

【0018】上記水素吸蔵合金電極を、公知の焼結式N
i極と不織布からなる耐アルカリ性のセパレータと共に
巻き取ることによって、渦巻き型の電極体を作製でき
る。この電極体を電池缶に挿入し、水酸化カリウム水溶
液などのアルカリ水溶液を注入することによってニッケ
ル・水素蓄電池を作製できる。
The above-mentioned hydrogen storage alloy electrode is replaced with a known sintered N
By winding the electrode together with an alkali-resistant separator composed of an i-pole and a nonwoven fabric, a spiral electrode body can be produced. By inserting this electrode body into a battery can and injecting an alkaline aqueous solution such as a potassium hydroxide aqueous solution, a nickel-hydrogen storage battery can be manufactured.

【0019】なお、水素吸蔵合金電極には、水素吸蔵合
金粉末の他に、導電性を高めるためにNiなどの導電剤
粉末を適宜混合してもよい。
In addition, in addition to the hydrogen storage alloy powder, a conductive agent powder such as Ni may be appropriately mixed with the hydrogen storage alloy electrode in order to enhance the conductivity.

【0020】[0020]

【実施例】<実施例1>Mm、Ni、Co、Mn、Al
の各原料を、表1の組成比となるように混合し、アーク
溶解炉にて溶解し、鋳造法によりABX型の水素吸蔵合
金のインゴットを作製した。得られたインゴットを粉砕
して、篩い分けを行ない、100メッシュ以下の水素吸
蔵合金粉末(粉末〜)を得た。
<Example 1> Mm, Ni, Co, Mn, Al
Were mixed so as to have the composition ratios shown in Table 1 and melted in an arc melting furnace to produce an AB X type hydrogen storage alloy ingot by a casting method. The obtained ingot was pulverized and sieved to obtain a hydrogen storage alloy powder (powder) of 100 mesh or less.

【0021】[0021]

【表1】 [Table 1]

【0022】表1中の水素吸蔵合金粉末と、と
を表2に示す重量%で混合して、水素吸蔵合金電極を作
製し、得られた水素吸蔵合金電極を負極とするAAサイ
ズの供試電池No.1〜10を作製した。水素吸蔵合金電
極及び電池の作製方法を以下に示す。
A hydrogen storage alloy electrode was prepared by mixing the hydrogen storage alloy powder shown in Table 1 with the weight percent shown in Table 2, and a sample of AA size was prepared using the obtained hydrogen storage alloy electrode as a negative electrode. Battery Nos. 1 to 10 were produced. The method for manufacturing the hydrogen storage alloy electrode and the battery is described below.

【0023】「水素吸蔵合金電極の作製」水素吸蔵合金
粉末と、とを夫々表2の重量%で混合した水素
吸蔵合金粉末800gに、ポリエチレンオキサイド5%
水溶液160gを増粘剤として添加し、さらに各複合酸
化物粉末を添加して混練して、ペースト状のスラリーを
作製した。得られたスラリーをNiメッキの施された厚
さ0.08mmのパンチングメタルの両面に塗布して水
素吸蔵合金電極を作製した。
[Preparation of Hydrogen Storage Alloy Electrode] Hydrogen storage alloy powder was mixed with 800% of a hydrogen storage alloy powder in a weight% of Table 2, and polyethylene oxide 5%
160 g of the aqueous solution was added as a thickener, and each composite oxide powder was further added and kneaded to prepare a paste slurry. The obtained slurry was applied to both sides of a nickel-plated 0.08 mm-thick punching metal to prepare a hydrogen storage alloy electrode.

