JPS61187939A - Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium - Google Patents

Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium

Info

Publication number
JPS61187939A
JPS61187939A JP60026997A JP2699785A JPS61187939A JP S61187939 A JPS61187939 A JP S61187939A JP 60026997 A JP60026997 A JP 60026997A JP 2699785 A JP2699785 A JP 2699785A JP S61187939 A JPS61187939 A JP S61187939A
Authority
JP
Japan
Prior art keywords
barium
adsorption
aqueous solution
ion
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60026997A
Other languages
Japanese (ja)
Other versions
JPH0450063B2 (en
Inventor
Yoshinori Fujiki
藤木 良規
Masaru Komatsu
優 小松
Takayoshi Sasaki
高義 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP60026997A priority Critical patent/JPS61187939A/en
Publication of JPS61187939A publication Critical patent/JPS61187939A/en
Publication of JPH0450063B2 publication Critical patent/JPH0450063B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a fixing method having high adsorptivity for barium, ion exchangeability and low leaching rate of barium by using a titania hydrate obtained by extracting the K2O component from potassium titanate as the fixing agent of barium. CONSTITUTION:The K2O component is extracted from potassium titanate, I2 O.nTiO2 (where n=2-4), to obtain a titania hydrate, TiO2.mH2O (where m=0-3), which is used for the adsorption of barium in an aq. soln., as an ion-exchange material and in the method for fixing barium. The material adsorbs and ion-exchanges the barium in an aq. soln. to form a barium adsorption body, BaO.nTiO2.mH2O, which is heated at high temps. to form a fixed body of a mixture of barium titanate, BaO.nTiO2 (where n=4-5) and titanium dioxide.

Description

【発明の詳細な説明】 本発明は水溶液中のバリウムの吸着及びイオン交換材並
びにバリウムの固定化法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adsorption and ion exchange material for barium in an aqueous solution and a method for immobilizing barium.

高レベルの放射性廃液中にはバリウムが比較的多量に含
有されており、これを放置すると公害となシ危険である
High-level radioactive waste liquid contains a relatively large amount of barium, and if left untreated, it poses a danger of causing pollution.

従来、高レベル放射性廃液からバリウムを固化する方法
としては、はうけい酸ガラスによシ他の核種と一緒に固
化する方法が知られている。
Conventionally, a known method for solidifying barium from high-level radioactive waste liquid is to solidify it together with other nuclides in silicate glass.

しかしながら、はうけい酸ガラス固化法は、固化する際
硝酸塩等を使用するため、溶融の際高い溶融温度を必要
としルツボ材が浸食されること。
However, since the silicic acid vitrification method uses nitrates and the like during solidification, it requires a high melting temperature during melting and the crucible material is eroded.

また固化体は経年変化及び崩壊熱の蓄積により分相・結
晶化が起る婢耐久性が悪く、且つ固化体のバリウムの浸
出率は10″″7 f/Cm2・dayのオーダーで浸
出も大きい欠点がある。
In addition, the solidified material has poor durability as phase separation and crystallization occur due to aging and accumulation of decay heat, and the leaching rate of barium from the solidified material is on the order of 10""7 f/Cm2・day, which is large. There are drawbacks.

本発明は従来法の欠点を改善しようとするものであり、
バリウムに対し高い吸着性又はイオン交本発明者は、さ
きにTlO2とK2Oの溶融物から繊維状物を形成して
繊維状゛チタン酸カリウムK2O・nTiO2(ただし
、n=2〜4)となし、この繊維状チタン酸カリウムか
らK2O成分を酸水溶液等で溶出することによって、繊
維状チタニヤ水和物TiO2・mH2O(ただし、m=
0〜3)を作ることに成功した(特願昭53−6768
56号、特願昭54−93460号)。
The present invention aims to improve the drawbacks of the conventional method,
High adsorption or ion exchange for barium The present inventor first formed a fibrous material from a melt of TlO2 and K2O to form a fibrous potassium titanate K2O/nTiO2 (where n=2 to 4). By eluting the K2O component from this fibrous potassium titanate with an acid aqueous solution etc., fibrous titanium hydrate TiO2・mH2O (where m=
0 to 3) (patent application No. 53-6768)
No. 56, Japanese Patent Application No. 54-93460).

