JPH0793137B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH0793137B2
JPH0793137B2 JP60293118A JP29311885A JPH0793137B2 JP H0793137 B2 JPH0793137 B2 JP H0793137B2 JP 60293118 A JP60293118 A JP 60293118A JP 29311885 A JP29311885 A JP 29311885A JP H0793137 B2 JPH0793137 B2 JP H0793137B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
electrode
alloy electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60293118A
Other languages
Japanese (ja)
Other versions
JPS62154562A (en
Inventor
佐々木  邦彦
基 神田
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60293118A priority Critical patent/JPH0793137B2/en
Publication of JPS62154562A publication Critical patent/JPS62154562A/en
Publication of JPH0793137B2 publication Critical patent/JPH0793137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は密閉型ニッケル酸化物・水素蓄電池等に用いら
れる水素吸蔵合金電極の改良に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to an improvement of a hydrogen storage alloy electrode used in a sealed nickel oxide / hydrogen storage battery or the like.

〔発明の技術的背景とその問題点〕 従来、例えば密閉型ニッケル酸化物・水素蓄電池に用い
られる水素吸蔵合金電極は以下のようにして製造されて
いる。まず、水素吸蔵合金のインゴットを耐熱・耐圧容
器内に入れ、容器内を例えば10-5torrまで減圧した後、
必要に応じて冷却しながら10〜30気圧の水素を容器内に
充満させる。こうして合金に水素を吸蔵させ、飽和に達
した後、容器内温度を60〜80℃程度に上げ、容器内の水
素を真空ポンプで吸引除去し、合金に吸蔵されている水
素を放出させる。水素を完全に放出させた後、再度10〜
30気圧の水素を容器内に充満させて合金に水素を吸蔵さ
せる。このような水素の吸蔵・放出操作を数回繰返して
水素吸蔵合金を粉末化する。次に、水素吸蔵合金粉末を
不活性ガス中でシート状に成形して水素吸蔵合金電極を
製造する。
[Technical background of the invention and its problems] Conventionally, for example, a hydrogen storage alloy electrode used for a sealed nickel oxide / hydrogen storage battery is manufactured as follows. First, put the hydrogen storage alloy ingot in a heat-resistant and pressure-resistant container, depressurize the container to, for example, 10 -5 torr, and then
Fill the vessel with hydrogen at 10-30 atm while cooling if necessary. In this way, the alloy is made to occlude hydrogen and after reaching saturation, the temperature in the container is raised to about 60 to 80 ° C., the hydrogen in the container is sucked and removed by a vacuum pump, and the hydrogen occluded in the alloy is released. After releasing hydrogen completely, 10 ~
The container is filled with hydrogen at 30 atm and hydrogen is absorbed by the alloy. The hydrogen storage / release operation is repeated several times to powderize the hydrogen storage alloy. Next, the hydrogen storage alloy powder is formed into a sheet shape in an inert gas to manufacture a hydrogen storage alloy electrode.

しかし、上記のような方法では、複雑で高価な製造設備
を必要とし、高圧の水素ガスを使用するため危険を伴
い、しかも処理に長時間を要するという欠点がある。
However, the above-mentioned method has drawbacks in that it requires complicated and expensive production equipment, is dangerous because high-pressure hydrogen gas is used, and requires a long time for treatment.

〔発明の目的〕[Object of the Invention]

本発明は上記欠点を解消するためになされたものであ
り、水素を用いる処理を必要とせず、複雑で高価な製造
設備なしに安全にかつ短時間で製造し得る水素吸蔵合金
電極を提供しようとするものである。
The present invention has been made to solve the above-mentioned drawbacks, and does not require a treatment using hydrogen, and an object of the present invention is to provide a hydrogen storage alloy electrode that can be manufactured safely and in a short time without complicated and expensive manufacturing equipment. To do.

〔発明の概要〕[Outline of Invention]

本発明者らは、空気中で機械的に粉砕した水素吸蔵合金
粉末でも、その粒径を規定して水素吸蔵合金電極を作製
すれば、高い電池性能を示すことを見出だし本発明をな
すに至った。
The present inventors have found that even hydrogen-absorbing alloy powder mechanically pulverized in air can exhibit high battery performance if a hydrogen-absorbing alloy electrode is produced by defining the particle size. I arrived.

すなわち、本発明の水素吸蔵合金電極は、機械的に粉砕
した粒径20〜149μmの結晶質水素吸蔵合金粉末を、該
合金粉末に対して2重量%以下混合したポリテトラフル
オロエチレンで結着させたことを特徴とするものであ
る。通常、機械粉砕粒を得る際には、粒度分布は正規分
布することが多い。本発明では機械的に粉砕した水素吸
蔵合金粉末の平均粒径が20〜149μmの範囲であればよ
い。
That is, in the hydrogen storage alloy electrode of the present invention, mechanically ground crystalline hydrogen storage alloy powder having a particle size of 20 to 149 μm is bound with polytetrafluoroethylene mixed in an amount of 2% by weight or less with respect to the alloy powder. It is characterized by that. Usually, when mechanically crushed particles are obtained, the particle size distribution is often a normal distribution. In the present invention, the mechanically crushed hydrogen storage alloy powder may have an average particle size of 20 to 149 μm.

このような水素吸蔵合金電極は、水素を使用する粉末化
処理を必要としないので、複雑で高価な製造設備を必要
とせず、安全にかつ短時間で製造でき、非常に安価とな
る。
Since such a hydrogen storage alloy electrode does not require powdering treatment using hydrogen, it does not require complicated and expensive manufacturing equipment, can be manufactured safely and in a short time, and is extremely inexpensive.

本発明において水素吸蔵合金粉末の粒径を20〜149μm
に規定したのは、粒径が20μm未満では高い電池性能が
得られず、一方149μmを超えると電極を作製して充放
電を繰返す間に粒子がくずれて脱落し寿命が短くなるた
めである。特に好ましい粒径の範囲は37〜149μmであ
る。
In the present invention, the particle size of the hydrogen storage alloy powder is 20 to 149 μm.
The reason for the above is that if the particle size is less than 20 μm, high battery performance cannot be obtained, while if it exceeds 149 μm, the particles disintegrate and fall off during repeated charging and discharging of the electrode, resulting in a shorter life. A particularly preferable particle size range is 37 to 149 μm.

また、本発明において、結着剤となる樹脂として撥水性
に優れたポリテトラフルオロエチレンを水素吸蔵合金粉
末に対して2重量%以下の割合で用いる。これは、2重
量%を超えると電極の容量が十分でなくなるためであ
る。
Further, in the present invention, polytetrafluoroethylene having excellent water repellency is used as a binder resin at a ratio of 2% by weight or less with respect to the hydrogen storage alloy powder. This is because the capacity of the electrode becomes insufficient when the content exceeds 2% by weight.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

まず、LmNi4.2Mn0.6Al0.2(ただし、LmはLaリッチのミ
ッシュメタル)なる組成の水素吸蔵合金のインゴットを
空気中でボールミルに入れ、30分間粉砕した。その後、
ふるいにかけて100〜200メッシュ(149〜74μm)、200
〜300メッシュ(74〜46μm)、300〜400メッシュ(46
〜37μm)、400〜635メッシュ(37〜20μm)、653メ
ッシュパス(20μm以下)の5種類に分級した。
First, an ingot of a hydrogen storage alloy having a composition of LmNi 4.2 Mn 0.6 Al 0.2 (where Lm is La-rich misch metal) was put in a ball mill in air and crushed for 30 minutes. afterwards,
Sieve 100-200 mesh (149-74 μm), 200
~ 300 mesh (74 ~ 46 μm), 300 ~ 400 mesh (46
.About.37 μm), 400 to 635 mesh (37 to 20 μm), and 653 mesh pass (20 μm or less).

次に、各粒度の水素吸蔵合金粉末に対してそれぞれポリ
テトラフルオロエチレン(PTFE)を4.0、2.0、0.5重量
%の割合で混合してシート状に成形した後、それぞれニ
ッケル金網集電体に400kg/cm2の圧力で圧着して水素吸
蔵合金電極を作製した。
Next, after mixing polytetrafluoroethylene (PTFE) at a ratio of 4.0, 2.0, and 0.5% by weight with respect to the hydrogen storage alloy powder of each particle size, and forming into a sheet, 400 kg of nickel wire mesh current collectors, respectively. A hydrogen storage alloy electrode was produced by pressure bonding at a pressure of / cm 2 .

これらの水素吸蔵合金電極及び対極として大容量のニッ
ケル極を用いて電池を構成し、充放電試験を行なった。
なお、充放電効率が100%のときの放電容量をその水素
吸蔵合金電極の性能とした。その結果を下記表に示す。
A battery was constructed using these hydrogen storage alloy electrodes and a nickel electrode having a large capacity as a counter electrode, and a charge / discharge test was conducted.
The discharge capacity when the charge / discharge efficiency was 100% was defined as the performance of the hydrogen storage alloy electrode. The results are shown in the table below.

また、実施例1〜4及び比較例1の電極を用いて作製し
た電池を実際の使用状態を考慮して初めから合金1g当り
171mA/g−Mの電流密度で1時間充電を行ない、放電容
量が171mAh/g−M以上に達するサイクルを測定した。そ
の結果を第1図に示す。
In addition, the batteries prepared by using the electrodes of Examples 1 to 4 and Comparative Example 1 were used from the beginning in consideration of the actual use condition per 1 g of alloy.
The battery was charged at a current density of 171 mA / g-M for 1 hour, and the cycle at which the discharge capacity reached 171 mAh / g-M or more was measured. The results are shown in FIG.

上記表から明らかなように、比較例1〜3のように粒径
20μm以下の水素吸蔵合金粉末からなる電極を用いた場
合には、電池性能が著しく低いのに対し、実施例1〜12
のように粒径20〜149μmの水素吸蔵合金粉末からなる
電極を用いた場合には、高い電池性能を示す。また、結
着剤として用いられるPTFEの量が2.0重量%以下の場合
には、4.0重量%の場合と比較して、高い放電容量が得
られることがわかる。これはPTFEが撥水性であり、その
含有量が減少したことにより水素吸蔵合金と電解液との
接触が良好になったためであると考えられる。
As is clear from the above table, the particle size as in Comparative Examples 1 to 3
In the case of using the electrode made of the hydrogen storage alloy powder having a particle size of 20 μm or less, the battery performance was remarkably low.
When an electrode made of a hydrogen storage alloy powder having a particle size of 20 to 149 μm is used, high battery performance is exhibited. Further, it can be seen that when the amount of PTFE used as the binder is 2.0% by weight or less, a higher discharge capacity can be obtained as compared with the case of 4.0% by weight. It is considered that this is because PTFE is water-repellent, and the decrease in its content improves the contact between the hydrogen storage alloy and the electrolytic solution.

更に、第1図から明らかなように、比較例1の電極を用
いた電池では放電容量が低いのに対し、粒径20〜149μ
mの水素吸蔵合金粉末からなる実施例1〜4の電極を用
いた場合には、いずれも2サイクル目から171mAh/g−M
を超える放電容量を示し、実際の電池を想定すると極め
て実用的価値が大きい。
Further, as is clear from FIG. 1, the battery using the electrode of Comparative Example 1 has a low discharge capacity, while the particle size is 20 to 149 μm.
In the case of using the electrodes of Examples 1 to 4 made of hydrogen storage alloy powder of m, 171 mAh / g-M from the second cycle
It has a discharge capacity of over 1, and is of great practical value when an actual battery is assumed.

なお、以上の説明ではLa−Ni系のLmNi4.2Mn0.6Al0.2
4元合金についてのみ述べたが、他のTi−Ni系、Ca−Ni
系、Mg−Ni系、Ti−Cr系、Ti−Fe系、Ti−V系、La−Co
系についても同様の効果が期待できる。
In the above description, only the La-Ni type LmNi 4.2 Mn 0.6 Al 0.2 quaternary alloy was described, but other Ti-Ni type, Ca-Ni
System, Mg-Ni system, Ti-Cr system, Ti-Fe system, Ti-V system, La-Co
Similar effects can be expected for the system.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く本発明によれば、複雑で高価な製造設
備を必要とせず、安全にかつ短時間で製造でき、安価な
水素吸蔵合金電極を提供できるものである。
As described above in detail, according to the present invention, it is possible to provide an inexpensive hydrogen storage alloy electrode which can be manufactured safely and in a short time without requiring complicated and expensive manufacturing equipment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1〜4及び比較例1の水素吸蔵
合金電極を用いて作製した電池の充放電サイクル試験の
結果を示す特性図である。
FIG. 1 is a characteristic diagram showing the results of charge / discharge cycle tests of batteries prepared using the hydrogen storage alloy electrodes of Examples 1 to 4 and Comparative Example 1 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】機械的に粉砕した粒径20〜149μmの結晶
質水素吸蔵合金粉末を、該合金粉末に対して2重量%以
下混合したポリテトラフルオロエチレンで結着させたこ
とを特徴とする水素吸蔵合金電極。
1. A crystalline hydrogen storage alloy powder having a particle size of 20 to 149 μm mechanically crushed and bound with polytetrafluoroethylene mixed in an amount of 2% by weight or less with respect to the alloy powder. Hydrogen storage alloy electrode.
【請求項2】水素吸蔵合金がLa−Ni系、Ti−Ni系、Ca−
Ni系、Mg−Ni系、Ti−Cr系、Ti−Fe系、Ti−V系、La−
Co系から選ばれる少なくとも1種の系を主体とすること
を特徴とする特許請求の範囲第1項記載の水素吸蔵合金
電極。
2. A hydrogen storage alloy containing La-Ni, Ti-Ni, Ca-
Ni-based, Mg-Ni-based, Ti-Cr-based, Ti-Fe-based, Ti-V-based, La-
The hydrogen storage alloy electrode according to claim 1, which is mainly composed of at least one system selected from Co systems.
JP60293118A 1985-12-27 1985-12-27 Hydrogen storage alloy electrode Expired - Lifetime JPH0793137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293118A JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293118A JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPS62154562A JPS62154562A (en) 1987-07-09
JPH0793137B2 true JPH0793137B2 (en) 1995-10-09

Family

ID=17790660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293118A Expired - Lifetime JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0793137B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2916156B2 (en) * 1988-12-28 1999-07-05 学校法人東海大学 Manufacturing method of sheet electrode and battery
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
JP2006127817A (en) * 2004-10-27 2006-05-18 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and alkali storage battery
JP5824307B2 (en) * 2010-11-24 2015-11-25 ダイハツ工業株式会社 Fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130054A (en) * 1983-12-15 1985-07-11 Toshiba Corp Metal-oxide hydrogen battery
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode

Also Published As

Publication number Publication date
JPS62154562A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
JP5892141B2 (en) Hydrogen storage alloy and secondary battery
US5360687A (en) Hydrogen-occulusion electrode
KR100669593B1 (en) A hydrogen adsorption alloy and a nickel hydrogen secondary battery
JPH0793137B2 (en) Hydrogen storage alloy electrode
JP4420767B2 (en) Nickel / hydrogen storage battery
JP3756610B2 (en) Hydrogen storage alloy and alkaline secondary battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP3184609B2 (en) Metal oxide / hydrogen battery and manufacturing method thereof
JPS62271348A (en) Hydrogen occlusion electrode
JP3369226B2 (en) Metal oxide / hydrogen secondary batteries
JP3171401B2 (en) Hydride rechargeable battery
JP2828680B2 (en) Hydrogen storage alloy electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2002003975A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2962812B2 (en) Metal oxide / hydrogen batteries
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
JP3183680B2 (en) Metal oxide / hydrogen battery
JPH0268856A (en) Hydrogen occluded alloy electrode
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP2983071B2 (en) Metal oxide / hydrogen batteries
JP3727360B2 (en) Method for producing metal oxide / hydrogen secondary battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JP3152845B2 (en) Nickel-metal hydride battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP3214570B2 (en) Hydride rechargeable battery