JPS6163529A - Production of titanium compound fiber - Google Patents

Production of titanium compound fiber

Info

Publication number
JPS6163529A
JPS6163529A JP18514184A JP18514184A JPS6163529A JP S6163529 A JPS6163529 A JP S6163529A JP 18514184 A JP18514184 A JP 18514184A JP 18514184 A JP18514184 A JP 18514184A JP S6163529 A JPS6163529 A JP S6163529A
Authority
JP
Japan
Prior art keywords
fibers
fiber
reaction product
compound
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18514184A
Other languages
Japanese (ja)
Inventor
Hiroshi Inui
乾 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18514184A priority Critical patent/JPS6163529A/en
Publication of JPS6163529A publication Critical patent/JPS6163529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a Ti compound fiber having low thermal conductivity and a specific composition, by compounding a Ti compound which forms TiO2 by heating, a metal and an alkali metal compound at proper ratios, reacting the components with each other under melting, and dissolving the soluble substance. CONSTITUTION:(A) A Ti compound which forms TiO2 by heating, (B) metal M', its alloy, or its compound such as oxide, and (C) an alkali metal compound which forms the alkali metaloxide M2O with heat, are compounded together. The weight ratio TiO2/M'O is 90/10-99/1, and the molar ratio (ti, M')O2/M2O is 1.5-2.5. The mixture is melted to effect the reaction of the components, the reaction product is cooled, the soluble substance is dissolved from the cooled reaction product, and the obtained fiber is dried or calcined. A fiber or fiber mixture of formula M2O.n(Ti, M')O2.mH2O, u(Ti, M')O2.vH2O, or MX(Ti, M')8O16.mH2O (M is alkali metal; M' is element such as Mg, Ni, etc.; 0<n<=8; 0<=m<=4; 0<u<=4; 0<=v<=2; 0<x<=2) can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐火・断熱材、摩擦材、補強材等として有用
なチタン化合物繊維の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing titanium compound fibers useful as fireproofing/insulating materials, friction materials, reinforcing materials, etc.

〔従来技術と問題点〕[Prior art and problems]

六チタン酸カリウム繊維(K z T jb O+ f
f) 、四チタン酸カリウム繊維(K z T r 4
0 q )等のチタン酸カリウム繊維(K2O・nTi
O2)は、耐火性、断熱性、耐熱性、耐摩耗性、補強性
等の機械的性質にすぐれ、化学的にも安定な繊維であり
、アスベスト代替繊維として有望視されている。就中、
プラスチックやセメント等の補強材、自動車等のブレー
キライニング、窯炉・熱処理炉の炉壁材等は、アスベス
ト代替繊維として最も期待されている用途である。
Potassium hexatitanate fiber (K z T jb O+ f
f), potassium tetratitanate fiber (K z T r 4
Potassium titanate fibers (K2O・nTi
O2) is a chemically stable fiber with excellent mechanical properties such as fire resistance, heat insulation, heat resistance, abrasion resistance, and reinforcing properties, and is considered to be a promising asbestos substitute fiber. In particular,
The most promising applications for asbestos substitute fibers include reinforcing materials for plastics and cement, brake linings for automobiles, and furnace wall materials for kilns and heat treatment furnaces.

チタン酸カリウム繊維の製造方法としては、二酸化チタ
ン(TiOz)と炭酸カリウム(KgCOユ)との混合
物を適当な温度で一定時間焼成する焼成法、 二酸化チタンと水酸化カリウム(KOH)とを水の存在
下、高圧力・加熱の条件において合成する水熱法、 二酸化チタンと炭酸カリウムにフラックスとして無水モ
リブデン酸カリウム(K2MoO<)を加えて溶融し、
溶解・析出反応により結晶質繊維を成長させるフラック
ス法等が知られている。
Potassium titanate fibers can be produced by firing a mixture of titanium dioxide (TiOz) and potassium carbonate (KgCO) at an appropriate temperature for a certain period of time, or by combining titanium dioxide and potassium hydroxide (KOH) with water. Hydrothermal method synthesizes titanium dioxide and potassium carbonate under conditions of high pressure and heat in the presence of potassium molybdate anhydride (K2MoO<) as a flux and melts it.
A flux method and the like are known in which crystalline fibers are grown by a dissolution/precipitation reaction.

また、近時、溶融法と称される新たな製造方法が提案さ
れている(窯業協会誌、90 (1)1982.2.1
9〜23)。この方法は、二酸化チタンと炭酸カリウム
との混合物を加熱し、溶融反応させたのち、急冷固化す
ることにより、初生相として二チタン酸カリウム(Kz
Ti2Os)から成る結晶質繊維の集合体である塊状物
を得、ついでその塊状物を水、沸謄水、または酸溶液で
処理して脱アルカリ (カリウムの溶出)するとともに
、繊維同士を分離(解繊化)するものである。この方法
によれば、脱アルカリ・解繊化条件およびその後の処理
条件により、六チタン酸カリウム繊維 (K 2 T 
t b O+ x ) 、四チタン酸カリウム繊維(K
2Ti40.)、アナターゼ繊維(T iOz)の各繊
維が得られる。
In addition, recently, a new manufacturing method called the melting method has been proposed (Journal of Ceramics Association, 90 (1) 1982.2.1
9-23). In this method, a mixture of titanium dioxide and potassium carbonate is heated, melted and reacted, and then rapidly cooled and solidified to produce potassium dititanate (Kz
A lump is obtained, which is an aggregate of crystalline fibers consisting of Ti2Os), and then the lump is treated with water, boiling water, or an acid solution to dealkalize (elute potassium) and separate the fibers ( defibration). According to this method, potassium hexatitanate fibers (K 2 T
t b O+ x ), potassium tetratitanate fiber (K
2Ti40. ) and anatase fibers (T iOz) are obtained.

この溶融法は、これまでの各種製造法に比し、工程が簡
素で、コスト的にも有用であり、連続生産形態が可能で
ある等の特長を有しており、その工業的価値は大である
Compared to various conventional manufacturing methods, this melting method has the advantages of a simpler process, lower cost, and the possibility of continuous production, and has great industrial value. It is.

このように、チタン酸カリウム繊維の製造法について種
々の研究が進められているが、この繊維の工業的実用価
値を高め、用途の拡大進展を可能にするには、材質特性
を向上せしめ、更には繊維の多様化を図ることが望まし
い。
As described above, various research is being carried out on the production method of potassium titanate fibers, but in order to increase the industrial value of this fiber and enable the expansion and development of its applications, it is necessary to improve the material properties and further improve the material properties. It is desirable to diversify fibers.

〔発明の課題〕[Problem of invention]

本発明は、上記要請に応えるためになされたものであり
、前記溶融法のプロセスを利用し、その溶融反応原料の
配合の工夫により、改良された特性を有するチタン化合
物繊維が得られること、および従来の製造法では得られ
ない新規な組成と構造ををするチタン化合物繊維が得ら
れること等を知見し本発明を完成するに到った。
The present invention has been made in response to the above-mentioned needs, and it is possible to obtain titanium compound fibers with improved characteristics by utilizing the melting process and by devising a blend of the melting reaction raw materials. The present invention was completed after discovering that titanium compound fibers having a novel composition and structure that could not be obtained by conventional manufacturing methods could be obtained.

〔技術的手段および作用〕[Technical means and effects]

本発明のチタン化合物繊維の製造方法は、加熱により二
酸化チタンとなるチタン化合物(以下、「二酸化チタン
源」とも言う)と、M′で示される金属もしくはそれを
含む合金またはそれらの酸化物等の化合物(以下、「M
′元素源」とも言う)と、 加熱によりアルカリ金属酸化物(M、O)となるアルカ
リ金属化合物とを、 T i / M ’の酸化物換算重量比(T i O2
/ M ’0):90/10〜99/ 1 、および(
Ti、M’)0□/M、Oのモル比:1.5〜2.5と
なるように配合し、この混合物を出発原料として加熱溶
融反応させ、その溶融反応生成物を冷却して結晶質繊維
の束状集合体である塊状物を得たのち、塊状物から可溶
性物質を溶出させるとともに繊維同士を分離(解繊化)
し、ついで解繊化された繊維を乾燥または焼成すること
により、下記のCI)〜(I[[]式で示されるいづれ
か1種または2種以上の繊維を得るものである。
The method for producing titanium compound fibers of the present invention consists of a titanium compound that becomes titanium dioxide by heating (hereinafter also referred to as "titanium dioxide source"), a metal represented by M', an alloy containing the same, or an oxide thereof, etc. Compound (hereinafter referred to as “M
'element source') and an alkali metal compound that becomes an alkali metal oxide (M, O) by heating, using the oxide equivalent weight ratio of T i /M' (T i O2
/M'0):90/10~99/1, and (
Ti, M')0□/M, O molar ratio: 1.5 to 2.5, this mixture is heated and melted as a starting material, and the molten reaction product is cooled and crystallized. After obtaining a lump, which is a bundle-like aggregate of quality fibers, soluble substances are eluted from the lump and the fibers are separated (defibration).
Then, by drying or firing the defibrated fibers, one or more fibers represented by the following formulas CI) to (I[[]) are obtained.

式:Mg0−n(Ti、M′)O2・mH2O・・CI
)u(Ti、M’)02・vH2O・・ (II)Mx
(Ti、M ’)8016 ・mHzo   ・・Cn
1)但し、上記式中、M′はMg、Cr、Fe、S i
s Ni、Cus Co、Zr、Aj!、Ca。
Formula: Mg0-n(Ti, M')O2・mH2O・・CI
)u(Ti,M')02・vH2O・・(II)Mx
(Ti, M')8016 ・mHzo ・・Cn
1) However, in the above formula, M' is Mg, Cr, Fe, Si
s Ni, Cus Co, Zr, Aj! , Ca.

Ga、、Zn、Nb、V、Mn等の元素、M !、tK
 。
Elements such as Ga, Zn, Nb, V, Mn, M! ,tK
.

N a s L i等のアルカリ金属を表わし、nは8
以下の正数、mはOまたは4以下の正数、Uは4以下の
正数、■は0または2以下の正数、Xは2以下の正数を
それぞれ表わす。
Represents an alkali metal such as NasLi, where n is 8
The following positive numbers, m represents O or a positive number of 4 or less, U represents a positive number of 4 or less, ■ represents 0 or a positive number of 2 or less, and X represents a positive number of 2 or less.

なお、上記CI[[)式のチタン化合物繊維は、MxC
T:a−xyz  1M’rrryz)Orb ・・(
III a )または、Mx(T 18−x + M 
’gx) O+b   ・・ (Ib:1で示される化
学組成を有する繊維を包含する。但し、これらの式中、
M’mは前記M′で示される元素のうち、Mg、Ni、
Cu、Ca、Zn等の2価の元素、M’m1.まM′で
示される元素のうち、/l、Fe、、Cr、Ga等の3
価の元素をそれぞれ表わす。
In addition, the titanium compound fiber of the above CI[[) formula is MxC
T:a-xyz 1M'rrryz)Orb...(
IIIa) or Mx(T18-x + M
'gx) O+b... (Ib: Includes fibers having the chemical composition shown in 1. However, in these formulas,
M'm is Mg, Ni,
Divalent elements such as Cu, Ca, Zn, M'm1. Among the elements represented by M', 3 such as /l, Fe, , Cr, Ga, etc.
Each represents an element of valence.

本発明方法により得られるチタン化合物繊維の代表例と
して、 K 2 (T ilM ’)60.3(〔I)式におい
て、M=K % n =6、m= O)で示される六チ
タン酸カリウム繊維、 Kz(Ti、M’)40q  ((1)弐において、M
=に、n=4、m=0)で示される四チタン酸カリウム
繊維、 Hz(TL M ’)zos  ・)(、O((II)
式において、u=2、■=2)で示される結晶質チタン
酸繊維、 (Ti、M ′)O2  ((II)式において、u=
l、■−0)で示されるアナターゼ繊維またはルチル繊
維、 Kz(Ti、M ’)11016 ((III)式にお
いて、M=に、X=2、m=0)で示されるプリプライ
ト繊維、 等が挙げられる。
As a representative example of the titanium compound fiber obtained by the method of the present invention, potassium hexatitanate represented by K 2 (T ilM ') 60.3 (in formula [I), M = K % n = 6, m = O) Fiber, Kz (Ti, M') 40q ((1) In 2, M
=, n=4, m=0) potassium tetratitanate fiber, Hz(TL M')zos ・)(, O((II)
In the formula, u=2, ■=2), (Ti, M')O2 (In the formula (II), u=
anatase fiber or rutile fiber represented by Kz(Ti, M') 11016 (in formula (III), M=, X=2, m=0), etc. Can be mentioned.

以下、本発明方法について工程順に詳しく説明する。Hereinafter, the method of the present invention will be explained in detail in the order of steps.

本発明における出発原料混合物は前記のように、二酸化
チタン源、M′元素源、およびアルカリ金属化合物を用
いて調製される。
The starting material mixture in the present invention is prepared using a titanium dioxide source, an M' element source, and an alkali metal compound as described above.

二酸化チタン源としては、精製酸化チタン (T i 
Oz約99%以上)、合成ルチル(イルミナイトから鉄
分の大部分を除去したもの。T i Oz約90%)等
が挙げられる。また、各種のチタン化合物、例えば塩化
物(TiC112、TiC121,7’ i Cl 4
等〕、硫酸塩(Ti(Soイ)z 、Ti(SO4)*
等〕水和物(H4T i 04 、H4T I Oz等
〕、オキシ硫酸塩(TiO3O,)等を使用することが
できる。これらのうち、詩に精製酸化チタン、合成ルチ
ル、水和物等が好ましく用いられる。
As a titanium dioxide source, purified titanium oxide (T i
(Oz about 99% or more), synthetic rutile (Illuminite from which most of the iron content has been removed. T i Oz about 90%), and the like. In addition, various titanium compounds, such as chlorides (TiC112, TiC121,7' i Cl 4
], sulfates (Ti(Soi)z, Ti(SO4)*
etc.] hydrates (H4T i 04 , H4T I Oz, etc.), oxysulfates (TiO3O, etc.), etc. Among these, purified titanium oxide, synthetic rutile, hydrates, etc. are preferable. used.

M′元素源としては、M′元素からなる金属もしくはそ
れを含む合金の粉末(例えば、Fe−5i、Sl−Mg
等)、またはその酸化物、あるいは加熱により酸化物と
なる化合物、例えば水和物(A j! zo3’ 2 
S j Ox(粘土)、Alto:+・3H2O等〕、
水酸化物(Mg(OH)z、/l (OH)3等〕、硫
酸塩(Ca S Oa・・2 H2O等〕、塩化物(M
 g Cl 2等〕、炭酸塩(CaCOz、M g C
03等〕、複酸化物〔ZrO□ ・SiO2(このもの
は加熱下に分解溶融し、ZrO2+液相となる)、3A
fzCh  ・2SiOz(このものは加熱下に分解溶
融してAl2O3+液相となる)〕等が挙げられる。ま
た、これらのほかに、不純分を含む天然産チタン化合物
である天然ルチルサンドや天然アナターゼサンドが挙げ
られる。
As the M' element source, powder of a metal consisting of the M' element or an alloy containing it (for example, Fe-5i, Sl-Mg
), or its oxide, or a compound that becomes an oxide upon heating, such as a hydrate (A j! zo3' 2
S j Ox (clay), Alto:+・3H2O, etc.],
Hydroxides (Mg(OH)z, /l (OH)3, etc.), sulfates (CaS Oa...2 H2O, etc.), chlorides (M
g Cl 2 etc.], carbonates (CaCOz, M g C
03 etc.], double oxide [ZrO□ ・SiO2 (this material decomposes and melts under heating and becomes ZrO2+ liquid phase), 3A
fzCh.2SiOz (this material decomposes and melts under heating to become an Al2O3+ liquid phase)], and the like. In addition to these, natural rutile sand and natural anatase sand, which are naturally produced titanium compounds containing impurities, may be mentioned.

殊に、天然ルチルサンドやアナターゼサンドは、安価で
あるうえ、M′で示される各種の元素を豊富に含有して
おり、ことに、Fe、Ai!、Mg、Cr、Si等の重
要な元素を含んでいる点で好適である。
In particular, natural rutile sand and anatase sand are inexpensive and rich in various elements represented by M', especially Fe, Ai! , Mg, Cr, Si, and other important elements.

アルカリ金属化合物としては、ナトリウム、カリウム、
リチウム、ルビジウム、セシウム等の炭酸塩、水酸化物
、硝酸塩等が挙げられる。特に、炭酸カリウム(KzC
Os)が好適であり、水酸化カリウム(K OH)等も
好ましく使用される。
Alkali metal compounds include sodium, potassium,
Examples include carbonates, hydroxides, and nitrates of lithium, rubidium, and cesium. In particular, potassium carbonate (KzC
Os) is preferred, and potassium hydroxide (KOH) and the like are also preferably used.

出発原料混合物は、TiO,/M’Qが90 / 10
〜99/ 1 、および(Ti、M′)O2/M2Oの
モル比が1.5〜2.5となるように調製される。
The starting material mixture has TiO,/M'Q of 90/10
~99/1 and the molar ratio of (Ti, M')O2/M2O to be 1.5 to 2.5.

TiO□/M′0の重量比を90/lo以上とするのは
、これより少いと、Tiに対するM′元素が過剰となっ
て、M′元素により繊維の成長が阻害され、満足すべき
繊維長を得がたく1.シかも本発明の目的とする前記化
学組成のチタン化合物繊維を効率よく得ることができな
くなるからである。
The reason why the weight ratio of TiO□/M'0 should be 90/lo or more is because if it is less than this, the M' element will be in excess with respect to Ti, and the growth of the fiber will be inhibited by the M' element, resulting in unsatisfactory fibers. Difficult to get long 1. Otherwise, it becomes impossible to efficiently obtain titanium compound fibers having the above chemical composition, which is the object of the present invention.

またT i Oz/ M ’ O(7)上限値を99/
1とするのは、それを越えると、Tiに対するM′元素
の相対的不足により、本発明の目的とする前記化学組成
を有する繊維を得難く、特にプリプライト繊維やルチル
繊維の製造が困難となり、また得られる繊維の材料特性
が劣るからである。より好ましいT i Oz/ M 
’ 0重量比は93/7〜98/2である。
In addition, the upper limit of T i Oz/M'O(7) is set to 99/
The reason why it is set as 1 is that if it exceeds this value, it will be difficult to obtain fibers having the above-mentioned chemical composition as the object of the present invention due to the relative deficiency of M' element with respect to Ti, and in particular it will be difficult to produce preprite fibers and rutile fibers. This is also because the material properties of the resulting fibers are inferior. More preferable T i Oz/M
'0 weight ratio is 93/7 to 98/2.

一方、(T i、 M ’) Oz/ M z Oの−
F−/L、比を1.5〜2.5に限定した理由は、この
範囲から逸脱すると、溶融反応生成物の冷却固化工程に
おいて結晶質繊維が形成されないか、またはたとえ繊維
が形成されたとしても、繊維同士の結合が強過ぎるため
に、どのような解繊化処理によっても解繊化し得ないか
らである。溶融反応生成物の冷却による繊維化(結晶質
繊維の束状集合体の形成)と、その後の解繊化を可能に
するには、(Ti、M′)O2/M2Oのモル比は上記
範囲内でなければならず、より好ましいモル比は1.8
〜2.2である。
On the other hand, (T i, M') Oz/ M z O -
The reason for limiting the F-/L ratio to 1.5-2.5 is that if it deviates from this range, crystalline fibers will not be formed in the cooling solidification process of the molten reaction product, or even if fibers are formed. However, since the bonds between the fibers are too strong, they cannot be defibrated by any defibration treatment. In order to enable fiberization (formation of bundle-like aggregates of crystalline fibers) by cooling the molten reaction product and subsequent fibrillation, the molar ratio of (Ti, M')O2/M2O should be within the above range. The more preferable molar ratio is 1.8.
~2.2.

上記原料混合物を溶解ルツボに装入し、その融点以上の
温度に加熱し十分に溶融反応を行なわしめたのち、溶融
反応生成物を冷却固化させて結晶質繊維の束状集合体で
ある塊状物を得る。その結晶質繊維は、ニチタン酸アル
カリ金属(Mz(Ti。
The above raw material mixture is charged into a melting crucible, heated to a temperature higher than its melting point to sufficiently carry out a melting reaction, and then the molten reaction product is cooled and solidified to form a lump, which is a bundle-like aggregate of crystalline fibers. get. The crystalline fibers are made of alkali metal nititanate (Mz(Ti.

M’)zos)である。M') zos).

溶融反応生成物の冷却固化は、溶融反応生成物を鉄板等
の冷却体に直接的もしくは間接的に接触させ、一方向な
いしは多方向凝固させること乙4より行なわれる。
The cooling and solidification of the molten reaction product is carried out in step B4 by bringing the molten reaction product into direct or indirect contact with a cooling body such as an iron plate and solidifying it in one direction or in multiple directions.

上記冷却固化工程における溶融反応生成物の冷却速度は
、0.7’C/秒以上であるのが好ましい。
The cooling rate of the molten reaction product in the cooling solidification step is preferably 0.7'C/sec or more.

0.7℃/秒より緩慢な冷却においても繊維化は可能で
あるが、0.7℃/秒以上とすることにより、解繊化し
易い塊状物が得られるからである。また、25℃/秒を
こえる急冷を行うと、却って結晶化が妨げられ、得られ
る塊状物に、非晶質粉体の占める割合が増し、繊維の収
率が低くなるので、25℃/秒を上限とするのが好まし
い。
Although fiberization is possible even at a cooling rate slower than 0.7°C/sec, by cooling at a rate of 0.7°C/sec or more, a lump that is easily defibrated can be obtained. In addition, if the cooling rate exceeds 25°C/sec, crystallization will be hindered, and the proportion of amorphous powder will increase in the obtained lumps, resulting in a lower fiber yield. It is preferable to set the upper limit to .

また、冷却固化工程において、溶融反応生成物の温度勾
配を0.5℃/酊〜35 ’C/ ++nに調節するこ
とは、結晶の成長を促し、結晶性にすぐれた繊維長の長
い繊維を形成せしめる点で好ましいことである。
In addition, in the cooling and solidification process, adjusting the temperature gradient of the molten reaction product to 0.5°C/60 to 35'C/++n promotes crystal growth and produces long fibers with excellent crystallinity. This is preferable from the point of view of formation.

上記冷却固化処理は下記のように種々の方法により行う
ことができる: 例えば、鉄板等の金属板を冷却体とし、その上面に溶融
反応生成物を溶解ルツボごと載置してルツボの底面を冷
却盤面に接触させ、伝導伝熱により、ルツボ内の溶融反
応生成物を冷却するとよい。
The above-mentioned cooling solidification treatment can be carried out by various methods as described below: For example, a metal plate such as an iron plate is used as a cooling body, and the melted reaction product is placed together with the melting crucible on the top surface of the cooling body, and the bottom surface of the crucible is cooled. It is preferable that the melted reaction product in the crucible be cooled by conductive heat transfer by bringing it into contact with the disk surface.

この場合、ルツボ底部および側面からそれぞれ垂直方向
に繊維の形成をみる。
In this case, fiber formation is observed in the vertical direction from the bottom and side of the crucible.

別法として、円形断面もしくは短形断面を有する適当な
肉厚の黒鉛製筒体、金属製筒体、セラミック製筒体を冷
却体とし、これに溶融反応生成物を流し込み、筒体の壁
面への伝導伝熱により冷却させることにより、筒体壁面
に垂直方向に成長した結晶質繊維が得られる。また、適
当な肉厚を有する同心円状の2つの筒状立壁体で形成さ
れるリング状の空間を有する筒体の該空間内に溶融反応
生成物を流し込んで、その筒体の外周面と内周面の両面
から冷却させて、外周面および内周面のそれぞれからリ
ング状空間の中心に向って繊維を成長させるようにして
もよい。
Alternatively, a graphite cylinder, a metal cylinder, or a ceramic cylinder of suitable wall thickness with a circular or rectangular cross section can be used as a cooling body, and the molten reaction product is poured into the cooling body, and the molten reaction product is poured into the cylinder. By cooling by conductive heat transfer, crystalline fibers grown perpendicular to the wall surface of the cylinder are obtained. In addition, the molten reaction product is poured into a ring-shaped space formed by two concentric cylindrical vertical walls having an appropriate wall thickness, and the molten reaction product is poured into the space between the outer circumferential surface and the inner surface of the cylinder. The fibers may be grown from both the outer circumferential surface and the inner circumferential surface toward the center of the ring-shaped space by cooling both sides of the circumferential surface.

更に別法として、金属盤(例えば、18−8ステンレス
鋼盤)を冷却体とし、その表面に溶融反応生成物を適当
な層厚(1〜50mm、好ましくは3〜25m)に流し
出して冷却させれば、冷却体への伝導伝熱により冷却体
にほぼ垂直方向に成長した結晶質繊維が形成される。
Still another method is to use a metal plate (e.g., 18-8 stainless steel plate) as the cooling body, and pour the molten reaction product onto the surface of the plate in an appropriate layer thickness (1 to 50 mm, preferably 3 to 25 m) for cooling. By doing so, crystalline fibers grown almost perpendicular to the cooling body are formed due to conductive heat transfer to the cooling body.

更に別法として、遠心力鋳造方式を利用し、金属製また
は黒鉛製鋳型等を冷却体として、その鋳型を軸心まわり
に回転させながら、溶融反応生成物を鋳込み、遠心力の
作用で鋳型内面に沿って溶融反応生成物のシリンダを形
成して冷却するようにしてもよい。
Still another method is to use a centrifugal force casting method, in which a metal or graphite mold is used as a cooling body, and the molten reaction product is cast while the mold is rotated around its axis. A cylinder of molten reaction product may be formed along the line for cooling.

上記各冷却法において、溶融反応生成物の冷却速度およ
び温度勾配の制御のために、必要に応じて、冷却体を予
め適当な温度(例えば、30〜2O0℃)に調節してお
くことは、溶融反応生成物の冷却体との接触面での過度
の急冷による非晶質化を防止し、結晶質繊維の健全な成
長を促す点で効果的である。
In each of the above cooling methods, in order to control the cooling rate and temperature gradient of the molten reaction product, it is necessary to adjust the cooling body to an appropriate temperature (for example, 30 to 200°C) in advance, as necessary. It is effective in preventing the molten reaction product from becoming amorphous due to excessive rapid cooling at the contact surface with the cooling body and promoting healthy growth of crystalline fibers.

溶融反応生成物の冷却速度や温度勾配を制御するための
付加的手段の他の例を挙げると、溶融反応生成物を金属
板等の冷却体の表面に層状に流し出して冷却固化させる
方法においては、その溶融反応生成物の上面に、加熱ガ
スもしくは冷却ガスを接触させるか、または金属板等を
接触させるようにしてよい。
Another example of additional means for controlling the cooling rate and temperature gradient of the molten reaction product is a method in which the molten reaction product is poured out in a layer on the surface of a cooling body such as a metal plate and cooled and solidified. The upper surface of the molten reaction product may be brought into contact with heating gas or cooling gas, or with a metal plate or the like.

筒体を冷却体とし、筒体内で溶融反応生成物を冷却させ
る冷却固化法では、針金状、棒状ないしは板状等の金属
片、あるいは金網を筒状にまるめたものを、適当な温度
に加熱または冷却して筒体内の溶融反応生成物中に装入
浸漬するようにしてもよい。この場合には、浸漬された
金属片や金網の表面からも繊維が成長する。筒体が同心
円状の外側立壁部と内側立壁部とで画成されるリング状
空間を有するものである場合には、そのリング状空間内
の適当な位置(例えば、中間部)に位置して、そのリン
グ状空間を一巡するように、金属板あるいは金網等を溶
融反応生成物中に浸漬してもよい。
In the cooling solidification method, which uses a cylinder as a cooling body and cools the molten reaction product within the cylinder, a piece of metal such as a wire, rod, or plate, or a wire mesh rolled into a cylinder is heated to an appropriate temperature. Alternatively, it may be cooled and then charged and immersed in the molten reaction product inside the cylinder. In this case, fibers also grow from the surface of the immersed metal piece or wire mesh. When the cylindrical body has a ring-shaped space defined by a concentric outer standing wall part and an inner standing wall part, it is located at an appropriate position (for example, the middle part) within the ring-shaped space. A metal plate, wire mesh, or the like may be immersed in the molten reaction product so as to go around the ring-shaped space.

前記冷却固化法は、いづれもバッチ処理法であるが、連
続処理法として、例えば、適当な肉厚を有する黒鉛製も
しくは金属製筒体モールドを冷却体とし、モールド内に
上方から溶融反応生成物を流し込むとともに、冷却させ
ながら固化させて連続的に下方から引抜く、いわば連続
鋳造方式を適用することができる。
The cooling solidification methods described above are all batch processing methods, but as a continuous processing method, for example, a graphite or metal cylindrical mold with an appropriate wall thickness is used as the cooling body, and the molten reaction product is poured into the mold from above. It is possible to apply a so-called continuous casting method in which the material is poured in, solidified while cooling, and then continuously pulled out from below.

更に、連続処理の別法として、適当な外径を有するドラ
ムの表面に放射状に突出する複数枚の板状立壁部材を、
ドラム軸方向にそって立設することにより、ドラム外周
面上に、ドラム外周面を底部とする立壁部材で仕切られ
た複数の溝を形成し、これを冷却体としてドラム軸を水
平に設置するとともに回転駆動装置に連結しておき、適
当な回転速度で連続的または間けつ的に回転させながら
、ドラム上方から溝内に溶融反応生成物を流し込み、冷
却固化させて、溝が下方に向いたとき、その冷却固化物
(塊状物)を溝内から離脱させる操作を、ドラムの回転
下に各溝ごとに順次反復実施するようにしてもよい。
Furthermore, as an alternative method for continuous processing, a plurality of plate-like standing wall members protruding radially from the surface of a drum having an appropriate outer diameter,
By standing upright along the direction of the drum axis, a plurality of grooves partitioned by vertical wall members with the drum outer circumferential surface as the bottom are formed on the outer peripheral surface of the drum, and the drum shaft is installed horizontally using this as a cooling body. The molten reaction product is poured into the grooves from above the drum while being connected to a rotary drive device and rotated continuously or intermittently at an appropriate rotational speed, and is cooled and solidified so that the grooves face downward. At this time, the operation of removing the cooled solidified material (lump) from the grooves may be repeated in sequence for each groove while the drum rotates.

これらの連続処理においても、必要に応じて溶融反応生
成物の冷却速度および温度勾配を制御するための前記の
付加的手段を講じればよい。
Even in these continuous treatments, the above-mentioned additional means for controlling the cooling rate and temperature gradient of the molten reaction product may be taken as necessary.

冷却固化工程を経て得られた結晶質繊維(MZ(Ti、
M ’)2O5 )の束状集合体である塊状物は、つい
で可溶性物質の溶出および解繊化処理に付され毬。この
処理は、水、沸騰水、または酸溶液を用いて行うことが
できる。この溶出解繊化処理およびその後の二次処理条
件により、前記一般式〔I〕〜〔■〕で示される各種の
チタン化合物繊維が得られる。以下に、Mがカリウムで
ある場合(初生相の結晶質繊維がKg(Ti、M’)z
osで示されるニチタン酸カリウム繊維)を代表させて
溶出解繊化処理および二次処理と得られる繊維の例につ
いて説明する。
Crystalline fibers (MZ(Ti,
The aggregate, which is a bundle-like aggregate of M')2O5), is then subjected to eluting of soluble substances and defibration treatment to form a ball. This treatment can be carried out using water, boiling water or acid solutions. Through this elution and fibrillation treatment and the subsequent secondary treatment conditions, various titanium compound fibers represented by the general formulas [I] to [■] can be obtained. Below, when M is potassium (the primary phase crystalline fiber is Kg(Ti, M')z
An example of the fiber obtained by elution defibration treatment and secondary treatment will be explained using potassium nititanate fiber (represented by os) as a representative example.

冷水処理: 塊状物を水に浸漬すると、カリウムカ9容出する。Cold water treatment: When the mass is soaked in water, it releases 9 volumes of potassium.

またM′で示される元素の一部溶出を伴なう。これらの
可溶性物質が溶出するとともに束状の繊維の結合が解か
れる。
In addition, part of the element represented by M' is eluted. As these soluble substances are eluted, the bundles of fibers are unbound.

所定のレヘルまでカリウムイオンを溶出(脱アルカリ)
させたのち、約900 ’Cで熱処理(焼成)すると、
四チタン酸カリウム繊維 (K2(Ti、M ’ )409 )が得られる。また
、脱アルカリを更に進めたのち、約1000℃で熱処理
(焼成)することにより、六チタン酸カリウム繊維(K
z(Ti、M ’ )1,013)が得られる。なお、
脱アルカリ状態は、pHの測定により制御することがで
きる。
Elutes potassium ions to a specified level (dealalkalization)
After that, heat treatment (firing) at approximately 900'C will result in
Potassium tetratitanate fibers (K2(Ti,M')409) are obtained. In addition, after further proceeding with dealkalization, potassium hexatitanate fiber (K
z(Ti, M') 1,013) is obtained. In addition,
Dealkalization conditions can be controlled by measuring pH.

沸騰水処理: 塊状物を沸騰水中に浸漬し、可溶性物質を十分に溶出さ
せるとともに解繊化する。この場合、沸騰水に浸漬する
前に一旦冷水に浸漬して解繊化し、ついで沸騰水で溶出
してもよい。溶出解繊化ののち、水洗いし、約1000
″Cで熱処理することにより、ルチル−プリプライト−
六チタン酸カリウム複合繊維((Ti、M′)O□−K
g(Ti、M ’ )+1016− K 2 (T i
 、 M ’ ) 6013 )が得られる。
Boiling water treatment: The lumps are immersed in boiling water to sufficiently elute soluble substances and defibrate them. In this case, before immersion in boiling water, it may be immersed in cold water to defibrate it, and then eluted with boiling water. After elution and fibrillation, it is washed with water and
By heat treatment with ``C, rutile-puriplite-
Potassium hexatitanate composite fiber ((Ti, M')O□-K
g(Ti, M')+1016-K2(Ti
, M') 6013) is obtained.

上記プリプライト繊維が得られることは本発明   −
の特徴の一つである。M′元素が配合されない混合物を
出発原料とする従来の製造法において、塊状物を沸騰水
処理して得られる繊維は、六チタン酸カリウム繊維(K
 z T i b 0133であるが、M′元素を配合
する本発明においては、Fe、Al1、Cr、Mg、等
のM′元素がプリプライトの主成分として活用されるこ
とにより上記のようにプリプライト繊維を随伴する複合
繊維を得ることができる。
The present invention provides the above preprite fibers.
This is one of the characteristics of In the conventional manufacturing method using a mixture containing no M' element as a starting material, the fibers obtained by treating the lumps with boiling water are potassium hexatitanate fibers (K
z T i b 0133, but in the present invention in which the M' element is blended, the M' element such as Fe, Al1, Cr, Mg, etc. is utilized as the main component of the preprite, so that the preprite fiber can be produced as described above. It is possible to obtain composite fibers accompanied by

酸処理: 塊状物を酸溶液、例えば0.5M塩酸水溶液に浸漬し、
解繊化と、カリウムの全量抽出および水素イオンでの置
換を行ったのち、水洗いし、乾燥(風乾)すると、層状
構造を有する結晶質二チタン酸繊維(Hz(Ti、M 
’)2O5  ・H2O〕が得られる。また、このニチ
タン酸繊維を脱水焼成処理すれば、チタニア繊維((T
i、M)Oz )が得られる。この場合、焼成処理温度
が約900℃以下であればアナターゼ相、約1150°
C以上ではルチル相となり、その間の温度で焼成すれば
ルチル相とアナターゼ相の混在するチタニア繊維が得ら
れる。
Acid treatment: Immerse the lumps in an acid solution, for example 0.5M aqueous hydrochloric acid solution,
After defibration, total extraction of potassium, and replacement with hydrogen ions, washing with water and drying (air drying) produces crystalline dititanic acid fibers (Hz (Ti, M
')2O5 .H2O] is obtained. In addition, if this nititanic acid fiber is dehydrated and fired, titania fiber ((T
i,M)Oz) is obtained. In this case, if the calcination temperature is about 900°C or lower, the anatase phase is about 1150°C.
If the temperature is higher than C, a rutile phase will be formed, and if fired at a temperature between that range, a titania fiber containing a mixture of rutile and anatase phases will be obtained.

上記酸処理後の脱水焼成処理によりルチル繊維が得られ
ることも本発明の特徴である。すなわち、従来の製造法
では、酸処理後の脱水焼成処理によリアナターゼ繊維を
得ることはできるが、ルチル繊維を得ようとして、約1
150°C以上の温度で焼成すると、ルチル相への相転
移は認められるものの、粉末化し繊維の形態が失なわれ
、結局ルチル繊維を得ることはできない。本発明ではそ
のようなことがなく、良好なルチル繊維が得られる。こ
の場合も原料混合物に配合されるM′元素がルチル繊維
の形成に関与しているものと考えられる。
Another feature of the present invention is that rutile fibers can be obtained by dehydration and firing treatment after the acid treatment. That is, in the conventional production method, it is possible to obtain lianatase fiber by dehydration and calcination treatment after acid treatment, but when trying to obtain rutile fiber, approximately 1
When calcined at a temperature of 150°C or higher, although a phase transition to a rutile phase is observed, the fiber becomes powder and loses its fiber form, making it impossible to obtain rutile fiber. In the present invention, such a problem does not occur, and good rutile fibers can be obtained. In this case as well, it is thought that the M' element blended into the raw material mixture is involved in the formation of rutile fibers.

〔実施例〕〔Example〕

尖施±土 [r]出発原料混合物の調製 (1)二酸化チタン源:合成ルチル(純度92%)。 Chiseki ± earth [r] Preparation of starting material mixture (1) Titanium dioxide source: synthetic rutile (92% purity).

(21M’元素源:Aff2O:+(純度97%)、M
g0(同98%)およびFe2O,(同95%)〔配合
比率5:4:1)  。
(21M' element source: Aff2O: + (97% purity), M
g0 (98%) and Fe2O (95%) [Blending ratio 5:4:1].

(3)アルカリ金属化合物:工業用炭酸カリウム(純度
99.9%)。
(3) Alkali metal compound: industrial potassium carbonate (purity 99.9%).

(41T i Ot / M ’ O(重量比) =9
0/10(T i 、 M ’) Oz / K z 
O(モル比) =1.7(II)加熱溶融反応処理 白金ルツボ(内径70菖l、肉厚0.51、容量2O0
cc)に原料混合物を装入して1050℃に加熱溶融し
、同温度で1.5時間保持することにより溶融反応を完
結させる。溶融量100g。
(41T i Ot / M'O (weight ratio) = 9
0/10(T i , M') Oz / K z
O (molar ratio) = 1.7 (II) Platinum crucible treated with heat melting reaction (inner diameter 70 l, wall thickness 0.51, capacity 200
The raw material mixture is charged into cc), heated and melted to 1050°C, and maintained at the same temperature for 1.5 hours to complete the melting reaction. Melting amount: 100g.

[II[)冷却固化処理 次の6通りの冷却方法により実施。なお、以下の説明に
おける冷却速度は、冷却開始から凝固点到達までの平均
冷却速度である。また、繊維長は、解繊化後の長さであ
る。
[II[) Cooling and solidification treatment: Performed by the following six cooling methods. Note that the cooling rate in the following description is the average cooling rate from the start of cooling to reaching the freezing point. Moreover, the fiber length is the length after defibration.

(1)溶融反応生成物をルツボに入れたまま鉄板(板厚
22酊)上に載置。
(1) Place the molten reaction product in the crucible on an iron plate (plate thickness 22mm).

繊維はルツボ底部から垂直方向に成長。ルツボ側壁面か
らの成長も認められる。
Fibers grow vertically from the bottom of the crucible. Growth from the side wall of the crucible is also observed.

冷却速度:3〜b 面から15龍、側壁面から5m)。Cooling rate: 3~b 15 meters from the surface and 5 meters from the side wall).

繊維長:約1n+。Fiber length: approximately 1n+.

(2)ステンレス鋼板(板厚2O)上に、溶融反応生成
物を層厚1.5〜2mmの厚さに流し出す。
(2) Pour out the molten reaction product onto a stainless steel plate (plate thickness 2O) to a layer thickness of 1.5 to 2 mm.

冷却速度:約25°C/秒。Cooling rate: approx. 25°C/sec.

鋼板表面との接触部に薄い非晶質の層が生成し、その上
層に繊維が成長。繊維長:約0.8龍。
A thin amorphous layer forms at the point of contact with the steel plate surface, and fibers grow on top of this layer. Fiber length: approximately 0.8 length.

(3)鉄板上にステンレス鋼板皿容器(肉厚0.5龍)
を置き、その中に溶融反応生成物を層厚約3鶴に流し込
む。
(3) Stainless steel plate container on iron plate (wall thickness 0.5 dragon)
was placed, and the molten reaction product was poured into it to a thickness of about 3 cm.

冷却速度:約り3℃/秒。Cooling rate: approx. 3°C/sec.

繊維長:約2鰭。Fiber length: Approximately 2 fins.

(4)チタン酸カリウム板(上層)とアスベスト(下層
)の積層板上に、ステンレス鋼製円筒体(肉厚15龍、
内径60u+)を立設し、溶融反応生成物を注入。
(4) A stainless steel cylindrical body (thickness 15 mm,
A tube (inner diameter 60u+) was installed upright and the molten reaction product was injected.

冷却速度:2.0℃/秒(側温位置:中央部)、温度勾
配:約3.5〜18.5℃/l璽。
Cooling rate: 2.0°C/sec (side temperature position: center), temperature gradient: approximately 3.5-18.5°C/l.

繊維は円筒体内壁面から垂直に中心に向かって成長。繊
維長=1〜2wm(内壁面から約2Omの領域) 、0
.2〜0.5 tm (内壁面から2O〜30Hの領域
)。
Fibers grow vertically from the wall of the cylinder toward the center. Fiber length = 1~2wm (area approximately 20m from the inner wall surface), 0
.. 2-0.5 tm (area 20-30H from the inner wall surface).

(5)上記(4)と同じ冷却法において、円筒体を10
0℃に予熱。
(5) In the same cooling method as in (4) above, the cylinder was
Preheat to 0℃.

冷却速度:約0.7℃/秒、温・度勾配:4.5〜12
℃ /璽II。
Cooling rate: approx. 0.7℃/sec, temperature/degree gradient: 4.5-12
℃ / Seal II.

繊維は円筒体内壁面からほぼ中心部まで成長。The fibers grow from the inner wall of the cylinder to almost the center.

繊維長:約1〜2vm。Fiber length: about 1-2vm.

(6)ステンレス鋼板(板厚4.5mm)の上にステン
レス調製円筒体(肉厚151m、内径6(hm)を立設
し、これに溶融反応生成物を注き′込むとともに、板状
鉄片(断面15mm X 5 mg、長さ100 m)
 11本を分散投入。
(6) A stainless steel preparation cylinder (wall thickness 151 m, inner diameter 6 (hm)) was erected on a stainless steel plate (plate thickness 4.5 mm), the molten reaction product was poured into it, and the iron plate (Cross section 15mm x 5mg, length 100m)
11 pieces were distributed.

冷却速度:2.5℃/秒。Cooling rate: 2.5°C/sec.

繊維は円筒体内壁面および各鉄片表面からそれぞれ垂直
に成長。繊維長:約1〜2tm。
The fibers grow vertically from the inner wall of the cylinder and the surface of each iron piece. Fiber length: approximately 1-2tm.

[V)溶出解繊化処理および後処理 上記冷却固化処理を経て得られた各塊状物を次の6通り
の処理に付した。
[V) Elution and defibration treatment and post-treatment Each of the lumps obtained through the above cooling and solidification treatment was subjected to the following six treatments.

(1)冷水処理および焼成 塊状物を水に浸漬し、可溶性物質を溶出させて解繊化し
、浸出液のpHを測定しながら脱アルカリせるのち、1
000″Cx3時間の焼成を行って六チタン酸カリウム
繊維(K2(Ti、M ’)、 O+i)を得た。
(1) Cold water treatment and calcining The lumps are immersed in water, soluble substances are eluted and defibrated, and the pH of the leachate is measured while dealing with alkalization.
000″Cx3 hours of firing to obtain potassium hexatitanate fibers (K2(Ti, M′), O+i).

(2)冷水処理および焼成 塊状物を水に浸漬し、可溶性物質を溶出させて解繊化し
、更にpHを測定しながら所定の脱アルカリを達成した
のち、900℃×3時間の焼成を行って四チタン酸カリ
ウム繊維(Kz(Ti、M ’)409〕を得た。
(2) Cold water treatment and firing The lumps were immersed in water, soluble substances were eluted and defibrated, and the specified dealkalization was achieved while measuring the pH, followed by firing at 900°C for 3 hours. Potassium tetratitanate fiber (Kz(Ti,M')409) was obtained.

(3)沸騰水処理および焼成 塊状物を沸騰水中1時間浸漬(2g/A)したのち、水
洗いし、ついで1000℃X3Hrの焼成処理を行って
ルチル−プリプライト−六チタン酸カリウム複合繊維(
(Ti、M ’)O□−K 2 (T t + M ’
) e016− K2(Ti、M ’)60.3〕を得
た゛。この繊維は、六チタン酸カリウム繊維よりも褐色
味を帯びた濃い色調を示す。
(3) Boiling water treatment and firing The lumps were immersed in boiling water (2 g/A) for 1 hour, washed with water, and then fired at 1000°C for 3 hours to form rutile-preprite-potassium hexatitanate composite fibers.
(Ti, M')O□-K2 (T t + M'
) e016-K2(Ti, M') 60.3] was obtained. This fiber exhibits a darker brownish tone than the potassium hexatitanate fiber.

(4)酸処理および風乾 塊状物を0.5 M塩酸水溶液に24時間浸漬(2g/
l)したのち、水で洗浄(pH中性)し、ついで風乾す
ることにより、層状構造チタン酸繊維(Hz(T i、
 M ’)2O s  ・HZ O)を得た。
(4) Acid treatment and air drying The lumps were immersed in a 0.5 M hydrochloric acid aqueous solution for 24 hours (2 g/
l), washed with water (pH neutral), and then air-dried to obtain a layered structure titanate fiber (Hz (T i,
M')2O s .HZ O) was obtained.

(5)酸処理および焼成 塊状物を0.5 M塩酸水溶液に24時間浸漬(2g/
l>せるのち、十分に水洗(pH中性)し、ついで、9
00℃X2Hrの焼成処理に付し、アナターゼ繊維((
Ti1M ’)02 )を得た。
(5) Acid treatment and baking The block was immersed in a 0.5 M hydrochloric acid aqueous solution for 24 hours (2 g/
l> After washing thoroughly with water (pH neutral), then
The anatase fiber ((
Ti1M')02) was obtained.

(6)酸処理および焼成 塊状物を0.5 M塩酸水溶液に24時間浸漬(2g/
l)したのち、十分に水洗(pH中性)し、ついで、1
150℃X2Hrの焼成を行い、ルチル繊維((Ti、
M’)O□〕を得た。
(6) Acid treatment and baking The block was immersed in a 0.5 M hydrochloric acid aqueous solution for 24 hours (2 g/
l) After washing thoroughly with water (pH neutral),
The rutile fiber ((Ti,
M')O□] was obtained.

去1■生影 (r)出発原料混合物の調製 (1)二酸化チタン源:高純度精製酸化チタン(純度9
9%)。
Preparation 1 ■ Raw shadow (r) Preparation of starting raw material mixture (1) Titanium dioxide source: Highly purified titanium oxide (purity 9
9%).

(21M’元素源:天然ルチルサンド(Fe2O゜0.
6%、Z r C)z 0.7%、Cr 2Oi 0.
3%、A l z 03 Q、4%、M g O0,0
3%、Ca00.03%、M n O=0.01%、S
 i Ox 0.6%、V z Oso、7%、Nbz
os 0.3%、P O,01%、S O,O2%、T
 i Oz 95.6%、残部微量のCo、Ga等)。
(21M' element source: natural rutile sand (Fe2O゜0.
6%, ZrC)z 0.7%, Cr2Oi 0.
3%, Al z 03 Q, 4%, M g O0,0
3%, Ca00.03%, MnO=0.01%, S
iOx 0.6%, VzOso, 7%, Nbz
os 0.3%, P O, 01%, S O, O2%, T
iOz 95.6%, remainder trace amounts of Co, Ga, etc.).

(3)アルカリ金属化合物:工業用炭酸カリウム(純度
99.9%)。
(3) Alkali metal compound: industrial potassium carbonate (purity 99.9%).

(41T i Oz /M ’ O(重量比) =92
/8(Ti、M ’)Ox / Kz O(モル比) 
=1.9(ff)加熱溶融反応処理 白金ルツボ(内径?(h鳳、肉厚0.5龍、容R2O0
cc)。1100℃×1時間。溶融量100g。
(41T i Oz /M'O (weight ratio) = 92
/8(Ti, M')Ox/KzO (molar ratio)
= 1.9 (ff) Heat melting reaction treated platinum crucible (inner diameter? (h), wall thickness 0.5, volume R2O0
cc). 1100℃×1 hour. Melting amount: 100g.

CIIF)冷却固化処理 (1)ステンレス鋼板(板厚2酊)上に、溶融反応生成
物を層厚5龍の厚さに流し出す。
CIIF) Cooling and solidification treatment (1) Pour the molten reaction product onto a stainless steel plate (plate thickness: 2 mm) to a layer thickness of 5 mm.

冷却速度:約り℃/秒。繊維長:約2〜31l10(2
)鉄板上に白金型皿容器(肉厚o、smm>を載置し、
その中に溶融反応生成物を層厚7flに流し出す。 冷
却速度:約り℃/秒、繊維長:約3〜4*m0f31チ
タン酸カリウム板(上層)とアスベスト(下層)の積層
板状に、ステンレス鋼製円筒体(肉厚15+n、内径6
0龍)を立設し、該円筒体を12O°Cに予熱して、こ
れに溶融反応生成物を流し込む。 冷却速度:約1.8
℃/秒。温度勾配:約り℃/龍。繊維長:約2tm 。
Cooling rate: approx.℃/sec. Fiber length: approx. 2-31l10 (2
) Place a platinum-shaped dish container (wall thickness o, smm>) on an iron plate,
The molten reaction product is poured into it in a layer thickness of 7 fl. Cooling rate: approx. °C/sec, fiber length: approx. 3~4*m0f31 Potassium titanate plate (upper layer) and asbestos (lower layer) laminated plate-like stainless steel cylinder (wall thickness 15+n, inner diameter 6
The cylindrical body was preheated to 120°C, and the molten reaction product was poured into it. Cooling rate: approx. 1.8
°C/sec. Temperature gradient: approx.℃/dragon. Fiber length: approximately 2tm.

(4)ステンレス鋼板(板厚4.50)上にステンレス
鋼製円筒体(肉厚15詣、内径6ON)を立設し、これ
に溶融反応生成物を流し込むとともに金v14(鉄線径
0.8 tm、6#)を数層に丸めて筒状(外径30+
m)にしたものを中央部に差込む。
(4) A stainless steel cylindrical body (wall thickness 15mm, inner diameter 6ON) is erected on a stainless steel plate (plate thickness 4.50mm), the molten reaction product is poured into it, and gold v14 (iron wire diameter 0.8mm) is poured into it. tm, 6#) rolled into several layers to form a cylinder (outer diameter 30+
m) and insert it into the center.

冷却速度:約2.5°C/秒、温度勾配:約り℃/關。Cooling rate: approx. 2.5°C/sec, temperature gradient: approx. ℃/sec.

繊維長:約31m0 CIV)溶出解繊化処理および後処理 実施例1の〔■〕における(1)〔冷水処理+1000
℃焼成〕と同じ処理により、六チタン酸カリウム繊維を
、同(3)〔沸騰水処理+1000’C焼成〕と同じ処
理によりルチル−プリプライト−六チタン酸カリウム複
合繊維を、同(4)〔酸処理+風乾〕と同じ処理により
層状構造二チタン酸繊維を、また同(6)〔酸処理+1
150℃焼成〕と同じ処理によりルチル繊維を、それぞ
れ得た。
Fiber length: approximately 31 m0 CIV) Elution defibration treatment and post-treatment (1) in [■] of Example 1 [cold water treatment +1000
Potassium hexatitanate fibers were prepared using the same process as in (3) [boiling water treatment + 1000'C firing], and rutile-preprite-potassium hexatitanate composite fibers were prepared using the same process as in (4) [acid firing]. The layered structure dititanic acid fiber was produced by the same treatment as in (6) [acid treatment + 1
Rutile fibers were obtained by the same treatment as [150° C. firing].

実施例3 (1)出発原料混合物の調製 (1に酸化チタン源:高純度精製酸化チタン(純度99
%)。
Example 3 (1) Preparation of starting material mixture (1) Titanium oxide source: Highly purified titanium oxide (purity 99
%).

(2)M’元素源:天然アナターゼサンド(Fe2Oz
l、8%、A l toz 2.2〜3.0%、Ca0
O,13〜0.4%、Cr、030.001%、MgO
0,008〜0.1%、zro2O,2%、Mn00.
05%、Nb2os 1.02%、P2O50,2〜0
,41%、Si0□0゜98%、V2O,0,15%、
A so、8 ppm 、 S O,013%、希土類
0.8%、T i Oz 90.7%、残部:微量のC
o、Ga等)。
(2) M' element source: natural anatase sand (Fe2Oz
l, 8%, Al toz 2.2-3.0%, Ca0
O, 13-0.4%, Cr, 030.001%, MgO
0,008-0.1%, zro2O, 2%, Mn00.
05%, Nb2os 1.02%, P2O50,2~0
,41%, Si0□0゜98%, V2O,0,15%,
A so, 8 ppm, SO, 013%, rare earth 0.8%, TiOz 90.7%, remainder: trace amount of C
o, Ga, etc.).

(3)アルカリ金属化合物:工業用水酸化カリウム(純
度99%)。
(3) Alkali metal compound: industrial potassium hydroxide (99% purity).

(41T i O□/M’O(重量比) =98/2(
Ti、M’)O□/ K 2O (モル比) =2.0
(II)加熱溶融反応処理 白金ルツボ(内径70wm、肉厚0.5mm、容112
O0cc)。1100℃×1.5時間。溶融量12Og
(41T i O□/M'O (weight ratio) = 98/2 (
Ti, M')O□/K2O (molar ratio) =2.0
(II) Heat melting reaction treated platinum crucible (inner diameter 70wm, wall thickness 0.5mm, volume 112
O0cc). 1100°C x 1.5 hours. Melting amount 12Og
.

(1)冷却固化処理 +1)70°Cに予熱したステンレス鋼板(板厚1mm
)上に溶融反応生成物を層厚6wmに流し出す。
(1) Cooling and solidification treatment +1) Stainless steel plate preheated to 70°C (plate thickness 1mm)
) the molten reaction product is poured off onto a layer thickness of 6 wm.

冷却速度:約り℃/秒、繊維長:約31璽。Cooling rate: approx. ℃/sec, fiber length: approx. 31 pieces.

(2)鉄板上に鋼製皿容器(肉厚0.5m)を載置し、
これに溶融反応生成物を層厚61凋に流し出す。
(2) Place a steel plate container (wall thickness 0.5m) on the iron plate,
The molten reaction product was poured into this in a layer thickness of 61 mm.

冷却速度:約り℃/秒、繊維長:約3〜4 n+。Cooling rate: approx. °C/sec, fiber length: approx. 3 to 4 n+.

(3)ステンレス鋼板(板厚4.5龍)上に黒鉛製円筒
体(肉厚81、内径8m)を立設し、溶融反応生成物を
注入。
(3) A graphite cylinder (wall thickness: 81 mm, inner diameter: 8 m) was erected on a stainless steel plate (thickness: 4.5 mm), and the molten reaction product was injected.

冷却速度:約り℃/秒、繊維長:約2龍。Cooling rate: approx. ℃/sec, fiber length: approx.

(IV)溶出解繊化処理および後処理 実施例1の(II[)における(1)〔冷水処理+10
00℃焼成〕と同じ処理により、六チタン酸カリウム繊
維を、同(3)〔沸続水処理+1000℃焼成〕と同じ
処理によりルチル−プリプライト−六チタン酸カリウム
複合繊維を、同(4)〔酸処理+風乾〕と同じ処理によ
り、層状構造二チタン酸繊維を、また同(5)〔酸処理
+900℃焼成〕と同じ処理によりアナターゼ繊維を、
それぞれ得た。
(IV) Elution defibration treatment and post-treatment (1) in (II[) of Example 1 [cold water treatment +10
Potassium hexatitanate fibers were made using the same process as in (3) [boiling water treatment + 1000°C firing], and rutile-preprite-potassium hexatitanate composite fibers were made in (4) [2000°C firing]. Layered structure dititanic acid fiber was produced using the same process as in (5) [acid treatment + air drying], and anatase fiber was produced using the same process as in (5) [acid treatment + 900°C firing].
I got each.

大嵐開↓ CI〕出発原料混合物の調製 (1)二酸化チタン源:高純度精製酸化チタン(純度9
9%) (2)M’元素源:天然ルチルサントおよび天然アナタ
ーゼサンド(50: 50)。化学成分組成は前記と同
じ。
Great Arashi Kai↓ CI] Preparation of starting raw material mixture (1) Titanium dioxide source: Highly purified titanium oxide (purity 9
(9%) (2) M' element source: natural rutile sand and natural anatase sand (50:50). The chemical composition is the same as above.

(3)アルカリ金属化合物:工業用炭酸カリウム(純度
99.9%)。
(3) Alkali metal compound: industrial potassium carbonate (purity 99.9%).

(4) T i O□/M’O(重量比)=99/1(
T i+ M ’) O□/ Kz○(モル比) =2
.3(n)加熱溶融反応処理 白金ルツボ(内径50n、容11100 cc) 、 
1050℃×3時間。溶融量60g0 (I[I)冷却固化処理 T1112O℃に予熱したステンレス鋼板(板厚4.5
■璽)上に溶融反応生成物を層厚4mmに流し出す。
(4) T i O□/M'O (weight ratio) = 99/1 (
T i + M') O□/ Kz○ (molar ratio) = 2
.. 3(n) Heat melting reaction treated platinum crucible (inner diameter 50n, capacity 11100 cc),
1050℃ x 3 hours. Melt amount: 60g0 (I
(2) Pour out the molten reaction product onto the plate to a layer thickness of 4 mm.

冷却速度:約り℃/秒、繊維長:約2〜3fl。Cooling rate: approximately °C/sec, fiber length: approximately 2 to 3 fl.

(2)鉄板上に70℃に予熱した白金型皿容器(肉厚0
.5■■)を載置し、これに溶融反応生成物を層厚61
に流し出す。
(2) Platinum-shaped dish container (wall thickness 0) preheated to 70℃ on an iron plate.
.. 5 ■■) is placed on it, and the molten reaction product is applied thereto to a layer thickness of 61 mm.
pour it out.

冷却速度:約4.8℃/秒、繊維長:約4龍。Cooling rate: approx. 4.8°C/sec, fiber length: approx.

(3)銅板上にアルミナセラミック製角筒体(肉厚25
mm開口断面積8cal)を立設し、これに溶融反応生
成物を注ぎ込む。
(3) A square cylinder made of alumina ceramic (wall thickness: 25 mm) mounted on a copper plate.
A tube (mm opening cross-sectional area: 8 cal) was set upright, and the molten reaction product was poured into it.

冷却速度:約り℃/秒、繊維長:約4〜5B。Cooling rate: approx.°C/sec, fiber length: approx. 4-5B.

(IV)溶出解繊化処理および後処理 実施例1の(III)における(1)〔冷水処理+10
00℃焼成〕と同じ処理により、六チタン酸カリウム繊
維を、同(3)〔沸騰水処理+1000℃焼成〕と同じ
処理によりルチル−プリプライト−六チタン酸カリウム
複合繊維を、同(4)C酸処理+風乾)と同し処理によ
り、層状構造二チタン酸繊維を、また同(6)〔酸処理
+1150℃焼成〕と同じ処理によりルチル繊維を、そ
れぞれ得た。
(IV) Elution defibration treatment and post-treatment (1) in (III) of Example 1 [cold water treatment +10
Potassium hexatitanate fibers were processed using the same process as in (3) [boiling water treatment + 1000°C firing], and rutile-preprite-potassium hexatitanate composite fibers were processed using the same process as in (3) [boiling water treatment + 1000°C firing]. A layered dititanic acid fiber was obtained by the same treatment as in (6) (acid treatment + air drying), and rutile fiber was obtained by the same treatment as in (6) (acid treatment + 1150° C. firing).

スIl生1 (1)出発原料混合物の調製 (1に酸化チタン源:合成ルチル(純度92%)。Student 1 (1) Preparation of starting material mixture (1) Titanium oxide source: synthetic rutile (purity 92%).

(21M’元素源:天然ルチルサンドおよび合金粉末(
90: 10)。但し、天然ルチルサンドの成分組成は
前記と同じ。合金粉末はFe−AlおよびSt −Mg
 (配合比1:9〕である。
(21M' element source: natural rutile sand and alloy powder (
90:10). However, the component composition of natural rutile sand is the same as above. Alloy powders are Fe-Al and St-Mg
(Blending ratio 1:9).

(3)アルカリ金属化合物:工業用炭酸カリウム(純度
99%)。
(3) Alkali metal compound: industrial potassium carbonate (99% purity).

(4)T i O2/ M ’ O(重量比) =94
/6(Ti、M ′)O2 / KtO(モル比)=2
.2(n)加熱溶融反応処理 白金ルツボ(内径50n、肉厚0.5龍、容量100c
c)。1000℃×1時間。溶融量50g0(III)
冷却固化処理 (11溶融反応生成物をルツボに入れたまま鉄板(板厚
4.5 n)上に載置。
(4) T i O2/M'O (weight ratio) = 94
/6(Ti, M')O2/KtO (molar ratio)=2
.. 2(n) Heat melting reaction treated platinum crucible (inner diameter 50n, wall thickness 0.5cm, capacity 100cm
c). 1000℃×1 hour. Melting amount 50g0 (III)
Cooling and solidification treatment (11) Place the molten reaction product in the crucible on an iron plate (plate thickness: 4.5 nm).

冷却速度:約り℃/秒、繊維長:約31m。Cooling rate: approx. ℃/sec, fiber length: approx. 31 m.

(2)鉄板上に、ステンレス鋼製皿容器を置き、これに
溶融反応生成物を層厚5菖鳳に流し出す。
(2) Place a stainless steel dish container on an iron plate, and pour the molten reaction product into it in a layer thickness of 5 yen.

冷却速度:約り℃/秒、繊維長:約3〜4tmゆ(3)
鉄板上に、ステンレス鋼製円筒体(肉厚15n+、内径
60mm)を立設し、これに溶融反応生成物を流し込む
Cooling rate: approx.℃/sec, fiber length: approx. 3-4tm (3)
A stainless steel cylinder (wall thickness: 15n+, inner diameter: 60 mm) is erected on an iron plate, and the molten reaction product is poured into it.

冷却速度:約2.3℃/秒、繊維長:約2〜3 mm。Cooling rate: about 2.3°C/sec, fiber length: about 2 to 3 mm.

f41 iPI板上に、アルミナセラミック製円筒体1
肉厚25mm、内径60龍)を立設し、これに溶融反応
生成物を注ぎ込む。
f41 Alumina ceramic cylinder 1 on the iPI board
A tube with a wall thickness of 25 mm and an inner diameter of 60 mm was erected, and the molten reaction product was poured into it.

冷却速度:約り℃/秒、繊維長:約3〜4mm。Cooling rate: approximately °C/sec, fiber length: approximately 3 to 4 mm.

(TV)溶出解繊化処理および後処理 実施例1の(III)における(1)〔冷水処理+10
00℃焼成〕と同じ処理により、六チタン酸カリウム繊
維を、同(3)〔沸騰水処理+1000℃焼成〕と同じ
処理によりルチル−プリプライト−六チタン酸カリウム
複合繊維を、同(4)〔酸処理士風軸〕と同じ処理によ
り、層状構造二チタン酸繊維を、また同(5)〔酸処理
+900℃焼成〕と同じ処理によりアナターゼ繊維を、
それぞれ得た。
(TV) Elution defibration treatment and post-treatment (1) in (III) of Example 1 [cold water treatment +10
Potassium hexatitanate fibers were processed using the same process as in (3) [boiling water treatment + 1000°C firing], and rutile-preprite-potassium hexatitanate composite fibers were processed using the same process as in (4) [acid firing]. Layered structure dititanic acid fiber was produced using the same process as in Processor Wind Axis, and anatase fiber was produced using the same process as in (5) [acid treatment + 900℃ firing].
I got each.

第1図に、本発明により得られた繊維の例を示す。同繊
維は、冷水処理後、焼成し□て得られた六チタン酸カリ
ウム繊維(Kz(Ti、M ′)b 013)であり(
その処理条件は実施例1の(II[)(1)に相当)1
、同図CI〕は繊維群(倍率×30)、同図〔■〕は単
繊維の拡大外観(倍率x 1000)を示す。なおン轡
2図に上記繊維のX線粉末回折図を示す・〔発明の効果
〕 □ 本発明によれば、六チタン酸カリウム繊維(’Kz
(Ti、M ’)60+z)をはじめ、組成および構造
の異なる種々のチタン化合物繊維が得られ、とくに、従
来の製造方法では得られなかったルチル繊維((Ti、
M ’)02 )やブリプライト繊維(K。
FIG. 1 shows examples of fibers obtained by the present invention. The fiber is a potassium hexatitanate fiber (Kz(Ti,M')b 013) obtained by firing after cold water treatment.
The processing conditions correspond to (II[)(1))1 in Example 1.
, Figure CI] shows a fiber group (magnification x 30), and Figure [■] shows an enlarged appearance of a single fiber (magnification x 1000). Furthermore, Figure 2 shows the X-ray powder diffraction pattern of the above-mentioned fiber. [Effect of the invention] □ According to the present invention, potassium hexatitanate fiber ('Kz
Various titanium compound fibers with different compositions and structures can be obtained, including (Ti, M')60+z), and in particular, rutile fiber ((Ti,
M')02) and briplite fibers (K.

(T i、 M ’)s O1−)等をも効率良く製造
することができる。
(T i, M')s O1-) etc. can also be efficiently produced.

また、本発明によれば、改良された特性を有するチタン
化合物繊維が得られる。第3図は、本発明により得られ
たチタン化合物繊維と、従来の製造法(高純度精製酸化
チタンとアルカリ金属化合物の混合物を出発原料とし、
M′元素源は配合されない)により得られた繊維の熱伝
導率の測定結果を示す。図中、(1)は本発明により得
られたルチル繊維C(Ti、 M ’)02) 、(1
’)は従来法により得られた粒状ルチル(T 10 z
)、(2)は本発明により得られた大チタン酸カリウム
繊維CK z (T i 。
Further, according to the present invention, titanium compound fibers having improved properties can be obtained. Figure 3 shows the titanium compound fiber obtained by the present invention and the conventional manufacturing method (using a mixture of highly purified titanium oxide and an alkali metal compound as the starting material,
The results of measuring the thermal conductivity of the fibers obtained with (no M' element source added) are shown below. In the figure, (1) is the rutile fiber C(Ti, M')02) obtained by the present invention, (1
') is granular rutile (T 10 z
), (2) are large potassium titanate fibers CK z (T i ) obtained according to the present invention.

M ’)60++:l 、(2’)は従来法で得られた
六チタン酸カリウム繊維CK z T i 6013 
) 、(3)は本発明により得られたルチル−プリプラ
イト−六チタン酸カリウム複合繊維の熱伝導率をそれぞ
れ示す。図に示されるよ7うに、同種の繊維の比較にお
いて、本発明により得られる繊維の方が低い熱伝導率を
有し、また三相複合繊維の熱伝導率も極めて低く、断熱
特性にすぐれていることがわかる。
M') 60++: l, (2') is potassium hexatitanate fiber CK z T i 6013 obtained by the conventional method
) and (3) respectively show the thermal conductivity of the rutile-preplite-potassium hexatitanate composite fiber obtained by the present invention. As shown in Figure 7, when comparing fibers of the same type, the fiber obtained by the present invention has a lower thermal conductivity, and the thermal conductivity of the three-phase composite fiber is also extremely low, and it has excellent heat insulation properties. I know that there is.

本発明により得られる繊維は、硬度が高く、例えば六チ
タン酸カリウム繊維(Kg(Ti、M ’)601、〕
はモース硬度約4と、硬質で耐摩耗性にすぐれている。
The fibers obtained according to the present invention have high hardness, such as potassium hexatitanate fibers (Kg (Ti, M') 601).
With a Mohs hardness of approximately 4, it is hard and has excellent wear resistance.

また、従来法により得られる繊維の長さは約100μm
前後に過ぎないのに対し、本発明方法によれば、約0.
5鶴以上の長繊維を得ることができ、工業用繊維の製造
方法として有用である。
Furthermore, the length of the fiber obtained by the conventional method is approximately 100 μm.
In contrast, according to the method of the present invention, it is only about 0.
It is possible to obtain long fibers of 5 cranes or more, and it is useful as a method for producing industrial fibers.

本発明方法により得られる各種繊維は、耐火・断熱材、
耐熱材、摩擦材、濾過材、高温用途での触媒担体、吸音
材等の構成材料として、あるいはセメント、プラスチッ
ク、金属等の複合強化材等として有用であり、また結晶
二チタン酸繊維やチタニア繊維は、イオン等の吸着特性
にもすぐれているので、例えば原子力設備における廃棄
物処理用バリヤ層の構成材料としても好適であり、更に
チタニア繊維は絶縁材、誘電体の構成材料としても有用
である。
Various fibers obtained by the method of the present invention are fireproof/insulating materials,
It is useful as a constituent material for heat-resistant materials, friction materials, filtration materials, catalyst carriers for high-temperature applications, sound-absorbing materials, etc., or as composite reinforcement materials for cement, plastics, metals, etc. It is also useful as crystalline dititanic acid fibers and titania fibers. Titania fibers also have excellent adsorption properties for ions, etc., so they are suitable as constituent materials for waste treatment barrier layers in nuclear power facilities, for example, and titania fibers are also useful as constituent materials for insulating materials and dielectric materials. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)および[]I)は本発明方法により得られ
たチタン化合物繊維の例を示す図面代用顕微鏡写真、第
2図は本発明により得られた繊維のX線粉末回折図、第
3図は各種チタン化合物繊維の熱伝導率を示すグラフで
ある。
Figures 1 (1) and []I) are micrographs substituted for drawings showing examples of titanium compound fibers obtained by the method of the present invention; Figure 2 is an X-ray powder diffraction diagram of the fibers obtained by the present invention; Figure 3 is a graph showing the thermal conductivity of various titanium compound fibers.

Claims (1)

【特許請求の範囲】[Claims] (1)加熱により二酸化チタンとなるチタン化合物と、 M′で示される金属もしくはそれを含む合金またはそれ
らの酸化物等の化合物と、 加熱によりアルカリ金属酸化物(M_2O)となるアル
カリ金属化合物とを、 Ti/M′の酸化物換算重量比(TiO_2/M′0)
が90/10〜99/1となり、かつ(Ti、M′)O
_2/M_2Oのモル比が1.5〜2.5となるように
配合し、 この混合物を加熱溶融反応させたのち、その溶融反応生
成物を冷却して結晶質繊維の束状集合体である塊状物を
得、ついで塊状物から可溶性物質を溶出させるとともに
解繊化し、解繊化された、繊維を乾燥または焼成するこ
とにより、 式:M_2On(Ti、M′)O_2・mH_2Ou(
Ti、M′)O_2・vH_2O または、Mx(Ti、M′)_8O_1_6・mH_2
O〔式中、Mはアルカリ金属、M′はMg、Ni、Cu
、Co、Zr、Al、Fe、Cr、Ca、Ga、Si、
Nb、Zn、V、Mn等の元素、また、nは8以下の正
数、mは0または4以下の正数、uは4以下の正数、v
は0または2以下の正数、xは2以下の正数を表わす。 〕 で示されるいづれか1種の繊維または2種以上の混合繊
維を得ることを特徴とするチタン化合物繊維の製造方法
(1) A titanium compound that becomes titanium dioxide when heated, a compound such as a metal represented by M' or an alloy containing it, or an oxide thereof, and an alkali metal compound that becomes an alkali metal oxide (M_2O) when heated. , Ti/M' oxide weight ratio (TiO_2/M'0)
is 90/10 to 99/1, and (Ti, M')O
The mixture is blended so that the molar ratio of _2/M_2O is 1.5 to 2.5, and this mixture is subjected to a heating melting reaction, and then the molten reaction product is cooled to form a bundle-like aggregate of crystalline fibers. By obtaining a lump, then eluting soluble substances from the lump and defibrating it, and drying or firing the defibrated fiber, the formula: M_2On(Ti, M')O_2・mH_2Ou(
Ti, M')O_2・vH_2O or Mx(Ti, M')_8O_1_6・mH_2
O [where M is an alkali metal, M' is Mg, Ni, Cu
, Co, Zr, Al, Fe, Cr, Ca, Ga, Si,
Elements such as Nb, Zn, V, Mn, n is a positive number of 8 or less, m is 0 or a positive number of 4 or less, u is a positive number of 4 or less, v
represents 0 or a positive number of 2 or less, and x represents a positive number of 2 or less. ] A method for producing titanium compound fibers, which comprises obtaining any one type of fiber or a mixture of two or more types of fibers shown in the following.
JP18514184A 1984-09-04 1984-09-04 Production of titanium compound fiber Pending JPS6163529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18514184A JPS6163529A (en) 1984-09-04 1984-09-04 Production of titanium compound fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18514184A JPS6163529A (en) 1984-09-04 1984-09-04 Production of titanium compound fiber

Publications (1)

Publication Number Publication Date
JPS6163529A true JPS6163529A (en) 1986-04-01

Family

ID=16165589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18514184A Pending JPS6163529A (en) 1984-09-04 1984-09-04 Production of titanium compound fiber

Country Status (1)

Country Link
JP (1) JPS6163529A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395116A (en) * 1986-10-13 1988-04-26 Otsuka Chem Co Ltd Production of polycrystal consisting of fibrous alkali metal titanate
JPH01131027A (en) * 1987-11-12 1989-05-23 Fuji Kagaku Kk Production of alkaline metal titanate compound
JP2004010464A (en) * 2002-06-11 2004-01-15 Kubota Corp Titanic acid compound powder and cosmetic
WO2009035166A1 (en) * 2007-09-14 2009-03-19 Kubota Corporation Noncrystalline composite alkali metal titanate composition and friction material
JP2010100527A (en) * 2010-01-28 2010-05-06 Kubota Corp Titanic acid compound powder and cosmetic
JP2018135240A (en) * 2017-02-22 2018-08-30 大塚化学株式会社 Titanate compound particles, method for producing the same, friction adjuster, resin composition, friction material, and friction member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395116A (en) * 1986-10-13 1988-04-26 Otsuka Chem Co Ltd Production of polycrystal consisting of fibrous alkali metal titanate
JPH01131027A (en) * 1987-11-12 1989-05-23 Fuji Kagaku Kk Production of alkaline metal titanate compound
JP2004010464A (en) * 2002-06-11 2004-01-15 Kubota Corp Titanic acid compound powder and cosmetic
WO2009035166A1 (en) * 2007-09-14 2009-03-19 Kubota Corporation Noncrystalline composite alkali metal titanate composition and friction material
JP2009067639A (en) * 2007-09-14 2009-04-02 Kubota Corp Amorphous compound alkali metal titanate composition and friction material
EP2189419A1 (en) * 2007-09-14 2010-05-26 Kubota Corporation Noncrystalline composite alkali metal titanate composition and friction material
US8093171B2 (en) 2007-09-14 2012-01-10 Kubota Corporation Noncrystalline composite alkali metal titanate composition and friction material
EP2189419A4 (en) * 2007-09-14 2012-01-25 Kubota Kk Noncrystalline composite alkali metal titanate composition and friction material
JP2010100527A (en) * 2010-01-28 2010-05-06 Kubota Corp Titanic acid compound powder and cosmetic
JP2018135240A (en) * 2017-02-22 2018-08-30 大塚化学株式会社 Titanate compound particles, method for producing the same, friction adjuster, resin composition, friction material, and friction member

Similar Documents

Publication Publication Date Title
JP3062497B1 (en) Method for producing flaky titanate
Ma et al. Crystallization of CaO–MgO–Al2O3–SiO2 glass ceramic derived from blast furnace slag via one-step method
JPS6163529A (en) Production of titanium compound fiber
CZ20003979A3 (en) Mullite grain free of cristobalite exhibiting reduced reactivity to molten aluminium and process for producing thereof
JPS6125657B2 (en)
JP2678810B2 (en) Method for producing potassium octatitanate polycrystalline fiber
JPS6121915A (en) Manufacture of titanium compound fiber
KR101893144B1 (en) Friction material comprising potassium titanate and method for preparing the same by melting method
JPS6121914A (en) Manufacture of titanium compound fiber
US4810439A (en) Process for producing potassium hexatitanate fibers
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
JP2631859B2 (en) Method for producing titania fiber
JPS62260796A (en) Production of potassium titanate fiber
JP2816908B2 (en) Method for producing potassium hexatitanate fiber
JPS60259627A (en) Production of potassium hexatitanate fiber or its composite fiber
JPS6379799A (en) Production of potassium titanate fiber
JPH03115113A (en) Production of fluorine mica
JPS63260821A (en) Production of potassium titanate fiber
JP3028398B2 (en) Method for producing sodium titanate fiber
JPS6034617A (en) Production of rutile-pridelite-potassium hexatitanate composite fiber
JPS6364997A (en) Production of potassium titanate fiber
JPH0457922A (en) Production of polycrystalline fiber of potassium hexatitanate
JPH07206440A (en) Production of sodium hexatitanate fiber
JPH0338239B2 (en)
JP3188061B2 (en) Method for producing sodium hexatitanate fiber