JPS6355857A - Enclosed type alkaline storage battery - Google Patents

Enclosed type alkaline storage battery

Info

Publication number
JPS6355857A
JPS6355857A JP61200917A JP20091786A JPS6355857A JP S6355857 A JPS6355857 A JP S6355857A JP 61200917 A JP61200917 A JP 61200917A JP 20091786 A JP20091786 A JP 20091786A JP S6355857 A JPS6355857 A JP S6355857A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
powder
hydrogen storage
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61200917A
Other languages
Japanese (ja)
Other versions
JPH0815077B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61200917A priority Critical patent/JPH0815077B2/en
Publication of JPS6355857A publication Critical patent/JPS6355857A/en
Publication of JPH0815077B2 publication Critical patent/JPH0815077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To give the oxygen catalyst function and the oxidation control function on the surface of a negative electrode, and to improve the discharge capacity, by furnishing an oxidation control layer which consists of a mixture of a hydrogen absorption alloy or a hydrate powder covered partitially by copper, nickel, or one of their alloys' and a carbon powder, on the surface of the negative electrode. CONSTITUTION:A metallic oxide positive electrode 4, a negative electrode 3 which consists of a hydrogen absorption alloy 1 or a hydrate, a separator 5, and an alkaline electrolyte are furnished, and on the surface of the negative electrode 3, is furnished an oxidation control layer 2 which consists of a mixture of the hydrogen absorption alloy 1 or the hydrate powder covered partially by copper, nickel, or one of their alloys, and a carbon powder. Moreover, in the hydrogen absorption alloy 1 or the hydrate powder, and the carbon powder, a catalyst is included in the particle surfaces of the both substances or either of them. Therefore, even in a relatively larger charge current, the oxidation prevention of the hydrogen absorption alloy 1 by the oxygen gas, and the oxygen absorption or oxygen ionization over the surface of the negative electrode 3 are proceeded in a good balance, and the battery inner pressure is restricted, while the charge and discharge cycle life can be extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素を可逆的に吸蔵・放出する合金又は水素化
物からなる電極、すなわち水素吸蔵電極を負極とし、金
属酸化物電極を正極とする密閉型アルカリ蓄電池に係わ
るもので、特に負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrode made of an alloy or hydride that reversibly stores and releases hydrogen, that is, a closed type electrode that uses a hydrogen storage electrode as a negative electrode and a metal oxide electrode as a positive electrode. It relates to alkaline storage batteries, and in particular to improvements in negative electrodes.

従来の技術 従来、この種の水素吸蔵電極を負極とするアルカリ蓄電
池では、充・放電サイクルの繰り返しによって負極を構
成する水素吸蔵合金又は水素化物が細分化し、膨張によ
る亀裂を発生し電極支持体から脱落するなどの理由によ
り電池性能の低下がおこる。この現象はとくに開放型ア
ルカリ蓄電池に顕著に現われる。そこで、水素吸蔵合金
粒子の表面を銅で被覆する事によって上記の問題点全解
決しようとする試みが提案されている(特開昭60−1
11548号公報)。すなわち、水素吸蔵合金又は水素
化粒子の表面に銅・ニッケルを無電解メッキによって、
被覆膜を施す事により、電極自体の機械的強度と電気導
伝性の向上を図っている負甑が提案されている。そして
、この負極とセパレータ全弁して金属酸化物正極とを組
合せたアルカリ蓄電池も考えられている。
Conventional technology Conventionally, in alkaline storage batteries that use this type of hydrogen storage electrode as the negative electrode, the hydrogen storage alloy or hydride that makes up the negative electrode fragments due to repeated charging and discharging cycles, and cracks occur due to expansion, causing the electrode support to separate. Deterioration of battery performance occurs due to reasons such as falling off. This phenomenon is particularly noticeable in open-type alkaline storage batteries. Therefore, an attempt has been proposed to solve all of the above problems by coating the surface of hydrogen-absorbing alloy particles with copper (Japanese Patent Laid-Open No. 60-1
11548). That is, by electroless plating of copper and nickel on the surface of hydrogen storage alloy or hydrogenated particles,
A negative kettle has been proposed in which the mechanical strength and electrical conductivity of the electrode itself are improved by applying a coating film. An alkaline storage battery is also being considered in which this negative electrode is combined with a metal oxide positive electrode with a full separator.

発明が解決しようとする問題点 このような従来の講説では、電纜自体の機械的強度と導
電性は良くなり、′!!池性能は向上する。
Problems to be Solved by the Invention In such conventional lectures, the mechanical strength and conductivity of the wire itself are improved, and '! ! Pond performance will improve.

その反面水素吸蔵合金粒子の表面f:被被覆る金属は水
素に対して不活性でちるために、水素貯蔵量してよって
規制を受けるエネルギー貯蔵容量には無関係である。従
って、この被覆金属部分が多いとその分量だけ単位重量
当たりの容量は減少することになる。とくに密閉型アル
カリ蓄電池においては、一定体積中に正極と負極が占め
る容積は定まっているので、負極の占める容積の増大は
正極の占める容積の減少をまねき、正極容量で電池容量
が規制されているために、放電容量が減少する。
On the other hand, since the surface f of the hydrogen-absorbing alloy particle is coated with a metal that is inert to hydrogen, it has no relation to the amount of hydrogen storage and hence to the energy storage capacity, which is regulated. Therefore, if the number of coated metal parts increases, the capacity per unit weight will decrease by that amount. Especially in sealed alkaline storage batteries, the volume occupied by the positive electrode and negative electrode is fixed in a given volume, so an increase in the volume occupied by the negative electrode leads to a decrease in the volume occupied by the positive electrode, and the battery capacity is regulated by the capacity of the positive electrode. Therefore, the discharge capacity decreases.

そこで負極の表面にのみ前記金属を被覆した水素吸蔵合
金又は水素化物粉末】を形成することが提案された。こ
の溝底では正極で発生する酸素ガス全負極表面で還元反
応により水にする必要があるが、酸素ガスの発生より消
費する反応がおくれ、電池内に酸素ガスが蓄積して電池
内圧を上昇させる。とくに、急速充電時においてこの現
象が顕著に現われ、安全性を低下させるという問題があ
った0 そこで、本発明はこのような問題点全解決するもので、
比較的充電電流の大きい場合でも酸素ガスによる水素吸
蔵合金の酸化防止と負極表面での酸素吸収又は酸素のイ
オン化をバランス良く進行させて、電池内圧上昇の抑制
と充・放電サイクル寿命の伸長を図ることを目的とする
ものである。
Therefore, it has been proposed to form a hydrogen storage alloy or hydride powder coated with the metal only on the surface of the negative electrode. At the bottom of this groove, all of the oxygen gas generated at the positive electrode must be converted to water through a reduction reaction on the negative electrode surface, but the reaction that consumes it takes longer than the generation of oxygen gas, and oxygen gas accumulates inside the battery, increasing the internal pressure of the battery. . This phenomenon is particularly noticeable during rapid charging, which poses a problem of lowering safety. Therefore, the present invention aims to solve all of these problems.
Even when the charging current is relatively large, prevention of oxidation of the hydrogen storage alloy by oxygen gas and oxygen absorption or ionization of oxygen on the negative electrode surface proceed in a well-balanced manner, thereby suppressing the rise in battery internal pressure and extending the charge/discharge cycle life. The purpose is to

問題点を解決するための手段 この問題点を解決するために本発明は金属酸化物正極と
、水素吸蔵合金または水素化物からなる負極と、セパレ
ータ及びアルカリ電解液を備え、前記負極の表面に銅、
ニッケル又はそれらの合金で部分的に被覆した水素吸蔵
合金又は水素化物粉末と炭素粉末との混合物からなる酸
化抑制層?設けたものである。さらに好ましくは前記金
属で被覆した水素吸蔵合金又は水素化物粉末と炭素粉末
において、両者又はいずれか一方の粒子表面に触媒を担
持したものである。
Means for Solving the Problem In order to solve this problem, the present invention comprises a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and a surface of the negative electrode is coated with copper. ,
An oxidation-inhibiting layer consisting of a hydrogen storage alloy or a mixture of hydride powder and carbon powder partially coated with nickel or an alloy thereof? It was established. More preferably, a catalyst is supported on the surface of either or both of the metal-coated hydrogen storage alloy or hydride powder and carbon powder.

作用 このように水素吸蔵合金又は水素化物粒子の表面に導電
性のある金属たとえば、銅、ニッケル又はそれらの合金
で被覆した水素吸蔵合金粉末や水素化物粉末をフッ素樹
脂などの結着材とともに炭素粉末と混合し、この多孔性
のある混合物を水素吸蔵合金又は水素化物からなる電極
基体の表面にのみ形成している。この溝成により、負極
表面の酸素触媒作用と酸化抑制作用を付与すると共に、
単位容積1重量当たりの放電容量の向上につながる。ま
念高率充電特注にも浸れる。これは、負極表面に形成し
ている金属で被覆している水素吸蔵合金も放電容量に関
与しているためである。また金属で被覆している水素吸
蔵合金と炭素粉末の混合物からなる表面層は多孔性でし
かも表面、債が大きいから酸素触媒と酸化抑制作用を助
長して電池内圧の上昇抑制と耐久性の向上を図ることが
できる。
Effect In this way, hydrogen storage alloy powder or hydride powder whose surface is coated with a conductive metal such as copper, nickel, or an alloy thereof is combined with carbon powder together with a binder such as fluororesin. This porous mixture is formed only on the surface of the electrode base made of the hydrogen storage alloy or hydride. This groove formation provides the negative electrode surface with oxygen catalytic action and oxidation suppressing action, and
This leads to an improvement in the discharge capacity per unit volume and weight. You can also enjoy custom high-rate charging. This is because the hydrogen storage alloy formed on the surface of the negative electrode and coated with metal also plays a role in the discharge capacity. In addition, the surface layer made of a mixture of hydrogen storage alloy and carbon powder coated with metal is porous and has a large surface bond, which promotes the oxygen catalyst and oxidation suppressing effect, suppressing increases in battery internal pressure and improving durability. can be achieved.

以下その詳、細は実施例で説明する。The details will be explained below in Examples.

実施例 市販の血(ミソ/ユメタ/l/ ) 、 La 、 N
i 、 C。
Example Commercially available blood (Miso/Yumeta/L/), La, N
i, C.

から講説される試料を一定の組成比に秤量、混合し、ア
ーク溶解法により加熱溶解させた。−例として、合金組
成であるMmo、5 I4g、5Ni5,5C:Ots
を負極用の水素吸蔵合金とした。この合金を粉砕機で3
7μm以下まで粉砕し発砲状金属内に結着材と共に充填
し、その後加圧、乾燥して負極試料aとした。つぎに同
合金粉末の試料を取り、この試料の表面に公知の無電解
メッキ法により銅の被覆膜を多孔状に形成させた。その
時に採用した無電解メッキ条件はつぎの通りである。
Weighed and mixed the samples to a certain composition ratio, and heated and melted them using the arc melting method. - As an example, the alloy composition Mmo, 5 I4g, 5Ni5,5C:Ots
was used as a hydrogen storage alloy for negative electrodes. This alloy is crushed in a crusher.
It was ground to 7 μm or less, filled into a foamed metal together with a binder, and then pressurized and dried to obtain a negative electrode sample a. Next, a sample of the same alloy powder was taken, and a porous copper coating film was formed on the surface of this sample by a known electroless plating method. The electroless plating conditions adopted at that time were as follows.

無電解メッキ後水累吸蔵合金粒子の表面に均質な鋼の被
覆膜を形成しているように見えるが、多くの穴が存在し
ている。この穴を通して水素の吸蔵・放出が進行する。
Although it appears that a homogeneous steel coating film is formed on the surface of the water storage alloy particles after electroless plating, there are many holes. Hydrogen absorption and release proceed through these holes.

この銅被覆の水素吸蔵合金粉末に対して5重量パーセン
トの炭素粉末、たとえば植物活性炭であるカルボラフイ
ンをフッ素樹脂分散媒と共に混合した。先に製造した負
極試料aの表面にこのペースト状混合物を塗着した後、
加圧・乾燥して一体化した負極試料b6作った。
To this copper-coated hydrogen storage alloy powder, 5% by weight of carbon powder, such as carbolafine, which is vegetable activated carbon, was mixed with a fluororesin dispersion medium. After applying this paste mixture to the surface of the negative electrode sample a prepared previously,
An integrated negative electrode sample b6 was prepared by pressurizing and drying.

この負極試料aとbにリードを取り付は電極とした。水
素吸蔵合金粉末15g1電極表面に形成する混合物は1
.5g1用いた。公知の発砲状ニッケル正極をセパレー
タを介して公称2ムhの密閉型アルカリ蓄電池を構成し
各々電池人・Bとする。
Leads were attached to these negative electrode samples a and b to serve as electrodes. 15g of hydrogen storage alloy powder The mixture formed on the surface of the electrode is 1
.. 5g1 was used. A sealed alkaline storage battery having a nominal capacity of 2 mm was constructed using a known foamed nickel positive electrode via a separator, and each cell was designated as battery B.

つぎに、先に製造した銅被覆の水素吸蔵合金粉末、及び
炭素粉末に公知の担持方法によってパラジウム触媒を各
々0・1重量%程担持した負極試料を作った。銅被覆の
水素吸蔵合金粉末にのみ触媒を担持した負極試料C1炭
素粉末にのみ触媒を担持した負極試料d1両者に触媒全
担持した負極試料eを用いた同様な電池を谷々C,D、
にとする。
Next, negative electrode samples were prepared in which approximately 0.1% by weight of a palladium catalyst was supported on the previously produced copper-coated hydrogen storage alloy powder and carbon powder, respectively, by a known supporting method. A similar battery using negative electrode sample C, in which the catalyst was supported only on the copper-coated hydrogen storage alloy powder; negative electrode sample d, in which the catalyst was supported only in the carbon powder;
Totosu.

第1図に負極の講説?示し、第2図に密閉型アルカリ蓄
電池を示す。第1図において、水素吸蔵合金1からなる
基板の両面に酸化抑制層2を形成した負極板3を示す。
A lecture on the negative electrode in Figure 1? Figure 2 shows a sealed alkaline storage battery. In FIG. 1, a negative electrode plate 3 is shown in which an oxidation suppressing layer 2 is formed on both sides of a substrate made of a hydrogen storage alloy 1.

Bは負極3の断面を表わしたものである。B represents the cross section of the negative electrode 3.

第2図において、水素吸蔵合金からなる負極3とニッケ
ル正極4はセパレータ6を介して渦巻き状に巻回され、
負極端子を兼ねるケース6に挿入される。なお極板群の
上、下は絶縁板7.8が当てがわれ、安全弁9のある封
口板1oでケース6の開口部は密閉化されている。11
は封口板10を介して正極リード12と接続してキャッ
プ状の正極端子である。なお、充電時に負極からの水素
発生全抑制するために正極容量より負極容量を大きくし
正極律則とした。電池の充・放電条件として0.3 G
 (600m&)で6時間充電(150%充電)し、O
,C(20oma)で放電した。充・放電サイクル試験
の温度はすべて25Gとし、各種電池の150%充電時
における電池内圧をりj1定した。電池内圧の測定は初
期と100サイクル後で比較した。この測定結果を従来
型電池人と本発明型電池B、C,D、Eと比較して表2
に示す。但し、安全弁は1o kq/ci以上の内圧に
達すると作動する。
In FIG. 2, a negative electrode 3 made of a hydrogen storage alloy and a nickel positive electrode 4 are spirally wound with a separator 6 in between.
It is inserted into a case 6 which also serves as a negative electrode terminal. Insulating plates 7.8 are applied above and below the electrode plate group, and the opening of the case 6 is sealed with a sealing plate 1o having a safety valve 9. 11
is a cap-shaped positive terminal connected to the positive electrode lead 12 via the sealing plate 10. In addition, in order to completely suppress hydrogen generation from the negative electrode during charging, the negative electrode capacity was made larger than the positive electrode capacity, and a positive electrode rule was adopted. 0.3 G as a battery charge/discharge condition
(600m&) for 6 hours (150% charge),
, C (20 oma). The temperature in all charge/discharge cycle tests was 25G, and the internal pressure of each battery at 150% charge was determined as J1. The internal pressure of the battery was compared at the initial stage and after 100 cycles. Table 2 compares the measurement results with conventional batteries and batteries B, C, D, and E of the present invention.
Shown below. However, the safety valve operates when the internal pressure reaches 1 okq/ci or more.

表2 表2かられかる様に電池人の内圧は初期において5.0
 kg/cA f示し、100サイクル後には10kq
 / d以上まで達し、安全弁作動による漏液現象が観
察された。したがって、電屏液の減少からおこる内部抵
抗の増大による放電容量の減少も著しい。50サイクル
後における放電容量はI Ah以下全示し、初期容量の
60%以下に減少している。
Table 2 As shown in Table 2, the internal pressure of the battery is 5.0 at the initial stage.
kg/cA f, 10kq after 100 cycles
/d or higher, and a leakage phenomenon due to safety valve activation was observed. Therefore, the discharge capacity also decreases significantly due to the increase in internal resistance caused by the decrease in the amount of electrolyte. The discharge capacity after 50 cycles was less than IAh, and decreased to less than 60% of the initial capacity.

これに対して、本発明型電池B、C,D、Hの内圧は初
期において1. s −3,o kg/crA f示し
、1o。
On the other hand, the internal pressures of batteries B, C, D, and H of the present invention were initially 1. s −3, o kg/crA f, 1o.

サイクル後においても2.0−4. o kg、/ct
A程度しか上昇しない。この中でも触媒を担持した負極
を用いた電池にとくに電池内圧の上昇が少ない。したが
って1ooサイクル後における放電容量は2人りをすべ
て保持しており、容量の低下が殆ど認められない。この
結果から本発明型電池は従来型電池と比較して150%
充電時の電池内圧が非常に低く、放電容量の減少も殆ど
ない。よって安全性が高く、長寿命の電池を得ることが
できる。この様に高率充電において、電池内圧力の上昇
抑制と高容量化が得られた理由として、負極板の表面に
おいて、正極から発生する酸素ガスを効率よく吸収する
酸素触媒の働きと共に、この酸素ガスによる水素吸蔵合
金表面の酸化全抑制し、金属ヲ鼓覆した水素吸蔵合金を
も放電容量に寄与している1、また、炭素粉末との混合
物状態にあるので、酸化抑制層の表面積が大きく酸素触
媒も非常(で活性となり、酸素吸収速度を早くしている
ものと考えられる。
2.0-4. even after cycling. o kg,/ct
It only increases by about A. Among these, the increase in battery internal pressure is particularly small in batteries using a negative electrode carrying a catalyst. Therefore, the discharge capacity after 100 cycles is maintained for all two persons, and almost no decrease in capacity is observed. This result shows that the battery of the present invention is 150% more efficient than the conventional battery.
The internal pressure of the battery during charging is very low, and there is almost no decrease in discharge capacity. Therefore, a battery with high safety and long life can be obtained. The reason why we were able to suppress the increase in internal pressure and increase the capacity during high-rate charging is that the surface of the negative electrode plate has the function of an oxygen catalyst that efficiently absorbs oxygen gas generated from the positive electrode. Oxidation of the surface of the hydrogen storage alloy by gas is completely suppressed, and the hydrogen storage alloy that replaces the metal also contributes to the discharge capacity1.Also, since it is in a mixture state with carbon powder, the surface area of the oxidation suppression layer is large. It is thought that the oxygen catalyst also becomes very active, increasing the rate of oxygen absorption.

本実施例の様に、酸化抑Nl1層全形成する時に)ソ素
樹脂を用いることにより、酸素触媒の活性度を低下させ
ないで、両粉末を結合させることが出来る。金属を被覆
した水素吸蔵合金粉末、炭素粉末、フッ素樹脂粉末が各
々独立して、両者の結合間にフッ素樹脂が介在し、両粒
子の結合を強化している。しかも表面積を減少させてい
ない所に大きな効果が見られる。
As in the present example, by using a SO resin (when forming the entire oxidation-inhibiting Nl layer), both powders can be combined without reducing the activity of the oxygen catalyst. The metal-coated hydrogen storage alloy powder, carbon powder, and fluororesin powder are each independently bonded, and the fluororesin is interposed between the bonds to strengthen the bond between the two particles. Moreover, a large effect can be seen where the surface area is not reduced.

本実施例では水素吸蔵合金を機械的に粉砕した粉末を用
いたが、水素吸蔵合金を水素化させて細分化した水素化
物を用いることも出来る。水素化した粉末を脱水素化し
た状態で負極を作り、銅の代わりにニッケルを金属被覆
膜とした他はすべて同様な試験方法で行なったが水素吸
蔵合金から出発した負極と殆ど同じ性能を示した。ただ
、ニラ。
In this example, a powder obtained by mechanically pulverizing a hydrogen storage alloy was used, but a hydride obtained by hydrogenating and finely dividing a hydrogen storage alloy may also be used. The negative electrode was made by dehydrogenating the hydrogenated powder, and the test method was the same except that nickel was used as a metal coating instead of copper, but the performance was almost the same as the negative electrode made from a hydrogen storage alloy. Indicated. Just chives.

ケルは銅と比べて被覆膜が固いので、加圧力を少し高く
する必要があり、銅よりは少し低多孔性体となるので酸
素ガスの吸収も少し悪く、相対的に電池内圧は0・5 
kqlcΔ程上昇した。この点が被覆金属によって少し
異なるが他は殆ど同じ特性を示した。また合金音用いて
も同様な効果がある。
Kel has a harder coating film than copper, so it is necessary to apply a little higher pressure, and since it is a slightly less porous material than copper, it absorbs oxygen gas a little less well, so the battery internal pressure is relatively 0. 5
kqlcΔ increased. Although this point differed slightly depending on the coated metal, other characteristics were almost the same. A similar effect can also be obtained by using alloy sounds.

発明の効果 以上の様に、本発明によれば高率充電時における安全性
が高く、サイクル寿命の長い、高容量の密閉型アルカリ
蓄電池が得られるという効果が得られる。
Effects of the Invention As described above, the present invention has the effect of providing a high-capacity sealed alkaline storage battery that is highly safe during high-rate charging, has a long cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ム、Bは本発明における負極板の購造を示した側
面図及び断面図、第2図は本発明の実施例に用いた密閉
型アルカリ蓄電池の構成を示す図である。 1・・・・・・負極板、2・・・・・・水素吸蔵合金、
水素化物、3・・・・・・酸化抑制層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名1−
−A燻碌双合会やヒ勿 2−麟妬卯粗屓 、3−*電板 第1図 A             B 第2図
1A and 1B are a side view and a sectional view showing the purchase of a negative electrode plate in the present invention, and FIG. 2 is a diagram showing the configuration of a sealed alkaline storage battery used in an embodiment of the present invention. 1... Negative electrode plate, 2... Hydrogen storage alloy,
hydride, 3... oxidation suppression layer. Name of agent: Patent attorney Toshi Nakao Haga 1 person 1-
-A Smoking Sogokai and Himulu 2-Rinjei Ugura, 3-*Electric board Figure 1 A B Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物正極と、水素吸蔵合金又は水素化物か
らなる負極と、セパレータおよびアルカリ電解液を備え
、前記負極の表面に銅、ニッケル又はそれらの合金で部
分的に被覆した水素吸蔵合金又は水素化物粉末と炭素粉
末との混合物からなる酸化抑制層を設けたことを特徴と
する密閉型アルカリ蓄電池。
(1) A hydrogen storage alloy or hydrogen storage alloy comprising a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or hydride, a separator and an alkaline electrolyte, the surface of the negative electrode being partially coated with copper, nickel or an alloy thereof; A sealed alkaline storage battery characterized by being provided with an oxidation suppressing layer made of a mixture of hydride powder and carbon powder.
(2)銅、ニッケル又はそれらの合金で被覆した水素吸
蔵合金又は水素化物粉末と炭素粉末の混合物において、
両者又はいずれか一方の粒子表面に触媒を担持している
特許請求の範囲第1項記載の密閉型アルカリ蓄電池。
(2) In a hydrogen storage alloy coated with copper, nickel or an alloy thereof or a mixture of hydride powder and carbon powder,
The sealed alkaline storage battery according to claim 1, wherein a catalyst is supported on the surface of either or both of the particles.
JP61200917A 1986-08-27 1986-08-27 Sealed alkaline storage battery Expired - Lifetime JPH0815077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200917A JPH0815077B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200917A JPH0815077B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6355857A true JPS6355857A (en) 1988-03-10
JPH0815077B2 JPH0815077B2 (en) 1996-02-14

Family

ID=16432422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200917A Expired - Lifetime JPH0815077B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0815077B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
WO2004066421A1 (en) * 2003-01-20 2004-08-05 Yuasa Corporation Closed nickel-hydrogen storage battery and its production method
JP2006179430A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Zinc alloy powder for alkaline battery
JP2012028248A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Secondary battery anode and secondary battery using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
WO2004066421A1 (en) * 2003-01-20 2004-08-05 Yuasa Corporation Closed nickel-hydrogen storage battery and its production method
JP2006179430A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Zinc alloy powder for alkaline battery
JP2012028248A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Secondary battery anode and secondary battery using the same

Also Published As

Publication number Publication date
JPH0815077B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US3877986A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
JPS6355857A (en) Enclosed type alkaline storage battery
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JPS63195960A (en) Sealed alkaline storage battery
JPS63195961A (en) Sealed alkaline storage battery
JPS61168866A (en) Hydrogen occlusion electrode
JPH02281560A (en) Nickel-hydrogen alkaline storage battery
JPS63301461A (en) Non-sintered positive electrode for alkali storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPH07111884B2 (en) Metal oxide / hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPS58123675A (en) Button-type air cell
JPH06310135A (en) Sealed alkaline storage battery
JPH11297321A (en) Hydrogen storage alloy electrode material for nickel-hydrogen battery and its manufacture, and hydrogen storage alloy electrode thereof
JPH07111885B2 (en) Metal oxide-hydrogen storage battery and manufacturing method thereof
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS62295352A (en) Enclosed type alkaline storage battery
JPH04162353A (en) Seal alkaline secondary battery
JPH01248473A (en) Manufacture of electrode for battery
JPH0831314B2 (en) Sealed alkaline storage battery
JPH03295177A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term