【0024】「供試電池の作製」作製された水素吸蔵合
金電極を油圧プレス機によって圧延し、公知の焼結式ニ
ッケル極と不織布からなる耐アルカリ性のセパレータを
介して巻き取り、渦巻き型の電極体を作製した。得られ
た電極体を電池缶内に挿入し、電解液として30重量%
の水酸化カリウム水溶液を注入した。
[Preparation of Test Battery] The prepared hydrogen-absorbing alloy electrode was rolled by a hydraulic press and wound up through a known sintered nickel electrode and an alkali-resistant separator made of non-woven fabric to form a spiral electrode. The body was made. The obtained electrode body was inserted into a battery can, and 30% by weight as an electrolytic solution was obtained.
Was poured.

【0025】比較のため、表2に示すように、水素吸蔵
合金粉末、、を夫々単独で使用した供試電池No.
11〜13を、上記と同様の方法で作製した。
For comparison, as shown in Table 2, the test battery No.
11 to 13 were produced in the same manner as described above.

【0026】供試電池No.1〜13に対して、以下の条
件で充放電を行なった後、低温放電特性と電池内圧特性
を測定した。 ・低温放電特性の測定 各供試電池に25℃にて100mAで12時間の充電を
行ない、0℃で3時間休止させた後、1000mAで放
電させ、放電電圧が1.0V(カット電圧)になったとき
の放電容量を測定し、低温放電特性の指標とした。 ・電池内圧特性の測定 各供試電池に1000mAで充電を行ないながら電池の
内圧を測定し、電池内圧が10kgf/cm2を越える
までの時間(min)を測定し、電池内圧特性の指標とし
た。低温放電特性及び電池内圧特性の測定結果を表2に
示す。
After charging and discharging the test batteries Nos. 1 to 13 under the following conditions, the low-temperature discharge characteristics and the battery internal pressure characteristics were measured.・ Measurement of low-temperature discharge characteristics Each test battery was charged at 25 ° C. at 100 mA for 12 hours, paused at 0 ° C. for 3 hours, then discharged at 1000 mA, and the discharge voltage was reduced to 1.0 V (cut voltage). The discharge capacity at that time was measured and used as an index of low-temperature discharge characteristics. Measurement of battery internal pressure characteristics While charging each test battery at 1000 mA, the internal pressure of the batteries was measured, and the time (min) until the internal pressure of the batteries exceeded 10 kgf / cm 2 was measured and used as an index of the battery internal pressure characteristics. . Table 2 shows the measurement results of the low-temperature discharge characteristics and the battery internal pressure characteristics.

【0027】[0027]

【表2】 [Table 2]

【0028】表2を参照すると、化学量論比の異なる水
素吸蔵合金粉末を混合した水素吸蔵合金電極を負極とす
る発明例の供試電池No.1〜10は、電池内圧特性、低
温放電特性共に良好な結果を示した。一方、一種類の水
素吸蔵合金粉末のみからなる水素吸蔵合金電極を負極と
する比較例の供試電池11〜13は、何れも低温放電特
性が低く、電池内圧特性も低かった。このように、発明
例の供試電池が、比較例よりもすぐれた特性を示すの
は、ABXで示される水素吸蔵合金粉末において、Xが
5.0以上の水素吸蔵合金とXが5.0未満の水素吸蔵合
金を混合したためである。これは、以下の理由によるも
のであると考えられる。つまり、Xが5.0以上の水素
吸蔵合金は、Xが5.0未満の水素吸蔵合金に比べてB
成分に対するMm成分が少ないから、水素吸蔵合金表面
において電気化学的な反応を阻害するMmの水酸化物の
生成量が少なく、低温時の放電特性が向上したものと考
えられる。一方、Xが5.0未満の水素吸蔵合金は、水
素をより安定な状態で吸蔵することができ、過充電状態
においても電池内で発生する水素ガスを吸収する役割を
担っており、電池内圧特性が良好な値を示したと考えら
れる。
With reference to Table 2, the test batteries Nos. 1 to 10 of the invention, in which the hydrogen storage alloy electrodes mixed with the hydrogen storage alloy powders having different stoichiometric ratios were used as the negative electrode, had the internal pressure characteristics and the low temperature discharge characteristics. Both showed good results. On the other hand, all of the test batteries 11 to 13 of the comparative examples using the hydrogen storage alloy electrode composed of only one kind of hydrogen storage alloy powder as the negative electrode had low low-temperature discharge characteristics and low battery internal pressure characteristics. As described above, the test battery of the invention example shows more excellent characteristics than the comparative example in the hydrogen storage alloy powder represented by AB X in which X is 5.0 or more and X is 5.0 or more. This is because less than 0 hydrogen storage alloy was mixed. This is considered to be due to the following reasons. That is, a hydrogen storage alloy having X of 5.0 or more has a lower B value than a hydrogen storage alloy having X of less than 5.0.
It is considered that the amount of Mm hydroxide that inhibits an electrochemical reaction on the surface of the hydrogen storage alloy was small due to the small amount of the Mm component relative to the component, and the discharge characteristics at low temperatures were improved. On the other hand, a hydrogen storage alloy in which X is less than 5.0 can store hydrogen in a more stable state, and plays a role of absorbing hydrogen gas generated in the battery even in an overcharged state. It is considered that the characteristics showed good values.

