JPH03247735A - Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen - Google Patents

Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Info

Publication number
JPH03247735A
JPH03247735A JP2041097A JP4109790A JPH03247735A JP H03247735 A JPH03247735 A JP H03247735A JP 2041097 A JP2041097 A JP 2041097A JP 4109790 A JP4109790 A JP 4109790A JP H03247735 A JPH03247735 A JP H03247735A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2041097A
Other languages
Japanese (ja)
Inventor
Keiji Tamura
田村 敬二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2041097A priority Critical patent/JPH03247735A/en
Publication of JPH03247735A publication Critical patent/JPH03247735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To increase the amt. of hydrogen to be occluded at an ordinary temp. in a hydrogen storage alloy and to reduce its hysteresis by substituting a part of Fe in an Mm-Ni-Al-Fe quarternary alloy by other specified elements. CONSTITUTION:A rare earth metal-Ni series hydrogen storage alloy is formed, by the compsn. of atomic numbers, of MmNivAlwFexCryMz. In the formula, Mm denotes a misch metal and M denotes one or more kinds among Cu, Nb, Si and Zr. As for the compositional ratios, 2.5<v<5.5, 0<w<2.0, 0<x<2.0, 0<y<2.0 and 0<=z<2.0 as well as 4.0<=v+w+x+y+z<=6.0 and x+y+z>0.2 are regulated. The surface of this alloy grains is coated with a thin film of one or more kinds of metals selected from Pb, Cu and Ni to form a hydrogen occluding material. This alloy has small hysteresis, i.e., the difference between the occlusion pressure and dissociation pressure of hydrogen, so that its hydrogen occluding capacity, heat of reaction and electrochemical energy are effectively utilizable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類金属−ニソケル系水素吸蔵合金および
この合金を用いた水素吸蔵用材料(吸蔵・放出作用を伴
うもの)に関し、特にヒートポンプ、水素ゲッター、水
素蓄電池負極材、水素貯蔵材などのように、使用温度が
一20〜+80°C1水素圧が0.1〜10 atmの
範囲で金属水素化物を形成し、水素を多量に、かつ効率
よく吸蔵・放出できる合金、およびその合金をベースに
して不純ガス被毒耐性に優れるものにした水素吸蔵用材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rare earth metal-Nisochel hydrogen storage alloy and a hydrogen storage material (with storage and desorption functions) using this alloy, and in particular to a heat pump, Metal hydrides are formed at operating temperatures of 120 to +80°C and hydrogen pressures of 0.1 to 10 atm, such as hydrogen getters, hydrogen storage battery negative electrode materials, hydrogen storage materials, etc., and produce large amounts of hydrogen. The present invention relates to an alloy that can efficiently store and release hydrogen, and a hydrogen storage material based on the alloy that has excellent resistance to impurity gas poisoning.

〔従来の技術〕[Conventional technology]

資源的に豊富な水素は、これを燃焼させても単に水が生
成するだけであるから、生態系のバランスが崩されるこ
とはなく、また貯蔵、輸送が容易な元素である。このよ
うな理由がら、水素は、将来のクリーンエネルギーシス
テムにおける二次エネルギーの主体になるものとみなさ
れている。
Hydrogen, which is an abundant resource, simply produces water when burned, so it does not disrupt the balance of the ecosystem, and it is an element that is easy to store and transport. For these reasons, hydrogen is considered to be the main source of secondary energy in future clean energy systems.

しかし、この水素は、常温において気体であり、かつ液
化温度が極めて低いので、これを貯蔵する技術の開発が
大きな課題になっていた。このような課題を解決する一
つの方法として、従来、水素を金属水素化物の形で貯蔵
する方式が注目されていた。この方式は、150気圧の
市販水素ボンへの2割以下の容積で、同重量に当たる水
素を貯蔵することができるばかりでなく、安全性、取扱
い易さの点で優れている。
However, since this hydrogen is a gas at room temperature and has an extremely low liquefaction temperature, developing technology to store it has been a major challenge. As one method to solve such problems, a method of storing hydrogen in the form of metal hydride has conventionally attracted attention. This method not only can store hydrogen equivalent to the same weight as a commercially available 150-atm hydrogen tank in less than 20% of the volume, but is also superior in terms of safety and ease of handling.

なお、水素吸蔵合金とは、水素を金属水素化物の形で吸
収できるとともに、水素を放出するのに適した材料のこ
とである。このような合金に水素を吸収貯蔵させ、次い
でこれらの合金または材料から貯蔵した水素を放出させ
ると、そのとき金属水素化物の生成あるいは分解反応に
伴う反応熱(発生または吸収)が利用できるようになる
。例えば、蓄熱装置、ヒートポンプ、電池負極としてそ
の電気化学的反応を利用する金属酸化物−水素蓄電池な
ど、広範な応用分野が考えられている。
Note that a hydrogen storage alloy is a material that can absorb hydrogen in the form of a metal hydride and is suitable for releasing hydrogen. When hydrogen is absorbed and stored in such alloys and then the stored hydrogen is released from these alloys or materials, the heat of reaction (generated or absorbed) associated with the metal hydride formation or decomposition reaction becomes available. Become. For example, a wide range of application fields are being considered, such as heat storage devices, heat pumps, and metal oxide-hydrogen storage batteries that utilize the electrochemical reaction as a battery negative electrode.

このような用途を有する水素吸蔵合金については、(1
)安価であり資源的に豊富であること、(2)水素吸蔵
量が大きいこと、(3)使用温度において好適な水素吸
蔵・解離平衡圧を有し、吸蔵圧と解離圧との差であるヒ
ステリシスが小さいこと、(4)水素吸蔵・放出反応が
可逆的であり、その速度が大きいこと、などの性質を有
することが必要である。
Regarding hydrogen storage alloys that have such uses, (1
) It is cheap and abundant in terms of resources; (2) it has a large hydrogen storage capacity; (3) it has a suitable hydrogen storage/dissociation equilibrium pressure at the operating temperature, which is the difference between the storage pressure and the dissociation pressure. It is necessary to have properties such as a small hysteresis and (4) a reversible hydrogen absorption/desorption reaction and a high rate.

ところで、かつて提案された二元系水素吸蔵合金、とく
にMmNi5は、活性化に際し80〜90気圧の高水素
圧を必要とするか長時間を必要とし、また、初期の水素
化、即ち活性化を多数回必要とすると共に、水素の吸蔵
、放出に長時間を必要とするという欠点があった。
By the way, binary hydrogen storage alloys that have been proposed in the past, especially MmNi5, require high hydrogen pressure of 80 to 90 atm or require a long time for activation, and initial hydrogenation, that is, activation, is difficult. There are disadvantages in that it requires many times and also requires a long time to absorb and release hydrogen.

従来、これらの欠点を解消する水素吸蔵合金として、例
えば、特公昭58−39217号公報、特公昭59−2
8626号公報には、MmVs−xAlx−y Fey
 (但しXは0.1〜2の範囲の数、yは0.01〜1
.99の範囲)が提案された。
Hitherto, as a hydrogen storage alloy that eliminates these drawbacks, for example, Japanese Patent Publication No. 58-39217, Japanese Patent Publication No. 59-2
In the publication No. 8626, MmVs-xAlx-y Fey
(However, X is a number in the range of 0.1 to 2, y is 0.01 to 1
.. 99 range) was proposed.

一方、Ti−Fe系水素吸蔵合金も知られているが、こ
れは水分、酸素、 co、 co□などが水素中に混入
すると、合金の表面がこれらの不純ガスによって被毒さ
れ、水素吸蔵量が大幅に減少するという欠点をもち、実
用上は大きな問題点があった。
On the other hand, Ti-Fe hydrogen storage alloys are also known, but when water, oxygen, cobalt, co□, etc. are mixed into hydrogen, the surface of the alloy is poisoned by these impure gases, and the hydrogen storage capacity decreases. This method has the disadvantage that the amount of water is significantly reduced, which is a big problem in practical use.

従来、このような被毒性の問題点を解決するため、特開
昭58−1032号公報に開示されているような防護皮
膜をもつ水素吸蔵用材料が提案されている。この材料は
、水素を吸蔵する合金表面に、めっきにより異種金属を
コーティングすることを特徴とする技術である。この従
来技術は、活性化の困難なTi−Fe合金表面に、Ni
やCu、 Coなどの水素雰囲気でその酸化物が比較的
容易に還元され易い金属を、めっきによりコーティング
することが特徴である。この技術によれば、従来、活性
化操作が450〜500″Cの高温での減圧(真空排気
)、および常温での高圧(30〜60気圧)水素ガスで
の加圧の繰り返し操作を1週間程度行う必要のあったも
のが、200°C以下、水素圧20〜30気圧による1
日以内で活性化が完了し、処理温度、水素圧力所要時間
などの面で改良がなされている。
Hitherto, in order to solve the problem of toxicity, a hydrogen storage material having a protective film as disclosed in Japanese Patent Application Laid-Open No. 58-1032 has been proposed. This material is a technology characterized by coating the surface of an alloy that absorbs hydrogen with a dissimilar metal by plating. This conventional technology has a method of applying Ni to the Ti-Fe alloy surface, which is difficult to activate.
It is characterized by coating metals whose oxides are relatively easily reduced in a hydrogen atmosphere, such as copper, copper, and co, by plating. According to this technology, the activation operation conventionally involved repeated operations of depressurization (vacuum exhaust) at a high temperature of 450 to 500"C and pressurization with high pressure (30 to 60 atm) hydrogen gas at room temperature for one week. What needed to be done was 200°C or less and a hydrogen pressure of 20 to 30 atm.
Activation is completed within a day, and improvements have been made in terms of processing temperature, hydrogen pressure, and time required.

また、希土類金属−Ni−AtにFeなどを加えた4元
系水素吸蔵合金も特開昭58−217655号で提案さ
れているが、なおヒステリシスが大きいという問題を残
している。
Furthermore, a quaternary hydrogen storage alloy in which Fe and the like are added to the rare earth metals -Ni-At has been proposed in JP-A-58-217655, but it still has the problem of large hysteresis.

〔発明が解決しようとする課題〕 上記特公昭58−3921.7号および特公昭59 2
8626号に提案されている水素吸蔵合金: MmNi
5. Jlo、 5Feo、 aは、常温での平衡水素
吸蔵・解離圧が1気圧に近く、水素圧が余り変化しなく
て水素吸蔵が進む範囲、即ち、水素圧−水素組成(温度
一定)線図上のプラトーが平坦で、ヒステリシスが小さ
いという特徴がある。しかし、この合金は水素吸蔵量が
少ないという決定的な問題点があった。しかも、前記従
来の合金は水分、酸素などの不純ガスによる被毒耐性が
小さくて水素吸蔵量が減少する問題点があり、実際の蓄
電池や水素ゲソターヒー1〜ポンプなどに効率よく使え
ない合金であった。
[Problem to be solved by the invention] The above-mentioned Japanese Patent Publication No. 58-3921.7 and Japanese Patent Publication No. 59-2
Hydrogen storage alloy proposed in No. 8626: MmNi
5. Jlo, 5Feo, a is the range in which the equilibrium hydrogen storage and dissociation pressure at room temperature is close to 1 atm and hydrogen storage progresses without much change in hydrogen pressure, that is, on the hydrogen pressure-hydrogen composition (constant temperature) diagram. It is characterized by a flat plateau and small hysteresis. However, this alloy had a decisive problem in that it had a low hydrogen storage capacity. Moreover, the conventional alloys have a problem of low poisoning resistance by impurity gases such as moisture and oxygen, resulting in a decrease in hydrogen storage capacity, and are not alloys that can be used efficiently in actual storage batteries or hydrogen gas pumps. Ta.

また、特開昭58−1032号は被毒剛性を具えるため
に、合金の活性化は改善されているが、水素吸蔵合金と
しての十分な特性が欠けている。
Further, although the activation of the alloy in JP-A-58-1032 is improved due to its rigidity against poisoning, it lacks sufficient properties as a hydrogen storage alloy.

本発明の目的は、第1に、従来、合金、とくにMm−N
i −AI−Fe系合金の上述した欠点を克服すること
、即ち、常温において水素吸蔵量が大きく、平衡水素吸
蔵圧・解離圧が1気圧に近く、プラト−が平坦でヒステ
リシスが小さい合金を得ること、そして第2に、前記合
金について、水分、酸素などの不純ガスに対する被毒耐
性を改善した水素吸蔵用材料を提供するにある。
The object of the present invention is, firstly, to solve the problem of conventional alloys, especially Mm-N.
i - To overcome the above-mentioned drawbacks of AI-Fe based alloys, that is, to obtain an alloy that has a large hydrogen storage capacity at room temperature, has an equilibrium hydrogen storage pressure and dissociation pressure close to 1 atm, has a flat plateau, and has small hysteresis. Second, it is an object of the present invention to provide a hydrogen storage material having improved poisoning resistance against impurity gases such as moisture and oxygen with respect to the alloy.

〔課題を解決するだめの手段〕[Failure to solve the problem]

−1−掲の第1.第2の目的を達成すべく鋭意研究した
結果、Mm−Ni −AI−Fe4元系従来水素吸蔵合
金におけるFeの一部を他の元素で置換するだけで、水
素吸蔵量の増大とヒステリシスの小さい合金を容易に得
ることができると共に、その合金粒子の表面にPdの如
き難酸化性金属を被覆するだけで被毒耐性をも改善でき
る水素吸蔵用材料が得られることを知見した。すなわち
、 本発明合金は、原子数組成で示される合金の一般式が、
Mm NivAlw Fex CryM2で表される希
土類金属−ニッケル系水素吸蔵用合金である。
-1- No. 1. As a result of intensive research to achieve the second objective, we found that by simply replacing part of the Fe in the conventional Mm-Ni-AI-Fe quaternary hydrogen storage alloy with other elements, the amount of hydrogen storage can be increased and the hysteresis can be reduced. It has been found that a hydrogen storage material can be obtained which can easily obtain an alloy and which can also improve poisoning resistance simply by coating the surface of the alloy particles with a refractory metal such as Pd. That is, in the alloy of the present invention, the general formula of the alloy represented by the atomic composition is
It is a rare earth metal-nickel hydrogen storage alloy represented by Mm NivAlw Fex CryM2.