更に得られ九繊維状チタニヤ水和物の性質について研究
を続けた結果、該繊維状チタニヤ水和物は、水溶液中の
バリウムを吸着及びイオン交換し、バリウム吸着体Ba
O−nTiO2・mH2O(ただし、n=2〜10 、
 m=2〜8)となることがわかった。
Furthermore, as a result of continuing research on the properties of the obtained nine fibrous titania hydrates, it was found that the fibrous titania hydrates adsorbed and ion-exchanged barium in an aqueous solution, and became a barium adsorbent Ba.
O-nTiO2・mH2O (however, n=2-10,
It was found that m=2 to 8).

また、該バリウム吸着体を1000°C附近の温度で加
熱すると、チタン酸バリウムBa1)nI’i02 (
ただし、n=4〜5)と二酸化チタンの混合物からなる
固定化体となる。この糧の固定化体は耐久性の丸、バリ
ウム吸着体を粉砕後、加圧成形して直接焼結しても同じ
鉱物相の固定化体となることが判明した。この知見に基
いて本発明を完成したものである。
Moreover, when the barium adsorbent is heated at a temperature around 1000°C, barium titanate Ba1)nI'i02 (
However, the immobilized body consists of a mixture of n=4 to 5) and titanium dioxide. It was found that even if the barium adsorbent was pulverized, pressure-molded, and directly sintered, the same mineral phase could be obtained. The present invention was completed based on this knowledge.

本発明において使用するチタニヤ水和物は非晶質ゲル状
物、非晶質又は結晶質の粉状物又は粒状物、非晶質又は
結晶質の繊維状物などのいずれの形状のものでもバリウ
ムを吸着又はイオン交換し得られるが、繊維状のものが
吸着量も多く取扱いが容易である点で好ましく、特に結
晶質で層状構造を有する繊維状のものがよい。
The titania hydrate used in the present invention may be in any form such as an amorphous gel, an amorphous or crystalline powder or granule, or an amorphous or crystalline fibrous material. Although it can be obtained by adsorption or ion exchange, fibrous materials are preferable because they have a large adsorption amount and are easy to handle, and fibrous materials having a crystalline layered structure are particularly preferred.

水溶液中のバリウムの吸着及びイオン交換は、水溶液中
に浸漬しても、吸着材を充填し九カラムにバリウム水溶
液を通じてもよい。
Adsorption and ion exchange of barium in an aqueous solution may be carried out by immersion in the aqueous solution or by passing the barium aqueous solution through nine columns filled with an adsorbent.

水溶液中のバリウムは、バリウム吸着体BaO・nTi
O2・mH2O(ただし、n、mは前記と同じ)トナ回
折法で合成相を同定して決定することができる。
Barium in an aqueous solution can be absorbed by barium adsorbent BaO・nTi
The synthetic phase can be identified and determined by the Toner diffraction method (where n and m are the same as above).

バリウムを固定化するには、前記ス)oンチウム吸着体
を900〜1300℃の温度で加熱処理してチタン酸バ
リウムと二酸化チタン(ルチル相)の混合物とする。
In order to immobilize barium, the above-mentioned sodium oxide adsorbent is heat-treated at a temperature of 900 to 1300°C to form a mixture of barium titanate and titanium dioxide (rutile phase).

次に、該混合物を5に9/c−〜5QQ K5+/c+
*2の圧力で加圧成形した後1000℃以上で溶融温度
より低い温度で焼結すると、容積が縮小すると共にバリ
ウムの浸出率も少なく耐久性の大きいものとなる。
Next, add the mixture to 5 to 9/c- to 5QQ K5+/c+
*If the product is press-formed at a pressure of 2 and then sintered at a temperature of 1000°C or higher and lower than the melting temperature, the volume will be reduced and the barium leaching rate will be low, resulting in high durability.

この加圧成形・焼結の2段法Kかえ、ホットプレス法で
加圧成形・焼結を同時に行ってもよく、またはバリウム
吸着体を直接加圧成形して焼結してもよく、また直接ホ
ットプレスしてもよい。
Instead of this two-step method of pressure forming and sintering, pressure forming and sintering may be performed simultaneously using a hot press method, or the barium adsorbent may be directly pressure formed and sintered. It may also be hot pressed directly.

本発明のバリウムの吸着及びイオン交換材は、その材料
がチタン酸塩で、Tie6八面体の連結様式中にバリウ
ムを固定化するので、従来のほうけ成程度にNa2Oは
混入しても良く、溶融法でも不純物程度にNa2Oが混
入していても差支えない。
The barium adsorption and ion exchange material of the present invention is made of titanate and barium is immobilized in the Tie6 octahedral connection mode, so Na2O may be mixed in to the extent of conventional borosilicate formation, and the molten Even when using the method, there is no problem even if Na2O is mixed in to an impurity level.

しかし、Na2Oが多くなると7ラツクス法では大チタ
ン酸カリウム及びルチル等と共存し、溶融法では繊維分
離が困難になる。
However, when Na2O increases, it coexists with large potassium titanate, rutile, etc. in the 7 lux method, and fiber separation becomes difficult in the melting method.

実施例1゜ (1)  繊維状チタン酸カリウムの製造(1)  溶
融法 TlO2とに2(30,0粉末をモル比で2=1の割合
で混合した。
Example 1゜(1) Production of fibrous potassium titanate (1) Melting method TlO2 and 2(30.0 powder) were mixed in a molar ratio of 2=1.

該混合物約459を100−白金ルツボに充填し、10
00〜1100°Cで30分間加熱溶融した。該溶融物
を別の金属製容儀(底を外側から水冷)へ流出して急冷
し繊維状に結晶化させた。この結晶化物はに2Ti20
sの単独相繊維であった。得られた繊維状結晶物の塊状
物を、水中に約2時間浸漬して解繊した。解繊した繊維
は直径0.1〜0.5 vmの束状で平均5■の長さで
あった。本繊維は結晶性が悪いので、900℃で30分
間加熱した。これはに2Ti409とに2Ti20sの
混合相の繊維であった。
Approximately 459 grams of the mixture was charged into a 100-platinum crucible, and 10
The mixture was heated and melted at 00 to 1100°C for 30 minutes. The melt was quenched by flowing into another metal container (the bottom of which was water-cooled from the outside) and crystallized into fibers. This crystallized product is 2Ti20
It was a single phase fiber of s. The resulting fibrous crystalline mass was defibrated by immersing it in water for about 2 hours. The defibrated fibers were bundles with a diameter of 0.1 to 0.5 vm and an average length of 5 cm. Since this fiber has poor crystallinity, it was heated at 900° C. for 30 minutes. This was a mixed phase fiber of 2Ti409 and 2Ti20s.

K2Ti40p相の生成はに2Ti205相の一部ノカ
リウムが水で溶出したためである。
The formation of the K2Ti40p phase was due to the elution of some potassium from the 2Ti205 phase with water.

(ml  フラックス法 TlO2とK2O0Mの粉末をモル比で1:0.33の
割合の組成物((KtO) 16・Ti0z )と、さ
らにに2M0Oa粉末をモルラで30 : 70の割合
で混合した。該混合物約809を約100114白金ル
ツボに充填し、1150℃で4時間加熱溶融した後、4
°C/hの速度で950℃まで徐冷して繊維を育成した
(ml flux method) A composition of TlO2 and K2O0M powder in a molar ratio of 1:0.33 ((KtO) 16.Ti0z) was further mixed with 2M0Oa powder in a molar ratio of 30:70. Approximately 809 of the mixture was filled into a platinum crucible of approximately 100114, and after heating and melting at 1150°C for 4 hours,
Fibers were grown by slow cooling to 950°C at a rate of °C/h.

得られた繊維状結晶物は水で7ラツクスを溶解してルツ
ボから取シ出した。繊維は平均2■の長さ、直径0.0
5〜0.1mの束状の単結晶の集合体でに2Ti、09
単独相であった。
Seven lacs of the obtained fibrous crystalline material was dissolved in water and taken out from the crucible. Fibers have an average length of 2 cm and a diameter of 0.0
2Ti, 09 in a bundle-like single crystal aggregate of 5 to 0.1 m
It was a single phase.

なお、繊維組成((K2O) 1/3* ’rio2)
 ノ代りにNa 2 Co sを用いて((Na2O)
l/5−TiOz )を使用したが、実際の生成物はに
2Ti40.繊維が生成し、特に悪い影響は認められず
比較的長い繊維が得られた。さらにNa200x成分が
多量に添加されると大チタン酸カリウム(K2T土6C
hs)及びルチル(Ti02)等の混合相となる。
In addition, the fiber composition ((K2O) 1/3 * 'rio2)
Using Na2Cos instead of ((Na2O)
1/5-TiOz) was used, but the actual product was 2Ti40. Fibers were produced, and relatively long fibers were obtained without any particular adverse effects observed. Furthermore, when a large amount of Na200x component is added, large potassium titanate (K2T soil 6C
hs) and rutile (Ti02).

(2)繊維状チタニヤ水和物の製造 (1)溶融法繊維 上記(1)−(1)の方法で得られた繊維をlN−H0
j水溶液1000−に対して10Fの割合で約10時間
該水溶液に浸漬してK2O成分を抽出し、水洗、風乾し
てチタニヤ水和物を得た。
(2) Production of fibrous titania hydrate (1) Melt-processed fibers The fibers obtained by the methods (1) to (1) above are
The sample was immersed in the aqueous solution for about 10 hours at a ratio of 10F to 1000-J aqueous solution to extract the K2O component, washed with water, and air-dried to obtain titania hydrate.

該チタニヤ水和物の銅対陰極としたX線粉末回折図は、
2θ=10°、 25.6°、 48.6°附近にブロ
ードなピークを示す結晶質繊維であった。
The X-ray powder diffraction pattern of the titanium hydrate with copper anticathode is as follows:
It was a crystalline fiber showing broad peaks around 2θ=10°, 25.6°, and 48.6°.

(I)  フラックス法繊維 上記(11−1111の方法で得られた繊維を1li−
11Ct水溶液1000 m+17に対して10Fの割
合で約10時間該水溶液に浸漬してに、O成分を抽出し
、水洗、風乾してチタニヤ水和物を得た。
(I) Flux method fiber The fiber obtained by the above method (11-1111)
It was immersed in the 11Ct aqueous solution at a ratio of 10F to 1000 m+17 for about 10 hours, the O component was extracted, washed with water, and air-dried to obtain titania hydrate.

該チタニヤ水和物のX線粉末回折図は、2θ=9.8°
に最強度ピークを示し、17.8°、24.3°。
The X-ray powder diffraction pattern of the titania hydrate is 2θ=9.8°
The most intense peaks are shown at 17.8° and 24.3°.

27.3°、 30.0’ 、 33.7°、 37.
5°郷に比較的弱いが、シャープな回折ピークを示す。
27.3°, 30.0', 33.7°, 37.
It shows a relatively weak but sharp diffraction peak at 5°.

(3)  水溶液中のバリウムの吸着及びイオン交換(
II  O,I MBa(OfiJ2水溶液10011
7に対して2fの割合で前記+21− +I+の方法で
作製したチタニヤ水和物繊維を10日間200 rpm
で攪拌しながら浸漬した後、濾過、風乾した。
(3) Adsorption and ion exchange of barium in aqueous solution (
II O, I MBa (OfiJ2 aqueous solution 10011
The titanium hydrate fiber produced by the method of +21- +I+ above at a ratio of 2f to 7f was heated at 200 rpm for 10 days.
After soaking with stirring, the mixture was filtered and air-dried.

この吸着体を化学分析した結果、BaTia、209.
4・5.5H20のIIL成を示した。この組成のバリ
ウムに対する交換容量は4.9meq/j’である。バ
リウムの含有量は23.4wt%である。
As a result of chemical analysis of this adsorbent, BaTia, 209.
It showed an IIL formation of 4.5.5H20. The exchange capacity for barium of this composition is 4.9 meq/j'. The barium content is 23.4 wt%.

+13  前記(2)−(1)の方法で作製したチタニ
ヤ水和物繊維を前記(31−(11と同様にして浸漬、
−過。
+13 The titanium hydrate fiber produced by the method of (2)-(1) above was soaked in the same manner as in (31-(11),
- Past.

風乾した。Air dried.

この吸着体を化学分析した結果BaTig017・5.
7H20の組成を示した。この組成のバリウムに対する
交換容量は2.6 meq / fである。
Chemical analysis of this adsorbent resulted in BaTig017.5.
The composition of 7H20 is shown. The exchange capacity for barium of this composition is 2.6 meq/f.

バリウムの含有量は15.3wt%である。The barium content is 15.3 wt%.

(4)  成形・固定化 前記(3)で得られた2種類のバリウム吸着体をそれぞ
れ粉砕し、約0.22を500 Ky/cva2の圧力
下で直径1.3cm、厚さQ、lawのペレット状に成
形後、1000°C〜1200℃で1時間焼成した。
(4) Molding/immobilization The two types of barium adsorbents obtained in (3) above were each pulverized, and about 0.22 was molded under a pressure of 500 Ky/cva2 to a diameter of 1.3 cm, thickness of Q, and law. After forming into a pellet, it was baked at 1000°C to 1200°C for 1 hour.

得られた固定化鉱物相は下記表1の通シであった。The obtained immobilized mineral phase was as shown in Table 1 below.

いずれの吸着体も1200°C20時間焼成の結果でも
鉱物相は1時間焼成の場合と同じであった。五チタン酸
バリウムBa’I’i、O,、は1100℃と1200
℃の間の温度で四チタン酸バリウム(BaTi40. 
)とルチルに分解することが判明した。
The mineral phase of both adsorbents after firing at 1200°C for 20 hours was the same as when firing for 1 hour. Barium pentatitanate Ba'I'i,O,, is 1100℃ and 1200℃
Barium tetratitanate (BaTi40.
) and rutile.

得られた焼結体の比表面積は窒素ガス吸着法によシ測定
した結果1×10’ cJ/yであった。
The specific surface area of the obtained sintered body was measured by nitrogen gas adsorption method and was found to be 1×10' cJ/y.

(6)純水中でのバリウムの浸出 前記(4)の方法で得た固化体0.3〜0.42を10
1の蒸留水中に浸漬し、室温下で経時変化に対する浸出
量の変化を調べた。24時間々隔で7回繰返した時間の
それぞれのバリウムの浸出量についてEDTA適定法で
分析し決定した。その結果は表2の通シである。
(6) Leaching of barium in pure water The solidified material obtained by the method (4) above is
The specimens were immersed in distilled water of No. 1 and examined for changes in the amount of leaching over time at room temperature. The leaching amount of barium was analyzed and determined using the EDTA suitable method for each of the 7 repeated times at 24 hour intervals. The results are shown in Table 2.

浸出率の計算は次の式で求めた。The leaching rate was calculated using the following formula.

^ L:浸出率(随一・day) 、 A=バリウムの浸出
量(2)C:バリウムの含有率、S:試料の表面積(C
m2)。
^ L: Leaching rate (first day), A = Barium leaching amount (2) C: Barium content, S: Surface area of the sample (C
m2).

t:浸出時間(day )。t: Leaching time (day).

以上の結果はバリウムの浸出が極めて小さいことを示す
ものである。
The above results indicate that barium leaching is extremely small.

発明の効果Effect of the invention

Claims (1)

【特許請求の範囲】 1、チタン酸カリウムK_2O・nTiO_2(ただし
、n=2〜4)からK_2O成分を抽出して得られたチ
タニヤ水和物TiO_2・mH_2O(ただし、m=0
〜3)からなる水溶液中のバリウムの吸着及びイオン交
換材。 2、チタン酸カリウムがTiO_2とK_2Oの溶融物
を繊維状に形成せしめ結晶化させたものである特許請求
の範囲第1項記載の水溶液中のバリウムの吸着及びイオ
ン交換材。 3、チタン酸カリウムK_2O・nTiO_2(ただし
、n=2〜4)からK_2O成分を抽出して得られたチ
タニヤ水和物TiO_2・mH_2O(ただし、m=0
〜3)によって水溶液中のバリウムを吸着及びイオン交
換させて、バリウム吸着体BaO・nTiO_2・mH
_2O(ただし、n=2〜10、m=2〜8)となし、
該バリウム吸着体を900〜1300℃に加熱してチタ
ン酸バリウムBaO・nTiO_2(ただし、n=4〜
5)と二酸化チタンの混合物とすることを特徴とするバ
リウムの固定化法。 4、該バリウム吸着体または該チタン酸バリウムと二酸
化チタンの混合物を加圧成形・焼結する特許請求の範囲
第5項記載のバリウムの固定化法。
[Claims] 1. Titanium hydrate TiO_2·mH_2O obtained by extracting the K_2O component from potassium titanate K_2O·nTiO_2 (however, m=0
-3) Adsorption and ion exchange material for barium in an aqueous solution. 2. The adsorption and ion exchange material for barium in an aqueous solution as set forth in claim 1, wherein potassium titanate is obtained by forming a fibrous material of a melt of TiO_2 and K_2O and crystallizing it. 3. Titanium hydrate TiO_2・mH_2O obtained by extracting the K_2O component from potassium titanate K_2O・nTiO_2 (however, n=2 to 4) (however, m=0
~3) Adsorb and ion exchange barium in the aqueous solution to form a barium adsorbent BaO・nTiO_2・mH
_2O (however, n = 2 to 10, m = 2 to 8) and none,
The barium adsorbent was heated to 900 to 1300°C to form barium titanate BaO・nTiO_2 (where n=4 to
5) and titanium dioxide. 4. The method for immobilizing barium according to claim 5, wherein the barium adsorbent or the mixture of barium titanate and titanium dioxide is pressure-molded and sintered.
JP60026997A 1985-02-14 1985-02-14 Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium Granted JPS61187939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026997A JPS61187939A (en) 1985-02-14 1985-02-14 Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026997A JPS61187939A (en) 1985-02-14 1985-02-14 Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium

Publications (2)

Publication Number Publication Date
JPS61187939A true JPS61187939A (en) 1986-08-21
JPH0450063B2 JPH0450063B2 (en) 1992-08-13

Family

ID=12208792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026997A Granted JPS61187939A (en) 1985-02-14 1985-02-14 Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium

Country Status (1)

Country Link
JP (1) JPS61187939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515725A (en) * 1999-10-13 2003-05-07 コミツサリア タ レネルジー アトミーク Boron-based confined substrates for storage or incineration of long-lived radioactive elements
JP2007112655A (en) * 2005-10-19 2007-05-10 Catalysts & Chem Ind Co Ltd New titanium oxide and method for synthesizing the new titanium oxide
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
WO2018215696A1 (en) 2017-05-24 2018-11-29 Fortum Power And Heat Oy Novel ion exchange materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515725A (en) * 1999-10-13 2003-05-07 コミツサリア タ レネルジー アトミーク Boron-based confined substrates for storage or incineration of long-lived radioactive elements
JP2007112655A (en) * 2005-10-19 2007-05-10 Catalysts & Chem Ind Co Ltd New titanium oxide and method for synthesizing the new titanium oxide
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
WO2018215696A1 (en) 2017-05-24 2018-11-29 Fortum Power And Heat Oy Novel ion exchange materials

Also Published As

Publication number Publication date
JPH0450063B2 (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JPH05254881A (en) Nanocrystalline material and its production
DE1287763B (en)
Salimkhani et al. In situ synthesis of leucite‐based feldspathic dental porcelain with minor kalsilite and Fe2O3 impurities
JPS61187939A (en) Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium
JPS621293B2 (en)
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
JPS6125657B2 (en)
JP6989568B2 (en) Manufacturing method of radioactive solid waste
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
EP0426048B1 (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
SASAKI et al. Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate
JPS5953214B2 (en) Method for producing zeolite whose main component is coal ash rich in alumina
JPS6132053B2 (en)
JPS61129041A (en) Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal
JPS6156017B2 (en)
Chand et al. Synthesis, characterization and ion exchange properties of a new ion exchange material: bismuth (iii) Iodophosphate
JPS6163529A (en) Production of titanium compound fiber
CN110482853A (en) It is a kind of that toxic metal ions in electroplating wastewater are solidified to method and gained glass in sodium calcium aluminium silicate glass
JPH01258737A (en) Adsorbent for recovery of rare earth element in aqueous solution
JPS60259625A (en) Production of titania fiber
JPH0788278B2 (en) Method for producing potassium hexatitanate fiber
JPS6052087B2 (en) Manufacturing method of zeolitic composition
JPS6121914A (en) Manufacture of titanium compound fiber
JPS60210802A (en) Manufacture of magnetic fine particle
Okamoto Structural Modification of KAISiO4 Minerals

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term