【0029】発明例どうしを比較した場合、化学量論比
の差が大きい水素吸蔵合金粉末とを混合した水素吸
蔵合金電極を負極とする供試電池No.6〜10の方が、
供試電池No.1〜5に比べて、低温放電特性、電池内圧
特性共にすぐれている傾向があった。
When the invention examples were compared, the test batteries Nos. 6 to 10 using the hydrogen storage alloy electrode mixed with the hydrogen storage alloy powder having a large difference in stoichiometric ratio as the negative electrode,
In comparison with the test batteries Nos. 1 to 5, the low-temperature discharge characteristics and the battery internal pressure characteristics tended to be excellent.

【0030】<実施例2>実施例1の供試電池No.6〜
10に用いた水素吸蔵合金粉末の一方に撥水処理を施し
て、実施例1と同様の方法で供試電池を作製し、低温放
電特性と電池内圧特性を測定した。比較のため、表1に
示すとの水素吸蔵合金粉末について、の水素吸蔵
合金粉末に撥水処理を施して、同様に供試電池を作製し
た。水素吸蔵合金粉末の一方に撥水処理を施した以外の
電池の作製条件及び特性の測定条件は同じである。撥水
処理は、水素吸蔵合金粉末を20重量%のPTFE懸濁
液中で撹拌、混練した後、減圧乾燥させることによって
分散媒及び水分を除去することによって実施した。撥水
処理を施した水素吸蔵合金粉末の種類と、低温放電特性
及び電池内圧特性の測定結果を表3に示す。
<Embodiment 2> Test batteries No. 6 to
One of the hydrogen-absorbing alloy powders used in No. 10 was subjected to a water-repellent treatment, and a test battery was prepared in the same manner as in Example 1. The low-temperature discharge characteristics and the battery internal pressure characteristics were measured. For comparison, a hydrogen storage alloy powder as shown in Table 1 was subjected to a water-repellent treatment to produce a test battery in the same manner. The conditions for producing the battery and the conditions for measuring the characteristics were the same except that one of the hydrogen storage alloy powders was subjected to the water-repellent treatment. The water-repellent treatment was carried out by stirring and kneading the hydrogen storage alloy powder in a 20% by weight PTFE suspension, followed by drying under reduced pressure to remove the dispersion medium and moisture. Table 3 shows the types of the hydrogen storage alloy powder subjected to the water-repellent treatment, and the measurement results of the low-temperature discharge characteristics and the battery internal pressure characteristics.

【0031】[0031]

【表3】 [Table 3]

【0032】表3を参照すると、化学量論比の異なる水
素吸蔵合金粉末のうち一方に撥水処理を施した発明例の
供試電池No.21〜30は、化学量論比が同じである水
素吸蔵合金粉末の一方に撥水処理を施した比較例の供試
電池No.31に比べて、電池内圧特性、低温放電特性共
に良好な結果を示した。
Referring to Table 3, the test cells Nos. 21 to 30 of the invention examples in which one of the hydrogen storage alloy powders having different stoichiometric ratios was subjected to water repellent treatment have the same stoichiometric ratio. As compared with the test battery No. 31 of the comparative example in which one of the hydrogen storage alloy powders was subjected to the water-repellent treatment, both the battery internal pressure characteristics and the low-temperature discharge characteristics showed good results.

【0033】発明例どうしを比較すると、ABXで示さ
れる水素吸蔵合金粉末において、Xが5.0未満である
水素吸蔵合金粉末に撥水処理を施した供試電池No.21
〜25の方が、Xが5.0以上の水素吸蔵合金粉末に撥
水処理を施した供試電池No.26〜30よりも低温放電
特性、電池内圧特性は共に大きく向上している。これ
は、Xが5.0未満である水素吸蔵合金粉末に撥水処理
を施したことによって、電解液と水素吸蔵合金粉末が直
接接触しにくくなり、急速充電時や過充電領域での水素
を有効に吸収することができたためと考えられる。一
方、低温時の高率放電特性に優れるXが5.0以上の水
素吸蔵合金粉末には撥水処理を施していないから、通常
充電時には優先的にXが5.0以上の水素吸蔵合金粉末
に水素が吸蔵され、放電時には容易に水素を放出でき
る。
A comparison of the invention examples shows that, in the hydrogen storage alloy powder represented by AB X , the battery No. 21 was prepared by subjecting the hydrogen storage alloy powder having X less than 5.0 to a water-repellent treatment.
The samples Nos. 25 to 30 have significantly improved low-temperature discharge characteristics and battery internal pressure characteristics both as compared to the test batteries Nos. 26 to 30 in which the hydrogen storage alloy powder having X of 5.0 or more was subjected to a water-repellent treatment. This is because the water-repellent treatment is applied to the hydrogen storage alloy powder in which X is less than 5.0, so that the electrolyte and the hydrogen storage alloy powder hardly come into direct contact with each other. It is considered that the absorption was effective. On the other hand, the hydrogen-absorbing alloy powder having an X of 5.0 or more, which is excellent in high-rate discharge characteristics at low temperatures, is not subjected to a water-repellent treatment. Hydrogen can be absorbed and can be easily released at the time of discharge.

【0034】さらに、供試電池No.21〜25を比較す
ると、:が10:90〜50:50の範囲で低温放
電特性及び電池内圧特性が向上していることがわかる。
撥水処理を施した水素吸蔵合金粉末の量が多くなると、
低温放電特性がやや低下している。これは、撥水処理を
施した水素吸蔵合金粉末の量が増えることによって、電
解液に接触しにくい水素吸蔵合金の絶対量が増加するた
め、低温での放電特性が低下したものと考えられる。逆
に、撥水処理を施した水素吸蔵合金粉末の量が少なくな
ると、水素を有効に吸収する水素吸蔵合金の絶対量が少
なくなるから、電池内圧特性が低下したと考えられる。
従って、撥水処理を施す水素吸蔵合金粉末の比率は、
:=10:90〜50:50が望ましい。
Further, comparing the test batteries Nos. 21 to 25, it can be seen that the low-temperature discharge characteristics and the battery internal pressure characteristics are improved in the range of 10:90 to 50:50.
When the amount of the hydrogen storage alloy powder subjected to the water repellent treatment increases,
Low-temperature discharge characteristics are slightly reduced. This is probably because the increase in the amount of the hydrogen-absorbing alloy powder subjected to the water-repellent treatment increases the absolute amount of the hydrogen-absorbing alloy that is hard to come into contact with the electrolytic solution. Conversely, when the amount of the hydrogen-absorbing alloy powder subjected to the water-repellent treatment decreases, the absolute amount of the hydrogen-absorbing alloy that effectively absorbs hydrogen decreases, and it is considered that the internal pressure characteristics of the battery deteriorate.
Therefore, the ratio of the hydrogen storage alloy powder subjected to the water repellent treatment is
: = 10: 90 to 50:50 is desirable.

【0035】<実施例3>実施例1の供試電池No.7に
ついて、水素吸蔵合金粉末に撥水処理及び/又は酸処
理を施した供試電池No.41〜44を作製し、実施例1
と同様の方法で低温放電特性と電池内圧特性を測定し
た。なお、酸処理は、水素吸蔵合金粉末をpH1.0の
塩酸水溶液に投入し10分間撹拌した後、減圧乾燥させ
ることにより実施した。撥水処理と酸処理の両方を施す
場合は、酸処理の後に撥水処理を施した。撥水処理、酸
処理の有無と、低温放電特性、電池内圧特性の測定結果
を表4に示す。
<Example 3> With respect to the test battery No. 7 of Example 1, test batteries Nos. 41 to 44 were prepared by subjecting the hydrogen storage alloy powder to water repellent treatment and / or acid treatment. 1
The low-temperature discharge characteristics and the battery internal pressure characteristics were measured in the same manner as described above. The acid treatment was performed by charging the hydrogen storage alloy powder into a hydrochloric acid aqueous solution having a pH of 1.0, stirring the mixture for 10 minutes, and then drying it under reduced pressure. When both the water-repellent treatment and the acid treatment were performed, the water-repellent treatment was performed after the acid treatment. Table 4 shows the results of the measurement of the presence / absence of the water-repellent treatment and the acid treatment, the low-temperature discharge characteristics, and the battery internal pressure characteristics.

【0036】[0036]

【表4】 [Table 4]

【0037】表4を参照すると、水素吸蔵合金粉末に
撥水処理及び/又は酸処理を施した供試電池No.41〜
43は、どちらの処理も施していない供試電池No.44
よりも低温放電特性及び電池内圧特性が向上している。
供試電池No.41〜43を比較すると、撥水処理のみを
施した供試電池No.41は、低温放電特性はやや低い。
これは、撥水処理を施したことによって水素吸蔵合金粉
末が電解液に接触しにくくなり、放電効率が低下した
ためであると考えられる。逆に酸処理のみを施した供試
電池No.43は、酸処理によって粉末の表面の酸化物
が除去され、粉末表面組成がB成分(Ni、Co、Mn
及びAl)リッチになると共に活性化されるため、水素
吸蔵合金粉末の表面に電解液が濡れやすくなり、放電
効率が向上したと考えられる。特に、撥水処理と酸処理
の両方を実施した供試電池No.42は、酸処理によって
粉末の表面組成が予めB成分リッチとなった状態で、撥
水処理によって粉末表面に被膜が形成されるから、水素
の吸収効率もさらに向上し、低温放電特性、電池内圧特
性が向上したと考えられる。
Referring to Table 4, test cells Nos. 41 to 41 obtained by subjecting the hydrogen storage alloy powder to water repellent treatment and / or acid treatment were obtained.
43 is a test battery No. 44 which has not been subjected to either treatment.
The low temperature discharge characteristics and the battery internal pressure characteristics are more improved than those of the first embodiment.
Comparing the test batteries Nos. 41 to 43, the test battery No. 41 subjected to only the water-repellent treatment has a slightly lower low-temperature discharge characteristic.
This is presumably because the water-repellent treatment made it difficult for the hydrogen storage alloy powder to come into contact with the electrolytic solution, and reduced the discharge efficiency. On the other hand, in the test battery No. 43 subjected to only the acid treatment, the oxide on the surface of the powder was removed by the acid treatment, and the powder surface composition was changed to the B component (Ni, Co, Mn).
It is believed that the electrolyte solution was easily wetted on the surface of the hydrogen storage alloy powder, and the discharge efficiency was improved. In particular, in the test battery No. 42 in which both the water-repellent treatment and the acid treatment were performed, a film was formed on the powder surface by the water-repellent treatment in a state where the surface composition of the powder was previously rich in the B component by the acid treatment. Therefore, it is considered that the hydrogen absorption efficiency was further improved, and the low-temperature discharge characteristics and the battery internal pressure characteristics were improved.

【0038】<実施例4>実施例3の水素吸蔵合金粉末
に対し、酸処理に変えて水素還元処理を実施した供試
電池を作製し、同様に低温放電特性と電池内圧特性を測
定した。なお、水素還元処理は、水素吸蔵合金粉末を
水素ガス雰囲気下で300℃で加熱することにより実施
した。撥水処理と水素還元処理の両方を施す場合は、水
素還元処理の後に撥水処理を施した。撥水処理、水素還
元処理の有無と、低温放電特性、電池内圧特性の測定結
果を表5に示す。
Example 4 A test battery was prepared by subjecting the hydrogen storage alloy powder of Example 3 to a hydrogen reduction treatment in place of the acid treatment, and the low temperature discharge characteristics and battery internal pressure characteristics were measured in the same manner. The hydrogen reduction treatment was performed by heating the hydrogen storage alloy powder at 300 ° C. in a hydrogen gas atmosphere. When both the water repellent treatment and the hydrogen reduction treatment were performed, the water repellent treatment was performed after the hydrogen reduction treatment. Table 5 shows the results of measurement of the presence / absence of the water-repellent treatment and the hydrogen reduction treatment, the low-temperature discharge characteristics, and the battery internal pressure characteristics.

【0039】[0039]

【表5】 [Table 5]

【0040】表5を参照すると、水素吸蔵合金粉末に
撥水処理及び/又は水素還元処理を施した供試電池No.
51〜53は、何れの処理も施していない供試電池No.
54よりも低温放電特性及び電池内圧特性が向上してい
る。供試電池No.51〜53を比較すると、水素還元処
理のみを施した供試電池No.53は、水素還元処理によ
って粉末の表面の酸化物が除去され、粉末表面組成が
B成分(Ni、Co、Mn及びAl)リッチになると共に
活性化されるため、水素吸蔵合金粉末の表面に電解液
が濡れやすくなり、放電効率が向上したと考えられる。
特に、撥水処理と水素還元処理の両方を実施した供試電
池No.52は、水素還元処理によって粉末の表面組成が
予めB成分リッチとなった状態で、撥水処理によって粉
末表面に被膜が形成されるから、水素の吸収効率もさら
に向上し、低温放電特性、電池内圧特性が向上したと考
えられる。
Referring to Table 5, the test battery No. obtained by subjecting the hydrogen storage alloy powder to a water-repellent treatment and / or a hydrogen reduction treatment.
Nos. 51 to 53 are test battery Nos.
54, the low temperature discharge characteristics and the battery internal pressure characteristics are improved. Comparing the test batteries Nos. 51 to 53, the test battery No. 53 subjected to only the hydrogen reduction treatment has the oxide on the surface of the powder removed by the hydrogen reduction treatment, and the powder surface composition has a B component (Ni, (Co, Mn and Al) are enriched and activated, so that the electrolyte easily wets the surface of the hydrogen storage alloy powder, and it is considered that the discharge efficiency is improved.
In particular, in the test battery No. 52 in which both the water-repellent treatment and the hydrogen reduction treatment were performed, a film was formed on the powder surface by the water-repellent treatment in a state where the surface composition of the powder was previously rich in the B component by the hydrogen reduction treatment. It is considered that the hydrogen absorption efficiency was further improved, and the low-temperature discharge characteristics and the battery internal pressure characteristics were improved.

【0041】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能である。
The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣田 洋平 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 加藤 菊子 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4K018 AA07 BD07 KA37 5H003 AA01 AA02 BA00 BA07 BB02 BD03 5H016 AA02 AA05 BB06 BB09 BB11 BB12 EE01 EE09 HH01  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yohei Hirota 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kikuko Kato 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Mamoru Kimoto 2-5-5 Sanyo Electric Co., Ltd., Moriguchi City, Osaka (72) Inventor Shin Fujiya Keihan Hondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 4K018 AA07 BD07 KA37 5H003 AA01 AA02 BA00 BA07 BB02 BD03 5H016 AA02 AA05 BB06 BB09 BB11 BB12 EE01 EE09 HH01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 CaCu5型結晶構造を有し、MmNia
CobAlcd(但し、Mmはミッシュメタル、MはMn
及び/又はCuであり、原子比a、b、c、dは、夫々
3.0≦a≦5.2、0≦b≦1.2、0.1≦c≦0.
9、0.1≦d≦0.8、且つ原子比a、b、c、dの合
計値X=a+b+c+dが4.4≦X≦5.4)で表わさ
れる水素吸蔵合金を含有する水素吸蔵合金電極におい
て、 Xの値が5.0以上である水素吸蔵合金粉末と、Xの値
が5.0未満である水素吸蔵合金粉末を含んでいること
を特徴とする水素吸蔵合金電極。
1. A has a CaCu 5 type crystal structure, MmNi a
Co b Al c M d (where, Mm is the mischmetal, M is Mn
And / or Cu, and the atomic ratios a, b, c, and d are 3.0 ≦ a ≦ 5.2, 0 ≦ b ≦ 1.2, and 0.1 ≦ c ≦ 0, respectively.
9, a hydrogen storage alloy containing a hydrogen storage alloy in which 0.1 ≦ d ≦ 0.8 and the total value X = a + b + c + d of the atomic ratios a, b, c and d is 4.4 ≦ X ≦ 5.4) A hydrogen storage alloy electrode, comprising: a hydrogen storage alloy powder having an X value of 5.0 or more; and a hydrogen storage alloy powder having a X value of less than 5.0.
【請求項2】 Xの値が5.0未満の水素吸蔵合金粉末
は、粉末の表面に撥水処理が施されている請求項1に記
載の水素吸蔵合金電極。
2. The hydrogen-absorbing alloy electrode according to claim 1, wherein the powder of the hydrogen-absorbing alloy having a value of X of less than 5.0 is subjected to a water-repellent treatment on the surface of the powder.
【請求項3】 Xの値が5.0未満の水素吸蔵合金粉末
は、酸性水溶液による表面処理が施されている請求項1
又は請求項2に記載の水素吸蔵合金電極。
3. The hydrogen storage alloy powder having a value of X less than 5.0 has been subjected to a surface treatment with an acidic aqueous solution.
Or the hydrogen storage alloy electrode according to claim 2.
【請求項4】 Xの値が5.0未満の水素吸蔵合金粉末
は、撥水処理の前に酸性水溶液による表面処理が施され
ている請求項2に記載の水素吸蔵合金電極。
4. The hydrogen storage alloy electrode according to claim 2, wherein the hydrogen storage alloy powder having a value of X less than 5.0 is subjected to a surface treatment with an acidic aqueous solution before the water repellent treatment.
【請求項5】 Xの値が5.0未満の水素吸蔵合金粉末
は、水素還元処理が施されている請求項1又は請求項2
に記載の水素吸蔵合金電極。
5. The hydrogen storage alloy powder having a value of X less than 5.0 has been subjected to a hydrogen reduction treatment.
5. The hydrogen storage alloy electrode according to item 1.
【請求項6】 Xの値が5.0未満の水素吸蔵合金粉末
は、撥水処理の前に水素還元処理が施されている請求項
2に記載の水素吸蔵合金電極。
6. The hydrogen storage alloy electrode according to claim 2, wherein the hydrogen storage alloy powder having a value of X less than 5.0 has been subjected to a hydrogen reduction treatment before the water repellent treatment.
【請求項7】 CaCu5型結晶構造を有し、MmNia
CobAlcd(但し、Mmはミッシュメタル、MはMn
及び/又はCuであり、原子比a、b、c、dは、夫々
3.0≦a≦5.2、0≦b≦1.2、0.1≦c≦0.
9、0.1≦d≦0.8、且つ原子比a、b、c、dの合
計値X=a+b+c+dが4.4≦X≦5.4)で表わさ
れ、Xの値が5.0以上である水素吸蔵合金粉末と、X
の値が5.0未満である水素吸蔵合金粉末を、夫々所定
量に秤量するステップ、 秤量された水素吸蔵合金粉末を、増粘剤と共に混合し、
スラリーを作製するステップ、及び、 得られたスラリーを集電体上に塗布するステップと、 を含んでいる水素吸蔵合金電極の製造方法。
7. It has a CaCu 5 type crystal structure, and has a MmNi a
Co b Al c M d (where, Mm is the mischmetal, M is Mn
And / or Cu, and the atomic ratios a, b, c, and d are 3.0 ≦ a ≦ 5.2, 0 ≦ b ≦ 1.2, and 0.1 ≦ c ≦ 0, respectively.
9, 0.1 ≦ d ≦ 0.8, and the total value of atomic ratios a, b, c, d (X = a + b + c + d is represented by 4.4 ≦ X ≦ 5.4), and the value of X is 5. A hydrogen storage alloy powder of 0 or more;
Weighing the hydrogen storage alloy powder having a value of less than 5.0 to a predetermined amount, mixing the weighed hydrogen storage alloy powder with a thickener,
A method for producing a hydrogen storage alloy electrode, comprising: preparing a slurry; and applying the obtained slurry onto a current collector.
JP36213799A 1998-12-22 1999-12-21 Hydrogen storage alloy electrode and manufacturing method thereof Expired - Fee Related JP3796085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36213799A JP3796085B2 (en) 1998-12-22 1999-12-21 Hydrogen storage alloy electrode and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-363982 1998-12-22
JP36398298 1998-12-22
JP36213799A JP3796085B2 (en) 1998-12-22 1999-12-21 Hydrogen storage alloy electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000243387A true JP2000243387A (en) 2000-09-08
JP3796085B2 JP3796085B2 (en) 2006-07-12

Family

ID=26581359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36213799A Expired - Fee Related JP3796085B2 (en) 1998-12-22 1999-12-21 Hydrogen storage alloy electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3796085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367608A (en) * 2001-06-11 2002-12-20 Santoku Corp Manufacturing method of negative electrode for secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367608A (en) * 2001-06-11 2002-12-20 Santoku Corp Manufacturing method of negative electrode for secondary cell
EP1418636A1 (en) * 2001-06-11 2004-05-12 Santoku Corporation Method for fabricating negative electrode for secondary cell
EP1418636A4 (en) * 2001-06-11 2006-04-26 Santoku Corp Method for fabricating negative electrode for secondary cell

Also Published As

Publication number Publication date
JP3796085B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP2680623B2 (en) Hydrogen storage alloy electrode
JP2000182607A (en) Hydrogen storage alloy electrode
JP2000243387A (en) Hydrogen storage alloy electrode and its manufacture
US6329100B1 (en) Hydrogen absorbing alloy electrode and process for producing same
JP3588933B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3192694B2 (en) Alkaline storage battery
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP3198896B2 (en) Nickel-metal hydride battery
JPH10284071A (en) Sintered hydrogen storage alloy electrode
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3369148B2 (en) Alkaline storage battery
JPH0675398B2 (en) Sealed alkaline storage battery
JP3454780B2 (en) Alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees