JPS61185862A - Hydrogen occlusion alloy electrode - Google Patents

Hydrogen occlusion alloy electrode

Info

Publication number
JPS61185862A
JPS61185862A JP60025227A JP2522785A JPS61185862A JP S61185862 A JPS61185862 A JP S61185862A JP 60025227 A JP60025227 A JP 60025227A JP 2522785 A JP2522785 A JP 2522785A JP S61185862 A JPS61185862 A JP S61185862A
Authority
JP
Japan
Prior art keywords
palladium
hydrogen
hydrogen occlusion
occlusion alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025227A
Other languages
Japanese (ja)
Inventor
Eriko Shinnaga
新長 えり子
Motoi Kanda
基 神田
Kiyoshi Mitsuyasu
光安 清志
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60025227A priority Critical patent/JPS61185862A/en
Publication of JPS61185862A publication Critical patent/JPS61185862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain identical electric discharge capacity and long life as those of conventional product by making hydrogen occlusion alloy powder whose surface is coated by palladium a main constitution material. CONSTITUTION:In hydrogen occlusion alloy electrode, a main constitution material is produced by forming palladium coated layer on the surface of hydrogen occlusion alloy (such as rare earth metal group, titanium-manganese group, iron-titanium group etc.) powder used in conventional hydrogen occulsion alloy electrodes. As palladium is excellent in oxidation proofness comparing with rate earth metal and Mn, Fe, the palladium coated layer protects internal hydrogen occlusion alloy powder from oxidization. And hydrogen occlusion alloy expands or is powdered finely when it absorbs hydrogen, but the palladium coated layer absorbs expansion of synthetic granule inside or prevents slip-off of finely-powdered alloy granule. Therefore, longer life of the hydrogen occlusion alloy electrode can be attained by using hydrogen occlusion alloy powder having palladium coated layer as a main constitution material.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、水素吸蔵合金電極の改良、特にその寿命特性
の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to improvements in hydrogen storage alloy electrodes, particularly to improvements in their life characteristics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

水薬吸蔵合金1極は水素を可逆的に吸蔵・放出する合金
を主な活物質とする電極で、蓄電池や燃料電池の電極と
して用いられている。一般(二水素吸蔵合金は、電解液
中で酸化を彼りやすい金属を成分として含むために、従
来の水素吸蔵合金電極では充放電を繰り返すうちに合金
の一部が酸化されて性能が劣化するという問題点があっ
た。例えばLaNIm +二代表される希土類系の水素
吸蔵合金では、希土類元素が酸化されることにより1合
金構造の破壊が起こる。また、水素吸蔵合金(二は水素
の吸蔵・放出を繰り返すと合金粉子が微粉化するという
性質があるために、従来の水素吸蔵合金電極では充放電
ナイクルが進むと、水素吸蔵合金粉末の電極からの脱落
や電極の崩壊が起こり、長寿命が得られないという問題
点があった。
Hydrogen storage alloy single electrode is an electrode whose main active material is an alloy that reversibly stores and releases hydrogen, and is used as an electrode in storage batteries and fuel cells. General (Dihydrogen storage alloys contain metals that easily oxidize in the electrolyte, so in conventional hydrogen storage alloy electrodes, part of the alloy becomes oxidized during repeated charging and discharging, resulting in deterioration of performance. For example, in rare earth hydrogen storage alloys such as LaNIm + 2, the alloy structure 1 is destroyed due to oxidation of the rare earth element. Because the alloy powder has the property of becoming pulverized when discharged repeatedly, in conventional hydrogen storage alloy electrodes, as the charging/discharging cycle progresses, the hydrogen storage alloy powder falls off from the electrode and the electrode collapses, resulting in a long service life. There was a problem in that it was not possible to obtain

〔発明の目的〕[Purpose of the invention]

本発明は以上の問題点全考慮してなされたもので、水素
の吸蔵能は悪化させずC二耐酸化性を向上させ微粉化を
防止した水素吸蔵合金粉末を主材料とすることによって
、従来品と同等の放電容量乞持も、より長寿命の水素吸
蔵合金電極全提供することt目的とする。
The present invention has been made in consideration of all the above problems, and by using a hydrogen storage alloy powder as the main material, which does not deteriorate the hydrogen storage capacity, improves C2 oxidation resistance, and prevents pulverization, it is possible to overcome the conventional The purpose is to provide a hydrogen storage alloy electrode that has a discharge capacity equivalent to that of the conventional hydrogen absorbing alloy electrode, but has a longer lifespan.

〔発明の概要〕[Summary of the invention]

本発明は、従来の水素吸蔵合金電極に使用されていた水
素吸蔵合金(希土類金属系、テタンーマンガン糸、鉄−
チタン糸など)の粉末の表面(ニパラジウムの’ffj
iml−をル成したものを主構成材料とする水素吸蔵合
金電極である。
The present invention utilizes hydrogen storage alloys (rare earth metals, tetan-manganese threads, iron-
The surface of powder (such as titanium thread) (nipalladium'ffj
This is a hydrogen-absorbing alloy electrode whose main constituent material is a mixture of iml-.

パラジウムは希土類金属やMn 、 Feなどに比べて
耐酸化性に優れた金属であるので、パラジウム被覆層は
内部の水素吸蔵合金粉末を酸化から保護する。まに水素
吸蔵合金は水素を吸蔵した際に膨張したり微粉化したり
するが、パラジウム被覆層は内部の合金粒子の膨5Et
を吸収したり、微粉化した含金粒子の脱落を防ぐ。従っ
てパラジウム被覆層ンもつ水素吸蔵合金粉末を主構成材
料として用いることによって、水素吸蔵合金心極の長寿
命化が達成される。
Since palladium is a metal with superior oxidation resistance compared to rare earth metals, Mn, Fe, etc., the palladium coating layer protects the internal hydrogen storage alloy powder from oxidation. Hydrogen-absorbing alloys expand or become pulverized when they absorb hydrogen, but the palladium coating layer expands due to the expansion of the internal alloy particles.
Prevents the absorption of metal particles and the falling off of finely divided gold-containing particles. Therefore, by using hydrogen storage alloy powder with a palladium coating layer as the main constituent material, a longer life of the hydrogen storage alloy core electrode can be achieved.

また、パラジウム自体が水素を吸j威・放出できる金属
であるため、パラジウム被覆層を形成しても、4極とし
ての各区はほとんど減少しない。パラジウム以外の耐酸
化性に優れた金属(たとえばCu 、 Niなど)は水
素の吸蔵・放出能を持にないので、パラジウム以外の金
属で被覆した水素吸蔵合鉱扮末を用いた場合には、寿命
に向上しても、電極としての単位重数・単位体積あたり
の容量が被i層の金属分だけ低下する。従って被覆層と
してはパラジウムが最適である。
Furthermore, since palladium itself is a metal that can absorb and release hydrogen, even if a palladium coating layer is formed, the number of quadrupole sections will hardly decrease. Metals with excellent oxidation resistance other than palladium (e.g. Cu, Ni, etc.) do not have the ability to absorb and release hydrogen, so when using a hydrogen absorbing composite powder coated with a metal other than palladium, Even if the life is improved, the capacity per unit weight and unit volume of the electrode is reduced by the metal of the i-layer. Therefore, palladium is most suitable for the coating layer.

しかし、パラジウムは比較的高価な金属であるので、少
址の使用が好ましい。水素吸蔵合金粉末の粒径としては
数十μm以上のものを用いる事が好ましく、パラジウム
被覆層の厚さは平均1μm12L下が特に好ましい。
However, since palladium is a relatively expensive metal, it is preferable to use it sparingly. The particle size of the hydrogen storage alloy powder is preferably several tens of μm or more, and the thickness of the palladium coating layer is particularly preferably 1 μm or less on average.

パラジウムによる被覆は気相から行なっても液相から行
なっても良いが、高価な装置を必要とせず、操作の容易
なことから、パラジウムを含む溶液中C:水素吸蔵合金
粉宋を投入して被覆層Z形成することが好ましい。なS
この場合はパラジウムを含む溶液の酸性度がPH5以下
であるとパラジウム被覆層形成中(:水素吸蔵合金粉末
の表面が酸化を被り水素吸蔵・放出能が低下する恐れが
あるので、PH7以上の溶液を使用することが望ましい
Coating with palladium may be carried out from the gas phase or from the liquid phase, but since it does not require expensive equipment and is easy to operate, C: Hydrogen storage alloy powder Sung is added to the solution containing palladium. It is preferable to form a covering layer Z. NaS
In this case, if the acidity of the palladium-containing solution is below PH5, the surface of the hydrogen-absorbing alloy powder may be oxidized and the hydrogen storage/release ability may be reduced. It is preferable to use

〔発明の効果] 以上説明し定ように本発明によれば、水素の吸蔵・放出
能を損わずに、水素吸蔵合金が酸化から保ルリされ、合
金粒子の脱落や電極の崩壊が防止されるので、従来品と
同等の容量をもち、より長寿命な水素吸蔵合金電極を得
ることができる。
[Effects of the Invention] As explained above, according to the present invention, the hydrogen storage alloy is protected from oxidation without impairing its ability to absorb and release hydrogen, and the falling off of alloy particles and the collapse of the electrodes are prevented. Therefore, it is possible to obtain a hydrogen storage alloy electrode that has a capacity equivalent to that of conventional products and has a longer life.

さらl二、パラジウムの水素吸蔵・放出の際の平衡水累
圧が低いことから、充電によって水素吸蔵合金粉末に吸
蔵された水素がパラジウム被覆層!通って抜は出すこと
は困難である。従って電極としては、自己放電が防止さ
れるという効果がある。
Furthermore, since the equilibrium water cumulative pressure during hydrogen storage and release of palladium is low, the hydrogen stored in the hydrogen storage alloy powder due to charging is absorbed into the palladium coating layer! It is difficult to pass through and extract it. Therefore, the electrode has the effect of preventing self-discharge.

以上の効果に加えて、パラジウムが存在すること(二よ
り、その触媒としての作用が付加されて、Wjl e’
jl電極として使用しに場合には正極から発生する02
をN20に還元する化学反応が共存し、このためC二’
心’Im内の0□址が減少して電極の酸化が防止される
という効果も期待できる。
In addition to the above effects, the presence of palladium (secondarily, its catalytic action is added, and Wjl e'
02 generated from the positive electrode when used as a jl electrode
There exists a chemical reaction that reduces C2' to N20.
It is also expected that the 0□ area in the heart'Im will be reduced and the oxidation of the electrodes will be prevented.

本発明の水素吸蔵合金電極は、充放電を繰り返す二次電
池の負極に適しにものである。
The hydrogen storage alloy electrode of the present invention is suitable for a negative electrode of a secondary battery that is repeatedly charged and discharged.

〔発明のνご施例〕[Example of invention]

以下に、本発明の詳細な説明する。 The present invention will be explained in detail below.

水素吸蔵合金としテハMmN142Mno4(Mm :
ミッシユメタル)を使用した。この合金に水i’va&
蔵・放出させ、粒径2〜50/xn  の粉末とした。
Teha MmN142Mno4 (Mm:
Missy Metal) was used. Water i'va & into this alloy
It was stored and released to form a powder with a particle size of 2 to 50/xn.

一方Pd浴としては10%Pd C12水溶液CNaO
H水溶液!加えPHIQ〜12に蒜製した溶液を用いた
On the other hand, as a Pd bath, 10% Pd C12 aqueous solution CNaO
H aqueous solution! A solution prepared by adding garlic to PHIQ ~ 12 was used.

MmN i 4x Mno、a合金粉床3g’、t25
℃のPd浴300m1中に投入し、5分間攪拌した後濾
過する。約IUfMの純水による洗浄全数回繰り返す。
MmN i 4x Mno, a alloy powder bed 3g', t25
The mixture was poured into a 300 ml Pd bath at 0.degree. C., stirred for 5 minutes, and then filtered. Repeat washing with approximately IUfM pure water several times.

その後ホルマリン水1:、 NaOH水溶液を加えてP
H8〜11とした溶液100mII中(二投入し25℃
で数分攪拌し濾過する。得られたP())きMmNI 
4.t Mn n、a合金粉床はN2気流中で風乾させ
る。以上のよう(ニシテ形成したPd層は、MmN i
4.zMn o、s粒子の表面を部分的に被覆してSす
、その平均の厚さは1μm以下C二なっている。このP
dつきMmN 141Mn合金粉末の重量に対し、4重
量パーセントのポリテトラフロロエチレンの粉末ン混合
し、混練して厚さ0.511@のシートとする。このシ
ートl適当な大きさCユリり、 Niネットに圧着して
水素吸蔵合金電極を得た。
After that, add formalin water 1:, NaOH aqueous solution and P
H8-11 solution in 100ml (two injections at 25°C)
Stir for a few minutes and filter. The obtained P()) MmNI
4. The t Mn n,a alloy powder bed is air dried in a stream of N2. As mentioned above (the Pd layer formed in Nishite is MmN i
4. The surface of the zMno, s particles is partially coated with S, the average thickness of which is less than 1 μm. This P
MmN with d 141Mn alloy powder is mixed with 4% by weight of polytetrafluoroethylene powder and kneaded to form a sheet having a thickness of 0.511@. This sheet was cut to an appropriate size and pressed onto a Ni net to obtain a hydrogen storage alloy electrode.

上記の方法で作った水素吸蔵合金電極を負極とし1通常
のニッケル極を正極として、8N−KO)(水溶液を′
4!解液として作成した二次電池の負極の容M (P(
1つき付合粉末1gあたり)のチイクル特性を第1図の
曲線At二示す。曲線Bは、Pd被覆層をもたないMm
N + 41 Mn o、s合金粉末7fr:使用して
同様に作成し定電様による参照実験の結果得られた特性
である。なお充電鼠は168 m hh−g s  、
放電電流30献で測定した。チイクル初期にどいて両者
同じ容量が得られてSす、Pd層を形成しても容置が悪
化しないことがわかる。チイクルが110回以上の領域
では、Pd層なしの合金から作つた電極の方が8破低下
が著しく、たとえば容量が100 mAb−g−sに低
下するのは、Pd層がない場合に175fイクルである
のに対し、 Pd層tもつ場合シーは195サイクルで
ある。このように第り図から本発明により水素吸蔵合金
電極の長寿命化が達成されることがわかる。
Using the hydrogen storage alloy electrode made by the above method as a negative electrode, and using a normal nickel electrode as a positive electrode,
4! The capacity M (P(
Curve At2 in FIG. Curve B is Mm without Pd coating layer.
N + 41 Mno, s alloy powder 7fr: These are the characteristics obtained as a result of a reference experiment using a constant electric current. In addition, the charging mouse is 168 m hh-gs,
The measurement was performed at a discharge current of 30%. It can be seen that the same capacitance was obtained in both cases at the initial stage of the cycle, and the capacity did not deteriorate even if the S and Pd layers were formed. In the region of 110 cycles or more, electrodes made from alloys without a Pd layer exhibit a more significant 8 failure drop.For example, the capacitance drops to 100 mAb-gs after 175 cycles without a Pd layer. On the other hand, in the case of a Pd layer t, the sea is 195 cycles. As described above, it can be seen from the diagram that the present invention achieves a longer life of the hydrogen storage alloy electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明2二よる水素吸蔵電極と従来の水素吸
蔵合金電極の放電容量のチイクル特性図。 代理人 弁理士 則近憲佑(ほか1名)第1図 寸イフル敞−10
FIG. 1 is a cycle characteristic diagram of the discharge capacity of the hydrogen storage electrode according to the present invention 22 and the conventional hydrogen storage alloy electrode. Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Dimensions 10

Claims (2)

【特許請求の範囲】[Claims] (1)表面をパラジウムで被覆した水素吸蔵合金粉末を
主構成材料としたことを特徴とする水素吸蔵合金電極。
(1) A hydrogen storage alloy electrode characterized in that its main constituent material is hydrogen storage alloy powder whose surface is coated with palladium.
(2)表面を被覆するパラジウム層の平均の厚さを1μ
m以下としたことを特徴とする特許請求の範囲第1項記
載の水素吸蔵合金電極。
(2) The average thickness of the palladium layer covering the surface is 1μ
The hydrogen storage alloy electrode according to claim 1, characterized in that the hydrogen storage alloy electrode is less than or equal to m.
JP60025227A 1985-02-14 1985-02-14 Hydrogen occlusion alloy electrode Pending JPS61185862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025227A JPS61185862A (en) 1985-02-14 1985-02-14 Hydrogen occlusion alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025227A JPS61185862A (en) 1985-02-14 1985-02-14 Hydrogen occlusion alloy electrode

Publications (1)

Publication Number Publication Date
JPS61185862A true JPS61185862A (en) 1986-08-19

Family

ID=12160080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025227A Pending JPS61185862A (en) 1985-02-14 1985-02-14 Hydrogen occlusion alloy electrode

Country Status (1)

Country Link
JP (1) JPS61185862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247735A (en) * 1990-02-23 1991-11-05 Nippon Yakin Kogyo Co Ltd Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247735A (en) * 1990-02-23 1991-11-05 Nippon Yakin Kogyo Co Ltd Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Similar Documents

Publication Publication Date Title
US5389468A (en) Alkaline storage battery
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JPS60109183A (en) Sealed type nickel-hydrogen storage battery
JPS60100382A (en) Closed nickel-hydrogen storage battery
JPS61185862A (en) Hydrogen occlusion alloy electrode
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JPS63314777A (en) Sealed type ni-h accumulator
JPS6119063A (en) Hydrogen occlusion electrode
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JPS6355857A (en) Enclosed type alkaline storage battery
JPS62296365A (en) Sealed alkaline storage battery
JPH0793137B2 (en) Hydrogen storage alloy electrode
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2883450B2 (en) Hydrogen storage alloy material and method for producing the same
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPS6016064B2 (en) Manufacturing method for storage battery cathode plates
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH02301965A (en) Secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS63195960A (en) Sealed alkaline storage battery
JP3876960B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JPH04319258A (en) Hydrogen storage alloy electrode
JPH0815076B2 (en) Sealed alkaline storage battery
JPH04167365A (en) Hydrogen storage electrode