また、本発明材料は、原子数組成で示される合金の一般
式が、Mm Niv Alw Fex CryM2で表
される合金粒子の表面を、Pd、 CuおよびNiのな
かから選ばれるいずれか1種以上の金属薄膜により被覆
してなる水素吸蔵用材料である。
In addition, in the material of the present invention, the surface of the alloy particle whose general formula of the alloy represented by the atomic composition is Mm Niv Alw Fex CryM2 is formed by one or more selected from Pd, Cu, and Ni. This is a hydrogen storage material coated with a metal thin film.

〔作 用〕[For production]

本発明者らは、前記特公昭5B −39217号公報お
よび特公昭59−28626号公報に記載された水素吸
蔵合金、また前記特開昭58−1032号公報に記載の
技術に基づいて得られた水素吸蔵・放出用材料の欠点お
よび問題点を解消すべく研究した結果、従来水素吸蔵合
金Mm−Nt −AI−Feの、Feの一部を、Crと
Cu  Si、 Zr、 Nbのいずれか−・種板」二
で置換した合金、すなわち、Mm、 NivAlw (
Fex CryM、)としたもの、およびこれらの合金
粒子の表面をPdCuおよびNiの薄膜で被覆してなる
希土類金属−ニソケル系水素吸蔵・放出用材料が、水分
、酸素などによる合金被毒によって水素吸蔵量が減少す
ることなく、またヒステリシスが小さくなるとともに、
上記の水素吸蔵・放出用拐料として要求されるすべての
性質を具備することを知見した。
The present inventors have discovered the hydrogen storage alloys described in Japanese Patent Publication No. 5B-39217 and Japanese Patent Publication No. 59-28626, and the hydrogen storage alloys obtained based on the technology described in Japanese Patent Publication No. 58-1032. As a result of research to resolve the drawbacks and problems of hydrogen storage/desorption materials, we found that in the conventional hydrogen storage alloy Mm-Nt-AI-Fe, part of the Fe was replaced with Cr, Cu, Cu, Zr, or Nb.・Alloys substituted with "seed plate" 2, i.e., Mm, NivAlw (
Fex CryM, ) and a rare earth metal-Nisochel hydrogen storage/release material made by coating the surface of these alloy particles with a thin film of PdCu and Ni can absorb hydrogen by poisoning the alloy with moisture, oxygen, etc. without decreasing the amount and with the hysteresis becoming smaller.
It has been found that this material has all the properties required as a hydrogen storage/release material.

本発明の希土類金属−ニソケル系水素吸蔵合金は、原子
数組成で示される一般弐:  Mm Niv A1wF
eXCryM2において、V、W、Xy、Zをそれぞれ
前記のように定めた理由を以下に説明する。
The rare earth metal-nisokel hydrogen storage alloy of the present invention has a general atomic composition of 2: Mm Niv A1wF.
The reason why V, W, Xy, and Z are each determined as described above in eXCryM2 will be explained below.

Ni量のVは、5.5以上であると、金属間化合物Mm
Ni5やLaNi5に比べ、化学量論的にNiが過剰す
ぎる合金になり、その特性にAI、 Fe、 Cr、 
M添加の効果が現れず、平衡水素吸蔵・解離圧が圧力用
途特性から大きく外れてきて、且つ活性化が困難となっ
てくる。この■が2.5以下だと吸蔵水素の放出が困難
となり、高温加熱と、時にはこれに減圧を組合わせて放
出しなければならなくなる。
When the Ni amount V is 5.5 or more, the intermetallic compound Mm
Compared to Ni5 and LaNi5, the alloy has too much Ni stoichiometrically, and its properties include AI, Fe, Cr,
The effect of M addition does not appear, the equilibrium hydrogen storage/dissociation pressure deviates greatly from the pressure application characteristics, and activation becomes difficult. If the value of (2) is less than 2.5, it will be difficult to release the stored hydrogen, and it will be necessary to perform high-temperature heating, and sometimes in combination with depressurization, to release the stored hydrogen.

A1量のWは0に等しいと水素吸蔵・解離圧が極端に高
くなり、水素吸蔵量が減少し、2.0以上だと水素吸蔵
・解離圧が極端に下がり、また水素吸蔵量が少なくなる
If the A1 amount W is equal to 0, the hydrogen storage/dissociation pressure will be extremely high, and the hydrogen storage amount will decrease; if it is 2.0 or more, the hydrogen storage/dissociation pressure will be extremely low, and the hydrogen storage amount will decrease. .

Fe量のXは、0に等しいと吸蔵・解離圧が低すぎ、水
素吸蔵量も少なくなる。好ましくは0.1以」二がよい
。一方2.0以上だと水素吸蔵量が減少し、吸蔵水素の
放出が困難となり、放出には高温加熱を行わねばならな
くなる。
If the amount of Fe, X, is equal to 0, the occlusion/dissociation pressure will be too low, and the amount of hydrogen storage will also be small. Preferably, it is 0.1 or more. On the other hand, if it is 2.0 or more, the amount of hydrogen storage decreases, making it difficult to release the stored hydrogen, and high temperature heating must be performed for release.

Cr量のyは、0に等しいと酸素やアルカリ電池液に対
する被毒耐性が低下する。好ましくは0.01以上がよ
い。一方2.0以上だと水素吸蔵・放出量が極端に低下
し、またプラトー域の圧力傾斜が大きくなってきて、こ
の合金を使用するのに不必要に高圧を必要とすることに
なる。
When the Cr amount y is equal to 0, the poisoning resistance against oxygen and alkaline battery fluid decreases. Preferably it is 0.01 or more. On the other hand, if it is more than 2.0, the amount of hydrogen storage and release will be extremely reduced, and the pressure gradient in the plateau region will become large, making it necessary to use an unnecessarily high pressure to use this alloy.

M金属量の2は、添加する場合は0.01を超えなけれ
ば水素吸蔵量の増大、ヒステリシスの減少が望めず、一
方2.0以上だと水素吸蔵・解離圧が高くなり過ぎ、ま
た水素吸蔵量も減ってくる。
When adding M metal, the amount of 2 must exceed 0.01 to increase the hydrogen storage capacity and reduce hysteresis.On the other hand, if it exceeds 2.0, the hydrogen storage and dissociation pressure will become too high. The storage capacity also decreases.

上記Ni、 AI、 Fe、 Cr、 Mについて、そ
れらを0 4.0≦v’ + ’w + x +y + z≦6.
0の範囲内にすると、本発明合金はほぼCaCu5六方
晶構造の擬2元系金属間化合物をつくることから、基本
的な水素吸蔵特性を維持することができ、この範囲をは
ずれると、水素吸蔵量、放出量が減ってくる。
Regarding the above Ni, AI, Fe, Cr, and M, they are set as 0 4.0≦v' + 'w + x + y + z≦6.
When the value is within the range of 0, the alloy of the present invention forms a pseudo-binary intermetallic compound with an approximately CaCu5 hexagonal structure, so it is possible to maintain the basic hydrogen storage properties. The amount and amount released will decrease.

また、Fe、 Cr、 M (Cu、 Si、 Zr、
 Nb )について、それらをx +y + z >0
.2にしないと、本発明合金はプラトーの傾斜とヒステ
リシスが大きくなり、ヒートポンプやニッケル・水素電
池負極に用いた場合の使用効率が低下し、水素吸蔵量も
減少するため、X→−y 十z >Q、2とした。
In addition, Fe, Cr, M (Cu, Si, Zr,
Nb ), set them as x + y + z >0
.. If it is not set to 2, the plateau slope and hysteresis of the present alloy will increase, the usage efficiency will decrease when used in heat pumps and nickel-hydrogen battery negative electrodes, and the hydrogen storage capacity will also decrease. >Q, I set it to 2.

上述のような合金組成とすると、従来の、いわゆる特公
昭58−39217号公報および59−28626号公
報に記載された合金、例えばMm N13.7Alo、
 5Feo、 nでは、温度40℃、水素圧5気圧にお
いて、水素吸蔵量が、水素/合金原子数比H/M表示で
0.59吸蔵し、プラトーの吸蔵圧は1.00気圧、そ
の解離圧は0.64気圧で、ヒステリシスは0.36気
圧あるが、本発明合金の場合、例えば、MmNi:+。
When the alloy composition is as described above, the conventional alloys described in Japanese Patent Publications No. 58-39217 and No. 59-28626, such as Mm N13.7Alo,
In 5Feo, n, at a temperature of 40°C and a hydrogen pressure of 5 atm, the hydrogen storage capacity is 0.59 in terms of hydrogen/alloy atomic ratio H/M, the plateau storage pressure is 1.00 atm, and its dissociation pressure is 0.64 atm and the hysteresis is 0.36 atm, but in the case of the alloy of the present invention, for example, MmNi:+.

7A+0.5 Fe0.5Cro、 zcLIo、 +
組成のものでは、同じ40℃水素圧5気■ 圧での水素吸蔵量は0.67、プラトーの吸蔵量は0.
61気圧、その解離圧は0.40気圧で、ヒステリシス
は0.21気圧であり、従来合金に比べて水素吸蔵量は
14%増加し、ヒステリシスは42%減少する。
7A+0.5 Fe0.5Cro, zcLIo, +
With the same composition, the hydrogen storage capacity at the same 40°C and 5 atmospheres hydrogen pressure is 0.67, and the plateau storage capacity is 0.
61 atm, its dissociation pressure is 0.40 atm, and its hysteresis is 0.21 atm. Compared to conventional alloys, the hydrogen storage capacity increases by 14% and the hysteresis decreases by 42%.

また、本発明の希土類−ニソケル系水素吸藏用材料は、
その粒子表面に水素のみを選択的に透過し易いPd、 
Cu、 Niの薄膜で被覆した材料である。
In addition, the rare earth-Nisochelic hydrogen absorbing material of the present invention is
Pd, which allows only hydrogen to selectively permeate its particle surface;
It is a material coated with a thin film of Cu and Ni.

このような構造にすると、水分、酸素などによる材料の
被毒が少なくなる理由は、薄膜を形成する金属Pd、 
Co、 Niなどが水素分子のみを原子状態に解離して
金属内部に侵入させ、水素のみを内部の本発明の前記合
金生地中に吸蔵させることができるようになるからであ
ると考えられる。
The reason why such a structure reduces the poisoning of the material by moisture, oxygen, etc. is that the metal Pd that forms the thin film,
This is thought to be because Co, Ni, etc. dissociate only hydrogen molecules into an atomic state and allow them to enter the interior of the metal, allowing only hydrogen to be occluded in the alloy material of the present invention inside.

この点、従来の水素吸蔵用材料、例えばTi−Fe系合
金の表面にPdめっきした材料では、水分11000p
pを含有する水素を用いると、温度40°Cにおいて3
0気圧でH/M0.36の水素を吸蔵し、プラトーの水
素吸蔵圧が約15気圧、その解離圧は約7気圧もあり、
ヒステリシスは約8気圧と極めて大きい。
In this regard, in conventional hydrogen storage materials such as Ti-Fe alloys with Pd plating on their surfaces, the water content is 11,000p.
Using p-containing hydrogen, 3 at a temperature of 40°C
It absorbs hydrogen with an H/M of 0.36 at 0 atm, the hydrogen storage pressure at the plateau is about 15 atm, and its dissociation pressure is about 7 atm.
The hysteresis is extremely large at approximately 8 atmospheres.

これはTi−Fe系系合金科料本来の水素吸蔵量の、3
0気圧でのH/M O,66から46%も減少するもの
である。また、ヒステリシスが大きいことは水素吸蔵、
放出の操作をするためには、水素吸蔵用合金もしくはそ
の金属水素化物をより大きな温度差で加熱・冷却するか
、あるいは大きな圧力差で水素加圧、減圧しなければな
らないことを意味しており、水素貯蔵能力、水素化反応
熱または電気化学的エネルギーを有効に利用することが
できない。
This is 3% of the original hydrogen storage capacity of Ti-Fe alloy materials.
This is a decrease of 46% from the H/M O of 66 at 0 atm. In addition, large hysteresis means hydrogen absorption,
In order to perform the release operation, this means that the hydrogen storage alloy or its metal hydride must be heated and cooled with a large temperature difference, or hydrogen must be pressurized or depressurized with a large pressure difference. , hydrogen storage capacity, hydrogenation reaction heat or electrochemical energy cannot be utilized effectively.

本発明の水素吸蔵合金、例えばMm Ni3.7AI。Hydrogen storage alloy of the present invention, for example MmNi3.7AI.

、5Feo、 5Cro、 Z Cuo、 1合金の粒
子の表面に、Pdの金属薄膜(約100人)により被覆
した材料では、水分11000ppを含有する水素を用
いると、温度40℃。
, 5Feo, 5Cro, Z Cuo, 1 In a material in which the surface of alloy particles is coated with a Pd metal thin film (approximately 100 people), when hydrogen containing 11,000 pp of water is used, the temperature is 40°C.

水素圧力5気圧の条件でH/MO,63の水素を吸蔵し
、プラト−の水素吸蔵圧は0.77気圧、解離圧は0.
52気圧、ヒステリシスは0.25気圧で水素吸蔵量は
大きく、ヒステリシスも小さい。
H/MO, absorbs 63 hydrogen under the hydrogen pressure condition of 5 atm, the hydrogen storage pressure of Plato is 0.77 atm, and the dissociation pressure is 0.
At 52 atmospheres, the hysteresis is 0.25 atmospheres, so the hydrogen storage capacity is large and the hysteresis is small.

ここで本発明合金に用いられるミ・ノシュメタルは、一
般にランタン25〜35%(重量%、以下同じ)、セリ
ウム40〜52%、プラセオジム1〜15%、ネオジム
4〜17%、サマリウム+ガドリニウム1〜73 %、鉄0.1〜5%、珪素0.1〜1%、マグネシウム
0.1〜2%、アルミニウム01〜1%等からなるもの
である。
The metal used in the alloy of the present invention is generally 25 to 35% lanthanum (by weight, same hereinafter), 40 to 52% cerium, 1 to 15% praseodymium, 4 to 17% neodymium, and 1 to 1% samarium + gadolinium. 73%, iron 0.1-5%, silicon 0.1-1%, magnesium 0.1-2%, aluminum 01-1%, etc.

本発明の合金を製造するには、従来知られている水素吸
蔵合金の製造方法によることができるが、アーク溶解法
によることが最も好適である。次にアーク溶解法による
本発明合金の製造方法について述べる。
The alloy of the present invention can be produced by conventionally known hydrogen storage alloy production methods, but arc melting is most preferred. Next, a method for manufacturing the alloy of the present invention using an arc melting method will be described.

上述した原子比率成分組成の一般式に示される成分金属
を、それぞれ秤取して混合した後、任意の形状にプレス
成形し、この成形体をアーク溶解炉に装入して不活性雰
囲気下で加熱溶解し、炉内で凝固させて室温まで冷却し
た後、炉外に取り出す。この合金を均質にするために、
合金を真空にすることのできる容器内に装入し、1.0
−2Torr以下の高真空雰囲気中で900〜1000
℃、8時間以上炉中に保持した後、真空容器を炉外に取
り出し放冷するか、または真空容器を水中に投入して冷
却する。その後、合金の表面積を拡大して水素吸蔵能力
を高めるため、粒径100μm前後に粉砕する。
After weighing and mixing the component metals shown in the general formula of the atomic ratio component composition described above, they are press-formed into an arbitrary shape, and this molded body is charged into an arc melting furnace and heated under an inert atmosphere. After heating and melting, solidifying in the furnace and cooling to room temperature, it is taken out of the furnace. To make this alloy homogeneous,
The alloy is charged into a container that can be evacuated, and the
900 to 1000 in a high vacuum atmosphere of -2 Torr or less
After being held in the furnace for 8 hours or more at a temperature of 0.degree. Thereafter, in order to expand the surface area of the alloy and increase its hydrogen storage capacity, it is crushed to a particle size of approximately 100 μm.

4 そして、前記合金粒子の表面を、Pd、 CuおよびN
iのいずれか少な(とも一種の薄膜で被覆する際には、
従来知られている無電解めっき法や真空蒸着法によるこ
とが好適である。すなわち、あらかじめ粒径1.00μ
m@後の前記合金粒子の表面に無電解めっきあるいは真
空蒸着により厚さ100〜1000人前後のPd、 C
uおよび/またはNiの薄膜を形成させる。ごの薄膜の
形成により、材料自体の水素吸蔵能力が損なわれること
はなく、最初に水素を吸蔵させるための活性化処理も金
属薄膜により被覆していないものと同程度の条件で行う
ことができる。また形成されたPdやCu、 Niなど
の薄膜は、水素ガスの透過に十分な大きさの原子間間隙
を有しており、水素吸蔵速度の低下はほとんど認められ
ない。
4 Then, the surface of the alloy particles was coated with Pd, Cu and N.
i, whichever is less (when coating with a kind of thin film,
It is preferable to use a conventionally known electroless plating method or vacuum evaporation method. In other words, the particle size is 1.00μ in advance.
After m@, the surface of the alloy particles is plated with Pd, C to a thickness of about 100 to 1000 by electroless plating or vacuum deposition.
A thin film of u and/or Ni is formed. The formation of a thin metal film does not impair the hydrogen storage capacity of the material itself, and the initial activation treatment for hydrogen storage can be performed under the same conditions as those not covered with a metal thin film. . Furthermore, the formed thin film of Pd, Cu, Ni, etc. has interatomic gaps large enough to allow hydrogen gas to pass through, and there is hardly any decrease in the hydrogen absorption rate.

〔実施例〕〔Example〕

実施例1 市販の各成分金属を適量秤取し、これを真空アク溶解炉
の銅製るつぼに装入し、炉内を99.99%アルゴン雰
囲気とした後、約2000’cに加熱溶融5 して約40gの、第1表に示した原子数組成のボタン状
合金塊10種類(試料ll1l]1〜10)をそれぞれ
製造した。
Example 1 Appropriate amounts of commercially available component metals were weighed out, charged into a copper crucible in a vacuum ac melting furnace, and after creating a 99.99% argon atmosphere in the furnace, the metals were heated and melted at approximately 2000'C. Ten types of button-shaped alloy ingots (Samples ll1l] 1 to 10) each weighing about 40 g and having the atomic composition shown in Table 1 were manufactured.

各ボタン状試料をそれぞれ石英管に挿入し、ロータリー
ポンプを用いて1O−2Torrの真空下の加熱炉内で
950℃、8時間保持した後、試料を石英管に入れたま
ま水中に取り出して急冷する均質熱処理を施した。その
後、合金を100μm前後に粉砕した。
Each button-shaped sample was inserted into a quartz tube and kept at 950°C for 8 hours in a heating furnace under a vacuum of 10-2 Torr using a rotary pump.Then, the sample was taken out into water while still in the quartz tube and quenched. A homogeneous heat treatment was applied. Thereafter, the alloy was ground to about 100 μm.

この合金15gを精秤してステンレス鋼製水素吸蔵・放
出反応器に封入した。密封反応器を室温〜150℃の温
度で真空吸引して脱ガスを行った後、密封反応容器に純
度99.9999%の水素を導入して30気圧に加圧し
たところ、室温で直ちに水素吸蔵反応を開始した。充分
に水素を吸蔵した後、再び真空吸引した。合金の活性化
は1回の水素吸蔵・放出でほぼ完全に行うことができた
。この密封反応容器を40℃に維持した恒温槽に浸漬し
、純度99 、9999%の水素を導入して1〜30気
圧に加圧し、導入水素量と圧力変化を測定し、圧力−組
成等温6 線から水素吸蔵量および吸蔵圧と解離圧との差、ヒステ
リシスを求めた。その結果を第1表に示す。
15 g of this alloy was accurately weighed and sealed in a stainless steel hydrogen storage/release reactor. After degassing the sealed reactor by vacuum suction at a temperature between room temperature and 150°C, hydrogen with a purity of 99.9999% was introduced into the sealed reaction vessel and pressurized to 30 atmospheres, and hydrogen was absorbed immediately at room temperature. The reaction started. After sufficiently absorbing hydrogen, vacuum suction was performed again. The alloy could be almost completely activated with one hydrogen absorption/release. This sealed reaction vessel was immersed in a constant temperature bath maintained at 40°C, hydrogen with a purity of 99, 9999% was introduced and pressurized to 1 to 30 atm, the amount of introduced hydrogen and pressure changes were measured, and the pressure-composition isotherm 6 The hydrogen storage amount, the difference between the storage pressure and the dissociation pressure, and the hysteresis were determined from the line. The results are shown in Table 1.

表中、比A/Bは水素吸蔵量;ヒステリシスにおける従
来の材料11b、10と本発明の材料との比を示すもの
(以下、同様)である。
In the table, the ratio A/B indicates the hydrogen storage capacity; the ratio between the conventional materials 11b and 10 and the material of the present invention in hysteresis (the same applies hereinafter).

なお、参考のために、試料歯6の40℃における圧力−
組成等温線図を第1図乙こ示す。
For reference, the pressure of the sample tooth 6 at 40°C -
The composition isotherm diagram is shown in Figure 1.

第1表および第1図から判るように、本発明合金は、従
来の合金(試料& 10)δこ比べて水素吸蔵量は水素
圧5気圧時点で3〜17%大きく、ヒステリシスはその
36%までの範囲で降下している。
As can be seen from Table 1 and Figure 1, the hydrogen storage capacity of the alloy of the present invention is 3 to 17% greater at a hydrogen pressure of 5 atm, and the hysteresis is 36% greater than that of the conventional alloy (sample & 10) δ. It is descending up to.

■ 実施例2 第2表に示す原子数組成のボタン状水素吸蔵合金塊8種
類(試料No、 11〜18)をそれぞれ実施例1と同
様に製造し、均一熱処理を施した。
Example 2 Eight types of button-shaped hydrogen storage alloy ingots (sample Nos. 11 to 18) having the atomic compositions shown in Table 2 were produced in the same manner as in Example 1, and uniformly heat-treated.

その後、合金を100μm前後に粉砕した。このように
して製造したそれぞれの合金粒子の表面を塩酸で活性化
した後、パラジウム塩による無電解めっきを施して10
0〜1000人程度のパラジウム薄膜を被覆した。その
後これを水洗、アルコール洗浄して乾燥した。
Thereafter, the alloy was ground to about 100 μm. After activating the surface of each of the alloy particles produced in this way with hydrochloric acid, electroless plating with palladium salt was performed.
Approximately 0 to 1000 palladium thin films were coated. Thereafter, this was washed with water, alcohol, and dried.

得られたこの水素吸蔵用材料15gを精秤してステンレ
ス鋼製水素吸蔵・放出反応器に封入した。
15 g of the obtained hydrogen storage material was accurately weighed and sealed in a stainless steel hydrogen storage/release reactor.

密封反応器を室温〜150 ’Cの温度で真空吸引して
脱ガスを行った後、密封反応器に純度99.9999%
の水素を導入して30気圧に加圧したところ、室温で直
ちに水素吸蔵反応を開始した。充分に水素を吸蔵した後
、再び真空吸引した。材料の活性化は1回の水素吸蔵・
放出でほぼ完全に行うことができた。この密封反応容器
を40°Cに維持した恒温槽に浸漬し、水分を1100
0pp含有する水素を導入し9 て1〜30気圧に加圧し、導入水素量と圧力変化を測定
し、圧力−組成等温線から水素吸蔵量および吸蔵圧と解
離圧との差、ヒステリシスを求めてその結果を第2表に
示す。
After degassing the sealed reactor by vacuum suction at a temperature of room temperature to 150'C, the sealed reactor was charged with a purity of 99.9999%.
When hydrogen was introduced and the pressure was increased to 30 atmospheres, a hydrogen storage reaction immediately started at room temperature. After sufficiently absorbing hydrogen, vacuum suction was performed again. Activation of the material is a single hydrogen absorption process.
I was able to do it almost completely by releasing it. This sealed reaction container was immersed in a constant temperature bath maintained at 40°C, and the water was removed to 1100°C.
Hydrogen containing 0pp was introduced and pressurized to 1 to 30 atmospheres, the amount of hydrogen introduced and the change in pressure were measured, and the amount of hydrogen absorbed, the difference between the absorption pressure and the dissociation pressure, and the hysteresis were determined from the pressure-composition isotherm. The results are shown in Table 2.

第2表から判るように、本発明の水素吸蔵用材料は、従
来材料(試料歯17)に比べ、水素吸蔵量は水素圧5気
圧時点で12〜25%大きく、ヒステリシスは8〜63
%小さい。
As can be seen from Table 2, compared to the conventional material (sample tooth 17), the hydrogen storage material of the present invention has a hydrogen storage capacity that is 12 to 25% larger at a hydrogen pressure of 5 atm, and a hysteresis of 8 to 63%.
%small.

0 実施例3 第3表に示す原子数組成のホクン状水素吸蔵合金塊8種
類(試料No、19〜26)をそれぞれ実施例1と同様
に製造し、均一熱処理を施した。
0 Example 3 Eight types of hock-shaped hydrogen storage alloy ingots (sample Nos. 19 to 26) having the atomic compositions shown in Table 3 were produced in the same manner as in Example 1, and uniformly heat-treated.

その後、これらの合金を100μm前後に粉砕した。こ
のようにして製造したそれぞれの合金粒子の表面を真空
下(10−’Torr)でのパラジウム塩蒸着によって
、パラジウム薄膜で被覆した。この合金粉末をその都度
攪拌して蒸着を約10回繰返してパラジウム薄膜の厚さ
を100〜1000人程度にした。
Thereafter, these alloys were ground to about 100 μm. The surface of each of the alloy particles thus produced was coated with a palladium thin film by palladium salt deposition under vacuum (10-'Torr). This alloy powder was stirred each time and the vapor deposition was repeated about 10 times to make the palladium thin film about 100 to 1000 thick.

このようにして得られた水素吸蔵用材料15gを精秤し
、これをステンレス鋼製水素吸蔵・放出反応器に封入し
た。密封反応器を実施例1と同様に操作して材料の活性
化を行−つだ。材料の活性化は1回の水素吸蔵・放出で
ほぼ完全に行うことができた。この密封反応容器を40
°Cに維持した恒温槽に浸漬し、水分1000 ppm
、酸素1000 ppm、炭酸ガス1%を含有する水素
を導入して1〜30気圧に加圧し、導入水素量と圧力変
化を測定し、圧力−組成等温線から水素吸蔵量および吸
蔵圧と解離圧と2 の差、ヒステリシスを求めた。その結果を第3表に示す
15 g of the hydrogen storage material thus obtained was accurately weighed and sealed in a stainless steel hydrogen storage/release reactor. The sealed reactor was operated as in Example 1 to effect activation of the material. The material could be almost completely activated with one hydrogen absorption/release. This sealed reaction vessel
Immersed in a constant temperature bath maintained at °C with a moisture content of 1000 ppm.
, hydrogen containing 1000 ppm oxygen and 1% carbon dioxide gas was introduced and pressurized to 1 to 30 atmospheres, the amount of hydrogen introduced and the change in pressure were measured, and the hydrogen storage amount, storage pressure, and dissociation pressure were determined from the pressure-composition isotherm. The difference between and 2 and hysteresis was calculated. The results are shown in Table 3.

この第3表から判るように、本発明材料は、従来の材料
(試料歯25)に仕べて水素吸蔵量は水素圧5気圧時点
で6〜36%大きく、ヒステリシスは16〜b 3 実施例4 第4表に示す原子数組成のボタン状水素吸蔵合金塊8種
類(試料N027〜34)をそれぞれ実施例1と同様に
製造し、均一熱処理を施した。
As can be seen from Table 3, the hydrogen storage capacity of the material of the present invention is 6 to 36% larger than that of the conventional material (sample tooth 25) at a hydrogen pressure of 5 atm, and the hysteresis is 16 to 36%. 4 Eight kinds of button-shaped hydrogen storage alloy ingots (Samples No. 027 to 34) having the atomic compositions shown in Table 4 were produced in the same manner as in Example 1, and uniformly heat-treated.

その後、」−記合金を100μm前後に粉砕した。Thereafter, the alloy described in "-" was ground to about 100 μm.

このようにして製造した合金粒子表面を、塩酸で活性化
した後、塩化銅による無電解めっきを行い、100〜1
000人程度の銅薄膜を被覆して、水洗、アルコール洗
浄を行い、乾燥した。
After activating the surface of the alloy particles produced in this way with hydrochloric acid, electroless plating with copper chloride was performed to give a
It was coated with a copper thin film of about 1,000 people, washed with water and alcohol, and dried.

このようにして得られた材料15gを精秤し、これをス
テンレス鋼製水素吸蔵・放出反応器に封入した。密封反
応器を実施例1と同様に操作して材料の活性化を行った
。材料の活性化は、1回の水素吸蔵・放出でほぼ完全に
行うことができた。この密封反応器を40℃に維持した
恒温槽に浸漬し、水分11000ppを含有する水素を
導入して1〜30気圧に加圧し、導入水素量と圧力変化
を測定し、圧力−組成等温線から水素吸蔵量および吸蔵
圧と解離圧との差、ヒステリシスを求めた。その結果を
第4表に示す。
15 g of the material thus obtained was accurately weighed and sealed in a stainless steel hydrogen storage/release reactor. A sealed reactor was operated as in Example 1 to activate the material. The material could be almost completely activated with one hydrogen absorption/release. This sealed reactor was immersed in a constant temperature bath maintained at 40°C, hydrogen containing 11,000 pp of water was introduced, the pressure was increased to 1 to 30 atm, the amount of hydrogen introduced and the pressure change was measured, and the pressure-composition isotherm was determined. The hydrogen storage amount, the difference between the storage pressure and the dissociation pressure, and the hysteresis were determined. The results are shown in Table 4.

5 この第4表から判るように、本発明材料は従来の材料(
試料No、33)に比べて水素吸蔵量は水素圧5気圧時
点で14〜31%大きく、ヒステリシスは12〜55%
小さい。
5 As can be seen from Table 4, the material of the present invention is superior to the conventional material (
Compared to sample No. 33), the hydrogen storage capacity is 14-31% larger at a hydrogen pressure of 5 atm, and the hysteresis is 12-55%.
small.

6 実施例5 第5表に示す原子数組成のボタン状水素吸蔵合金塊8種
類(試料No、35〜42)をそれぞれ実施例1と同様
に製造し、均一熱処理を施した。
6 Example 5 Eight types of button-shaped hydrogen storage alloy ingots (sample Nos. 35 to 42) having the atomic compositions shown in Table 5 were produced in the same manner as in Example 1, and uniformly heat-treated.

その後、上記合金を100μm前後に粉砕した。Thereafter, the above alloy was ground to about 100 μm.

このようにして製造した合金粒子表面を、塩酸で活性化
した後、塩化ニッケルによる無電解めっきを行い、10
0〜1000人程度の銅ニソゲル薄膜を被覆し、水洗、
アルコール洗浄を行い、乾燥した。
After activating the surface of the alloy particles produced in this way with hydrochloric acid, electroless plating with nickel chloride was performed.
Coat with a thin film of copper niso gel of about 0 to 1000, wash with water,
Washed with alcohol and dried.

このようにして得られた材料15gを精秤し、これをス
テンレス鋼製水素吸蔵・放出反応器に封入した。密封反
応器を実施例1と同様に操作して材料の活性化を行った
。材料の活性化は1回の水素吸蔵・放出でほぼ完全に行
うことができた。この密封反応器を40℃に維持した恒
温槽に浸漬し、水分11000ppを含有する水素を導
入して1〜30気圧に加圧し、導入水素足と圧力変化を
測定し、圧力組成等温線から水素吸蔵量および吸蔵圧と
解離圧との差、ヒステリシスを求めた。その結果を第5
表に示す。
15 g of the material thus obtained was accurately weighed and sealed in a stainless steel hydrogen storage/release reactor. A sealed reactor was operated as in Example 1 to activate the material. The material could be almost completely activated with one hydrogen absorption/release. This sealed reactor was immersed in a constant temperature bath maintained at 40°C, hydrogen containing 11,000 pp of moisture was introduced, the pressure was increased to 1 to 30 atm, the amount of hydrogen introduced and the change in pressure were measured, and the hydrogen The storage amount, the difference between the storage pressure and the dissociation pressure, and the hysteresis were determined. The result is the fifth
Shown in the table.

8 この第5表から判るように、本発明材料は従来の材料(
試料階40)に比べて水素吸蔵量は水素圧5気圧時点で
4〜26%大きく、ヒステリシスは9〜64%小さい。
8 As can be seen from Table 5, the material of the present invention is superior to the conventional material (
Compared to the sample floor 40), the hydrogen storage capacity is 4 to 26% larger at a hydrogen pressure of 5 atm, and the hysteresis is 9 to 64% smaller.

9 〔発明の効果〕 以上説明したように本発明によれば、上述したような緒
特性を有することから、下記の如き効果を挙げることが
できる。
9 [Effects of the Invention] As explained above, according to the present invention, since it has the above-mentioned characteristics, it can bring about the following effects.

■ 従来の合金よりも水素吸蔵量の大きい合金が得られ
る。
■ An alloy with greater hydrogen storage capacity than conventional alloys can be obtained.

■ 水素の吸蔵圧と解離圧の差、すなわちヒステリシス
が従来の合金に比べて小さいので、水素吸蔵能力1反応
熱、電気化学的エネルギーを有効に利用することができ
る。
(2) Since the difference between hydrogen storage pressure and dissociation pressure, that is, hysteresis, is smaller than that of conventional alloys, hydrogen storage capacity 1 reaction heat and electrochemical energy can be used effectively.

■ 水分、酸素、炭酸ガスなどの不純物を含有する水素
の吸蔵・放出を繰返しても材料の劣化が実質的に少ない
■ There is virtually no deterioration of the material even after repeated storage and release of hydrogen containing impurities such as moisture, oxygen, and carbon dioxide.

■ 活性化が容易で、水素吸蔵・放出速度も大きく、そ
れらの程度は従来の材料とほぼ同等あるいはそれ以上で
ある。
■ It is easy to activate and has a high hydrogen storage and release rate, which is almost the same as or higher than conventional materials.

また、本発明材料は、以上の通り水素吸蔵用材料として
要求される諸性能を全て具備しており、特に水素吸蔵量
、ヒステリシスは、従来の水素吸蔵用材料に比べて大幅
に改善されている。
In addition, the material of the present invention has all the performances required as a hydrogen storage material as described above, and in particular, the hydrogen storage capacity and hysteresis are significantly improved compared to conventional hydrogen storage materials. .

1 また、この材料は活性化が容易で、水分、酸素等不純物
を含有する水素からでも選択的に水素を密度高く吸蔵す
ることができるなど、従来の材料に比べて数々の特長を
有する。従って、水素吸蔵・放出用材料の用途、水素の
貯蔵・精製システム、水素の分離回収システム、蓄電池
負極材料や減圧下における水素ゲッター材料としての利
用、水素の吸蔵・放出反応に伴う反応熱を利用するヒー
トポンプなどの用途に卓越した効果を発揮する。
1 This material also has many advantages over conventional materials, such as being easy to activate and being able to selectively absorb hydrogen at a high density even from hydrogen containing impurities such as moisture and oxygen. Therefore, the use of hydrogen storage and desorption materials, hydrogen storage and purification systems, hydrogen separation and recovery systems, storage battery negative electrode materials and hydrogen getter materials under reduced pressure, and the use of reaction heat accompanying hydrogen storage and desorption reactions. It is extremely effective in applications such as heat pumps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明合金についての実施例における平衡水
素圧−組成についての等温線図である。
FIG. 1 is an isotherm diagram of equilibrium hydrogen pressure and composition in Examples for the alloys of the present invention.

Claims (1)

【特許請求の範囲】 1、原子数組成で示される合金の一般式が、MmNi_
vAl_wFe_xCr_yM_zで表される希土類金
属−ニッケル系水素吸蔵用合金。 記 上記一般式中、Mmはミッシュメタルを示し、MはCu
、Nb、Si、Zrのなかから選ばれるいずれか1種以
上の元素を示す。そして、その組成比率が;2.5<v
<5.5、0<w<2.0、0<x<2.0、0<y<
2.0、0≦z<2.0であり、かつ4.0≦v+w+
x+y+z≦6.0、x+y+z>0.2である。 2、原子数組成で示される合金の一般式が、NmNi_
vAl_wFe_xCr_yM_zで表される合金粒子
の表面を、Pd、CuおよびNiのなかから選ばれるい
ずれか1種以上の金属薄膜により被覆してなる水素吸蔵
用材料。 記 上記一般式中、Mmはミッシュメタルを示し、Mは、C
u、Nb、Si、Zrのなかから選ばれるいずれか1種
以上の元素を示す。そして、その組成比率が;2.5<
v<5.5、0<w<2.0、0<x<2.0、0<y
<2.0、0≦z<2.0であり、かつ4.0≦v+w
+x+y+z≦6.0、x+y+z>0.2である。
[Claims] 1. The general formula of the alloy represented by the atomic composition is MmNi_
A rare earth metal-nickel hydrogen storage alloy represented by vAl_wFe_xCr_yM_z. In the above general formula, Mm represents misch metal, and M is Cu.
, Nb, Si, and Zr. And the composition ratio is; 2.5<v
<5.5, 0<w<2.0, 0<x<2.0, 0<y<
2.0, 0≦z<2.0, and 4.0≦v+w+
x+y+z≦6.0, x+y+z>0.2. 2. The general formula of the alloy indicated by the atomic composition is NmNi_
A hydrogen storage material in which the surface of alloy particles represented by vAl_wFe_xCr_yM_z is coated with a thin film of one or more metals selected from Pd, Cu, and Ni. In the above general formula, Mm represents misch metal, M is C
Indicates one or more elements selected from u, Nb, Si, and Zr. And the composition ratio is; 2.5<
v<5.5, 0<w<2.0, 0<x<2.0, 0<y
<2.0, 0≦z<2.0, and 4.0≦v+w
+x+y+z≦6.0, x+y+z>0.2.
JP2041097A 1990-02-23 1990-02-23 Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen Pending JPH03247735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041097A JPH03247735A (en) 1990-02-23 1990-02-23 Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041097A JPH03247735A (en) 1990-02-23 1990-02-23 Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Publications (1)

Publication Number Publication Date
JPH03247735A true JPH03247735A (en) 1991-11-05

Family

ID=12598979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041097A Pending JPH03247735A (en) 1990-02-23 1990-02-23 Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen

Country Status (1)

Country Link
JP (1) JPH03247735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060697C (en) * 1995-02-24 2001-01-17 北京有色金属研究总院 Composition and method for chemical copper plating of rare-earth containing nickle-based hydrogen storage alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662942A (en) * 1979-10-23 1981-05-29 Agency Of Ind Science & Technol Misch metal alloy for storing hydrogen
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen
JPS6043451A (en) * 1983-08-15 1985-03-08 Daido Steel Co Ltd Material for storing hydrogen
JPS61185862A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS61233968A (en) * 1985-04-09 1986-10-18 Sharp Corp Manufacture of hydrogen occlusion electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662942A (en) * 1979-10-23 1981-05-29 Agency Of Ind Science & Technol Misch metal alloy for storing hydrogen
JPS58217655A (en) * 1982-06-11 1983-12-17 Agency Of Ind Science & Technol Hydrogen occluding multi-component alloy
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen
JPS6043451A (en) * 1983-08-15 1985-03-08 Daido Steel Co Ltd Material for storing hydrogen
JPS61185862A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS61233968A (en) * 1985-04-09 1986-10-18 Sharp Corp Manufacture of hydrogen occlusion electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060697C (en) * 1995-02-24 2001-01-17 北京有色金属研究总院 Composition and method for chemical copper plating of rare-earth containing nickle-based hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP4261566B2 (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank, and hydrogen storage / release method
WO1996023906A1 (en) NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
US5085944A (en) Rare earth metal-series alloys for storage of hydrogen
US4661415A (en) Hydrogen absorbing zirconium alloy
Percheron-Guégan et al. Preparation of intermetallics and hydrides
Srivastava et al. On the synthesis and characterization of some new AB5 type MmNi4. 3Al0. 3Mn0. 4, LaNi5-xSix (x= 0.1, 0.3, 0.5) and Mg− x wt% CFMmNi5− y wt% Si hydrogen storage materials
Mungole et al. Hydrogen desorption kinetics in MmNi4. 2Al0. 8-H system
US5900334A (en) Hydrogen occluding alloy
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
US6632293B1 (en) Highly activated hydrogen containing material and method for producing the material
Pal Synthesis, characterization and dehydriding behavior of the intermetallic compound LaMg12
JPH03247735A (en) Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen
JPS626739B2 (en)
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JPH039175B2 (en)
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPH0471985B2 (en)
JPH0224764B2 (en)
JPS5947022B2 (en) Alloy for hydrogen storage
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JP4768111B2 (en) Hydrogen storage alloy
JPH0557345B2 (en)
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2004068049A (en) Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy