JPS621293B2 - - Google Patents

Info

Publication number
JPS621293B2
JPS621293B2 JP56002849A JP284981A JPS621293B2 JP S621293 B2 JPS621293 B2 JP S621293B2 JP 56002849 A JP56002849 A JP 56002849A JP 284981 A JP284981 A JP 284981A JP S621293 B2 JPS621293 B2 JP S621293B2
Authority
JP
Japan
Prior art keywords
strontium
tio
aqueous solution
fibrous
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002849A
Other languages
Japanese (ja)
Other versions
JPS57117341A (en
Inventor
Yoshinori Fujiki
Takayoshi Sasaki
Masaru Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP56002849A priority Critical patent/JPS57117341A/en
Priority to US06/289,281 priority patent/US4367281A/en
Publication of JPS57117341A publication Critical patent/JPS57117341A/en
Publication of JPS621293B2 publication Critical patent/JPS621293B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は水溶液中のストロンチウムイオンの吸
着及び交換材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to adsorption and exchange materials for strontium ions in aqueous solutions.

高レベルの放射性廃液中にはストロンチウムが
含有されており、これを放置すると公害となり危
険である。
High-level radioactive waste liquid contains strontium, which is dangerous and can cause pollution if left untreated.

そのために選択的に吸着分離し、それを固定し
て結晶体の中へ閉じ込め安全性を計ることが重要
である。
For this purpose, it is important to selectively adsorb and separate it, fix it, and confine it within a crystal to ensure safety.

従来、高レベル放射性廃液からストロンチウム
を分離する方法としては、ゼオライトによりスト
ロンチウムイオンをナトリウムイオンと交換して
分離する方法が知られているだけである。しか
し、交換容量と選択性が小さく、また吸着後の処
理(固定化)においても安全性に問題がある。
Conventionally, the only known method for separating strontium from high-level radioactive waste liquid is to exchange strontium ions with sodium ions using zeolite. However, the exchange capacity and selectivity are small, and there are also safety problems in post-adsorption processing (immobilization).

本発明は従来法の欠点を改善しようとするもの
であり、ストロンチウムイオンに対し高い選択性
と吸着またはイオン交換性を有し、且つ固定化も
優れたストロンチウムイオンの吸着及びイオン交
換分離材を提供するにある。
The present invention aims to improve the drawbacks of conventional methods, and provides a strontium ion adsorption and ion exchange separation material that has high selectivity and adsorption or ion exchange properties for strontium ions, and has excellent immobilization. There is something to do.

本発明者は、さきにTiO2とK2Oの溶融物から
繊維状物を形成して繊維状チタン酸カリウム
K2O・nTiO2(ただし、n=2〜4)となし、こ
の繊維状チタン酸カリウムからK2O成分を酸水溶
液等で溶出することによつて、繊維状チタニヤ水
和物TiO2・mH2O(ただし、m=0〜3)を作る
ことに成功した。(特願昭53−676856号、特願昭
54−93460号) 更に得られた繊維状チタニヤ水和物の性質につ
いて研究を続けた結果、該繊維状チタニヤ水和物
は、水溶液中のストロンチウムを吸着及びイオン
交換し、ストロンチウム吸着体SrxO・nTiO2
mH2O(ただし、xは0.5〜1、n=2〜8、m
=2〜8)となることがわかつた。
The present inventor first formed a fibrous material from a melt of TiO 2 and K 2 O to produce fibrous potassium titanate.
By eluting the K 2 O component from the fibrous potassium titanate with an acid aqueous solution, etc., the fibrous titanium hydrate TiO 2 We succeeded in producing mH 2 O (m=0 to 3). (Special Application No. 53-676856,
54-93460) Further, as a result of continuing research on the properties of the obtained fibrous titanium hydrate, it was found that the fibrous titania hydrate adsorbs and ion-exchanges strontium in an aqueous solution and becomes a strontium adsorbent Sr x O.・nTiO2
mH 2 O (where x is 0.5 to 1, n = 2 to 8, m
= 2 to 8).

この知見に基いて本発明を完成したものであ
る。
The present invention was completed based on this knowledge.

本発明において使用するチタニヤ水和物は非晶
質ゲル状物、非晶質又は結晶質の粉状物又は粒状
物、非晶質又は結晶質の繊維状物などのいずれの
形状のものでもストロンチウムを吸着又はイオン
交換し得られるが、繊維状のものが吸着量も多く
取扱いが容易である点で好ましく、特に結晶質で
層状構造を有する繊維状のものがよい。
The titanium hydrate used in the present invention may be in any form such as an amorphous gel, an amorphous or crystalline powder or granule, or an amorphous or crystalline fibrous material containing strontium. Although it can be obtained by adsorption or ion exchange, fibrous materials are preferable because they have a large adsorption amount and are easy to handle, and fibrous materials having a crystalline layered structure are particularly preferred.

水溶液中のストロンチウムの吸着及びイオン交
換は、水溶液中に浸漬しても、吸着材を充填した
カラムにストロンチウム水溶液を通じてもよい。
Adsorption and ion exchange of strontium in an aqueous solution may be carried out by immersion in the aqueous solution or by passing the strontium aqueous solution through a column filled with an adsorbent.

水溶液中のストロンチウムは、ストロンチウム
吸着体SrxO・nTiO2・mH2O(ただし、x、n、
mは前記と同じ)となる。吸着量及びイオン交換
量はストロンチウムの濃度、水素イオン濃度、反
応時間、温度等により変化する。また、x、n及
びmの値は、該吸着体を1000℃附近の温度で加熱
処理して結晶化させ、X線粉末回折法で合成相を
同定して決定することができる。
Strontium in an aqueous solution is absorbed by the strontium adsorbent Sr x O・nTiO 2・mH 2 O (where x, n,
m is the same as above). The amount of adsorption and the amount of ion exchange vary depending on the concentration of strontium, hydrogen ion concentration, reaction time, temperature, etc. Further, the values of x, n, and m can be determined by heat-treating the adsorbent at a temperature of around 1000° C. to crystallize it, and identifying the synthesized phase using X-ray powder diffraction.

本発明のストロンチウムの吸着及びイオン交換
材は、その材料がチタン酸塩で、TiO6八面体の
連結様式中にストロンチウムを固定化するので、
従来のけい酸塩のゼオライトのSiO4四面体の連
結様式の中に固定されるものに比較して固定化が
優れている。また放射壊変過程で相当高温になる
が、高温下においても安定であり、特に、水熱条
件下(700℃、1000気圧の熱水下)でも安定であ
り、ストロンチウムを安定に固定化し得る優れた
効果を有する。
The strontium adsorption and ion exchange material of the present invention is a titanate, and strontium is immobilized in the TiO 6 octahedral connection mode.
The immobilization is superior compared to that of traditional silicate zeolites, which are immobilized in the SiO 4 tetrahedral linkage mode. In addition, although the radiation decay process generates considerably high temperatures, it is stable even at high temperatures, and is particularly stable under hydrothermal conditions (700℃, 1000 atm hot water), making it an excellent material for stably fixing strontium. have an effect.

なお、本発明において、K2O・nTiO2の製造に
際し、フラツクス法では出発繊維組成程度に
Na2Oが混入しても良く、溶融法でも不純物程度
にNa2Oが混入していても差支えない。しかし、
Na2Oが多くなるとフラツクス法では六チタン酸
カリウム及びルチル等と共存し、溶融法では解繊
が困難になる。
In addition, in the present invention, when producing K 2 O・nTiO 2 , the flux method uses a method similar to that of the starting fiber composition.
Na 2 O may be mixed in, and there is no problem even if Na 2 O is mixed in as an impurity even in the melting method. but,
When the amount of Na 2 O increases, it coexists with potassium hexatitanate, rutile, etc. in the flux method, and defibration becomes difficult in the melt method.

実施例 1 (1) 繊維状チタン酸カリウムの製造 (i) 溶融法 TiO2とK2CO3の粉末をモル比で2:1の
割合で混合した。
Example 1 (1) Production of fibrous potassium titanate (i) Melting method TiO 2 and K 2 CO 3 powders were mixed at a molar ratio of 2:1.

該混合物約45gを100ml白金ルツボに充填
し、1000℃で30分間加熱溶融した。該溶融物
を別の金属製容器(底を外側から水冷)へ流
出して急冷し繊維状に結晶化させた。得られ
た繊維状結晶物の塊状物を、水中に約2時間
浸漬して解繊した。解繊した繊維は直径0.1
〜0.5mmの束状で平均5mmの長さであつた。
本繊維は結晶性が悪いので、900℃で30分間
加熱した。これはK2Ti4O9とK2Ti2O5の混合
相の繊維であつた。
Approximately 45 g of the mixture was filled into a 100 ml platinum crucible and melted by heating at 1000° C. for 30 minutes. The melt was discharged into another metal container (the bottom of which was water-cooled from the outside), where it was rapidly cooled and crystallized into fibers. The resulting fibrous crystalline mass was defibrated by immersing it in water for about 2 hours. The diameter of the defibrated fiber is 0.1
They were in the form of bundles of ~0.5 mm, with an average length of 5 mm.
Since this fiber has poor crystallinity, it was heated at 900°C for 30 minutes. This was a mixed phase fiber of K 2 Ti 4 O 9 and K 2 Ti 2 O 5 .

(ii) フラツクス法 TiO2とK2CO3の粉末をモル比で1:0.33
の割合の組成物{(K2O)1/3・TiO2}と、
さらにK2MoO4粉末をモル%で30:70の割合
で混合した。該混合物約80gを約100ml白金
ルツボに充填し、1130℃で4時間加熱溶融し
た後、8℃/hの速度で950℃まで徐冷さ
せ、再度1130℃で4時間加熱溶融した後、8
℃/hの速度で950℃まで徐冷して繰返し成
長反応により繊維を育成した。
(ii) Flux method TiO 2 and K 2 CO 3 powders in a molar ratio of 1:0.33
A composition with a proportion of {(K 2 O) 1/3・TiO 2 },
Furthermore, K 2 MoO 4 powder was mixed in a mol% ratio of 30:70. Approximately 80 g of the mixture was filled into a approximately 100 ml platinum crucible, heated and melted at 1130°C for 4 hours, slowly cooled to 950°C at a rate of 8°C/h, heated and melted again at 1130°C for 4 hours, and then melted at 1130°C for 4 hours.
Fibers were grown by slow cooling to 950°C at a rate of °C/h and repeated growth reactions.

得られた繊維状結晶物は水でフラツクスを
溶解してルツボから取り出した。繊維は平均
2mmの長さ、直径0.05〜0.1mmの束状の単結
晶の集合体でK2Ti4O9単独相であつた。
The obtained fibrous crystalline material was taken out from the crucible by dissolving the flux with water. The fibers were aggregates of bundle-like single crystals with an average length of 2 mm and a diameter of 0.05 to 0.1 mm, and were composed of a single K 2 Ti 4 O 9 phase.

なお、繊維組成{(K2O)1/3・TiO2}の
代りにNa2CO3を用いて{(Na2O)1/3・
TiO2}を使用したが、実際の生成物は
K2Ti4O9繊維が生成し、特に悪い影響は認め
られず比較的長い繊維が得られた。さらに
Na2O3成分が多量に添加されると六チタン酸
カリウム(K2Ti6O13)及びルチル(TiO2)等
の混合相となる。
In addition, by using Na 2 CO 3 instead of the fiber composition {(K 2 O) 1/3・TiO 2 }, {(Na 2 O) 1/3・
TiO 2 } was used, but the actual product is
K 2 Ti 4 O 9 fibers were produced, and relatively long fibers were obtained without any particular adverse effects observed. moreover
When a large amount of the Na 2 O 3 component is added, a mixed phase of potassium hexatitanate (K 2 Ti 6 O 13 ), rutile (TiO 2 ), etc. is formed.

(2) 繊維状チタニヤ水和物の製造 (i) 上記(1)−(i)の方法で得られた繊維を1N−
HCl水溶液100mlに対して10gの割合で約1
時間該水溶液に浸漬してK2O成分を抽出し、
水洗、風乾してチタニヤ水和物を得た。該チ
タニヤ水和物の銅対陰極としたX線粉末回折
図は、2θ=10゜、25.6゜、48.6゜附近にブ
ロードなピークを示す結晶質繊維であつた。
(2) Production of fibrous titania hydrate (i) The fibers obtained by the method (1)-(i) above were
Approximately 1 at a ratio of 10g to 100ml of HCl aqueous solution
immersed in the aqueous solution for an hour to extract the K2O component;
The titanium hydrate was obtained by washing with water and air drying. The X-ray powder diffraction pattern of the titanium hydrate using a copper anticathode showed that it was a crystalline fiber showing broad peaks around 2θ=10°, 25.6°, and 48.6°.

(ii) フラツクス法繊維 上記(1)−(ii)の方法で得られた繊維を1N−
HCl水溶液100mlに対して10gの割合で約10
時間該水溶液に浸漬してK2O成分を抽出し、
水洗、風乾してチタニヤ水和物を得た。該チ
タニヤ水和物のX線粉末回折図は、2θ=
9.8゜に最強度ピークを示し、17.8°、24.3
゜、27.3゜、30.0゜、33.7゜、37.5゜等に比
較的弱いが、シヤープな回折ピークを示す。
(ii) Flux method fiber The fiber obtained by the method (1)-(ii) above is
Approximately 10g at a ratio of 10g to 100ml of HCl aqueous solution
immersed in the aqueous solution for an hour to extract the K2O component;
The titanium hydrate was obtained by washing with water and air drying. The X-ray powder diffraction pattern of the titania hydrate is 2θ=
The most intense peak is at 9.8°, 17.8°, 24.3
It shows comparatively weak but sharp diffraction peaks at angles such as ゜, 27.3゜, 30.0゜, 33.7゜, and 37.5゜.

(3) 水溶液中のストロンチウムの吸着及びイオン
交換 (i) 0.04MSrOH飽和水溶液1に対して2g
の割合で前記(2)−(i)の方法で作製したチタニ
ヤ水和物繊維を6日間撹拌しない状態で浸漬
した後、過、風乾した。
(3) Adsorption and ion exchange of strontium in aqueous solution (i) 2 g per 1 saturated aqueous solution of 0.04MSrOH
The titania hydrate fibers produced by the method (2)-(i) above were soaked for 6 days without stirring, and then filtered and air-dried.

この吸着体を化学分析した結果、
Sr0.9Ti4.0O8.9・6.7H2Oの組成を示した。こ
の組成のストロンチウムに対する交換容量は
4.5meq/gである。
As a result of chemical analysis of this adsorbent,
The composition of Sr0.9Ti4.0O8.96.7H2O is shown . The exchange capacity for strontium of this composition is
It is 4.5meq/g.

この粉末X線回折図は、2θ=25.2゜、
25.6゜、36.4゜、44.0゜付近にブロードなピ
ークを示した。これを1000℃で30分間加熱処
理したものは、粉末X線回折図から同定して
チタン酸ストロンチウムSrTiO3と、ルチル
TiO2の混合相となつた。これは次の反応に
従つている。
This powder X-ray diffraction diagram shows that 2θ=25.2°,
Broad peaks were observed around 25.6°, 36.4°, and 44.0°. The product that was heat-treated at 1000℃ for 30 minutes was identified from the powder X-ray diffraction pattern as strontium titanate SrTiO 3 and rutile.
It became a mixed phase of TiO 2 . This follows the reaction:

SrTi4O9→SrTiO3+3TiO2 (ii) 前記(2)−(ii)の方法で作製したチタニヤ水和
物繊維を前記(3)−(i)と同様にして浸漬、
過、風乾した。
SrTi 4 O 9 →SrTiO 3 +3TiO 2 (ii) The titanium hydrate fiber produced by the method (2)-(ii) above is soaked in the same manner as in (3)-(i) above,
Air-dried.

この吸着体を化学分析した結果
Sr1.0Ti6.0O13.0・6.7H2Oの組成を示した。こ
の組成のストロンチウムに対する交換容量は
3.8meq/gである。この粉末X線回折図
は、2θ=8.1゜にシヤープな最強線ピーク
を示すほか15゜、16.1゜、23.9゜、26.6゜、
30゜、34゜、41゜付近にブロードなピークを
示した。
Results of chemical analysis of this adsorbent
The composition is Sr 1.0 Ti 6.0 O 13.0 6.7H 2 O. The exchange capacity for strontium of this composition is
It is 3.8meq/g. This powder X-ray diffraction diagram shows a sharp strongest line peak at 2θ = 8.1°, as well as 15°, 16.1°, 23.9°, 26.6°,
Broad peaks were observed around 30°, 34°, and 41°.

該吸着体を1000℃で30分間加熱処理したも
のは、粉末X線回折から同定してチタン酸ス
トロンチウムSrTiO3とルチルTiO2の混合相
となつた。これは次の反応に従つている。
When the adsorbent was heat-treated at 1000° C. for 30 minutes, a mixed phase of strontium titanate SrTiO 3 and rutile TiO 2 was identified from powder X-ray diffraction. This follows the reaction:

SrTi6O13→SrTiO3+5TiO2 SrTi 6 O 13 →SrTiO 3 +5TiO 2

Claims (1)

【特許請求の範囲】 1 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4)からK2O成分を抽出して得られたチタ
ニヤ水和物TiO2・mH2O(ただし、m=0〜3)
からなる水溶液中のストロンチウムイオンの吸着
及び交換材。 2 チタン酸カリウムがTiO2とK2Oの溶融物を
繊維状に形成せしめ結晶化させたものである特許
請求の範囲第1項記載の水溶液中のストロンチウ
ムイオンの吸着及び交換材。
[Claims] 1 Potassium titanate K 2 O・nTiO 2 (however, n
Titanium hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from = 2 to 4) (where m = 0 to 3)
A material for adsorbing and exchanging strontium ions in aqueous solutions. 2. The adsorption and exchange material for strontium ions in an aqueous solution according to claim 1, wherein potassium titanate is obtained by forming a fibrous material of a melt of TiO 2 and K 2 O and crystallizing it.
JP56002849A 1981-01-12 1981-01-12 Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium Granted JPS57117341A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56002849A JPS57117341A (en) 1981-01-12 1981-01-12 Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium
US06/289,281 US4367281A (en) 1981-01-12 1981-08-03 Fine fabrication process using radiation sensitive resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002849A JPS57117341A (en) 1981-01-12 1981-01-12 Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61030527A Division JPS61256922A (en) 1986-02-14 1986-02-14 Immobilizing method for strontium incorporated in aqueous solution

Publications (2)

Publication Number Publication Date
JPS57117341A JPS57117341A (en) 1982-07-21
JPS621293B2 true JPS621293B2 (en) 1987-01-12

Family

ID=11540841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002849A Granted JPS57117341A (en) 1981-01-12 1981-01-12 Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium

Country Status (1)

Country Link
JP (1) JPS57117341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059837A (en) * 2016-10-06 2018-04-12 株式会社荏原製作所 Method for treating radioactive effluent containing radioactive strontium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737316A (en) * 1982-11-24 1988-04-12 Pedro B. Macedo Purification of contaminated liquid
US4591455A (en) * 1982-11-24 1986-05-27 Pedro B. Macedo Purification of contaminated liquid
JPS61129041A (en) * 1984-11-29 1986-06-17 Natl Inst For Res In Inorg Mater Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal
JP6557416B2 (en) * 2016-06-23 2019-08-07 日本化学工業株式会社 Method for producing radioactive waste solidified body
JP7086524B2 (en) 2017-03-08 2022-06-20 株式会社荏原製作所 Alkaline earth metal ion adsorbent and its manufacturing method and alkaline earth metal ion-containing liquid treatment equipment
CN107346670B (en) * 2017-06-16 2020-10-09 中国原子能科学研究院 Removing in high-salinity wastewater90Precipitation method of Sr
CN110304907A (en) * 2019-06-12 2019-10-08 魏炎梅 A kind of preparation method of Zinc oxide-base composite conductive ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059837A (en) * 2016-10-06 2018-04-12 株式会社荏原製作所 Method for treating radioactive effluent containing radioactive strontium

Also Published As

Publication number Publication date
JPS57117341A (en) 1982-07-21

Similar Documents

Publication Publication Date Title
US3314752A (en) Synthetic zeolite
JP7190577B2 (en) Zeolite and its manufacturing method
US4661332A (en) Zeolite (ECR-18) isostructural with paulingite and a method for its preparation
Kang et al. Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide
JPS621293B2 (en)
Satokawa et al. Crystallization of single phase (K, Na)-clinoptilolite
JPH0521843B2 (en)
JPS6125657B2 (en)
JPS6227009B2 (en)
US5085845A (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
US4300911A (en) Method for preparing crystalline SiO2 modification
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
JPS62100408A (en) Synthesis of zeolite zsm-22 and zsm-23
JPH0450063B2 (en)
US3228969A (en) Process for synthesizing a methylammonium crystalline zeolite
JPS6132053B2 (en)
US5066404A (en) Method for separating sodium and potassium by ion exchange
JPH0218134B2 (en)
JPS6156017B2 (en)
US5858243A (en) Use of crystalline intergrowth molecular sieves for removing contaminant metal ions from liquid streams
KOMATSU* et al. Adsorption behavior of cobalt (II) ions on layered dihydrogen tetratitanate hydrate fibers in aqueous solutions in the range from 298 to 523 K
JPH0669889B2 (en) Hydrothermal Synthesis of Layered Silicate
JPS62260796A (en) Production of potassium titanate fiber
JPH01258737A (en) Adsorbent for recovery of rare earth element in aqueous solution
JPH05229900A (en) Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o