JPS61176066A - Hydrogen occlusion electrode - Google Patents

Hydrogen occlusion electrode

Info

Publication number
JPS61176066A
JPS61176066A JP60016862A JP1686285A JPS61176066A JP S61176066 A JPS61176066 A JP S61176066A JP 60016862 A JP60016862 A JP 60016862A JP 1686285 A JP1686285 A JP 1686285A JP S61176066 A JPS61176066 A JP S61176066A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
hydrogen
hydrogen occlusion
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60016862A
Other languages
Japanese (ja)
Other versions
JPH063733B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60016862A priority Critical patent/JPH063733B2/en
Publication of JPS61176066A publication Critical patent/JPS61176066A/en
Publication of JPH063733B2 publication Critical patent/JPH063733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prolong a cycle life of a hydrogen occlusion electrode of negative electrode to increase a discharge capacity by using a hydrogen occlusion material comprising magnesium alloy which contains one kind of alkaline earth element. CONSTITUTION:A hydrogen occlusion material comprising magnesium alloy, which contains at least one kind of alkaline earth element selected form La, Ce. Pr, Nd, and Sm, is used as an electrode. This enables a discharge capacity and cycle characteristic to be improved.

Description

【発明の詳細な説明】 (イ1 産業上の利用分野 本発明はアルカリ蓄電池の負極として用いられる水素吸
蔵電極に関し、特に高容量を長期にわたって維持するよ
う改良された水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a hydrogen storage electrode used as a negative electrode of an alkaline storage battery, and more particularly to a hydrogen storage electrode improved to maintain high capacity over a long period of time.

(口l 従来の技術 従来からよく用いられる蓄電池としては鉛電池l’ニッ
ケルーカドミウム電池があるが、近年これら電池より軽
量で且つ高容量となる可能性があるということで、4?
に低圧に於いて負極活物質である水素を可逆的に吸蔵及
び放出することのできる水素吸蔵合金を備えた電極を負
極に用い、水酸化ニッケルなどの金属酸化物を正極活物
質とする電極を正極に用いた金属−水素アルカリ蓄電池
が注目されている。
(1) Conventional technology Lead-acid batteries and nickel-cadmium batteries are conventionally commonly used storage batteries, but in recent years, there is a possibility that they will be lighter and have higher capacity than these batteries.
An electrode with a hydrogen storage alloy that can reversibly absorb and release hydrogen as a negative electrode active material at low pressure is used as the negative electrode, and an electrode with a metal oxide such as nickel hydroxide as the positive electrode active material. Metal-hydrogen alkaline storage batteries using positive electrodes are attracting attention.

一般にこの種蓄電池に用いられる水素吸蔵合金を備えた
水素吸蔵電極は特公昭58−46827号公報に於いて
提案されているように水素を吸蔵する合金粉末と水素を
@薦しない合金粉末との混合物を焼結して焼結多孔体を
作製し、これを水素吸蔵電極とする方法、あるいは特開
昭53−103541号公報に於いて提案されているよ
うに水素を吸蔵する合金粉末とアセチレンブラック及び
電極支持体とを耐電解液性の粒子状結着剤により相互に
結合させて水素吸蔵電極とする方法によって作製されて
訃り、これら電極に用いる水素吸蔵合金の1つに特公昭
59−31180号公報で示されるようなMP−Ni系
合金がある。しかしながら、このMP−Ni系合金は吸
蔵できる水素量が少ないため放電容量が小さく、充放電
によるサイクル寿命も短かった。
Generally, the hydrogen storage electrode equipped with a hydrogen storage alloy used in this type of storage battery is a mixture of an alloy powder that stores hydrogen and an alloy powder that does not store hydrogen, as proposed in Japanese Patent Publication No. 58-46827. A method of producing a sintered porous body by sintering and using this as a hydrogen storage electrode, or a method of combining hydrogen storage alloy powder, acetylene black and Hydrogen storage electrodes were produced by bonding the electrode support and the electrolyte-resistant particulate binder to each other, and one of the hydrogen storage alloys used for these electrodes was published in Japanese Patent Publication No. 59-31180. There is an MP-Ni alloy as shown in the above publication. However, this MP-Ni alloy has a small amount of hydrogen that can be occluded, so its discharge capacity is small, and its cycle life due to charging and discharging is also short.

(ハ)発明が解決しようとする問題点 本発明は、吸蔵及び放出する水素量が多く。(c) Problems that the invention attempts to solve The present invention absorbs and releases a large amount of hydrogen.

また充放電によるサイクル寿命の長い水素吸蔵電極を得
ようとするものである。
It is also an attempt to obtain a hydrogen storage electrode that has a long cycle life during charging and discharging.

に)問題点を解決するための手段 本発明の水素吸蔵電極は、La、Oe、Pr。) measures to resolve the problem; The hydrogen storage electrode of the present invention includes La, Oe, and Pr.

Nd及びSmから選ばれる少なくとも一種の希土類元素
を含むマグネシウム合金からなる水素吸蔵材を備えたも
のである。
It is equipped with a hydrogen storage material made of a magnesium alloy containing at least one rare earth element selected from Nd and Sm.

(ホ)作 用 負極の水素吸蔵材として前記希土類元素を含むマグネシ
ウム合金を用いると、負唖の水素吸蔵電極のサイクル寿
命が伸び、放電容量が増大する。
(E) Function When the magnesium alloy containing the rare earth element is used as the hydrogen storage material of the negative electrode, the cycle life of the negative electrode hydrogen storage electrode is extended and the discharge capacity is increased.

(へ)実施例 市販のランタン及びマグネシウムを組成比でLa:MP
−2:17になるよう混合し、アーク溶解炉に入れ加熱
、溶解して合金化した後粉砕してLa 2MjF 17
粉末を得た。またマグネシウムを含む材料を混合し、同
様にして加熱溶解によって合金化しに後粉砕して表に示
すような各種水素吸蔵合金粉末を得た。
(f) Example Commercially available lanthanum and magnesium in a composition ratio of La:MP
La 2MjF 17
A powder was obtained. Further, a material containing magnesium was mixed, alloyed by heating and melting in the same manner, and then crushed to obtain various hydrogen storage alloy powders as shown in the table.

こうして得られた各種水素吸蔵合金粉末80重量%、導
電材としてのアセチレンブラック10重量%及び結着剤
としてのフッ素樹脂粉末10重量%を混合機で均一に混
合すると共にフッ素樹脂を繊維化する。そして得られた
混線物をニッケル金網で包み込み3ton/−で加圧成
型することにより、外面がニッケル金網で覆われた水素
吸蔵電極を種々作製した。上記外面がニッケル金網で覆
われた構造の水素吸蔵電極は、充電時に電極中の水素吸
蔵合金が水素をr4Ii蔵すると共に水素ガスを発生し
て生じる電極の膨張を前記ニッケル金網によって機械的
に抑え、この電極の膨張による機械的強度の劣化及びそ
れに伴う水素吸蔵合金の脱落が抑えられて充放電サイク
ルによる性能の早期低下を抑制する。尚、これら水素吸
蔵電極に用いた合金粉末は夫々的tsyである。
80% by weight of the various hydrogen storage alloy powders thus obtained, 10% by weight of acetylene black as a conductive material, and 10% by weight of fluororesin powder as a binder are uniformly mixed in a mixer, and the fluororesin is made into fibers. The resulting mixed material was wrapped in a nickel wire mesh and press-molded at 3 tons/- to produce various hydrogen storage electrodes whose outer surfaces were covered with the nickel wire mesh. In the hydrogen storage electrode whose outer surface is covered with a nickel wire mesh, the hydrogen storage alloy in the electrode stores hydrogen during charging, and the nickel wire mesh mechanically suppresses expansion of the electrode caused by hydrogen gas generation. This suppresses the deterioration of mechanical strength due to expansion of the electrode and the resulting drop-off of the hydrogen storage alloy, thereby suppressing early deterioration of performance due to charge/discharge cycles. Incidentally, the alloy powders used for these hydrogen storage electrodes were each tsy.

次いで上記水素吸蔵電極を理論容lが600mAHの焼
結式ニッケル正極と組み合わせ電解液に水酸化カリウム
水溶液を用いて密閉型ニッケルー水素アルカリ蓄電池を
種々作製し、負極に用いた水素吸蔵材の種類により電池
A乃至Gとする。これら電池を0.101jl流で16
時市充電した後、α2C電流で放電して電池′シ圧がt
OVになった時点で放電停止するサイクル条件で充放電
を繰り返し行ない、各電池の放i!容貴を表に示すと共
にそのサイクル特性を各電池の初期容量を夫々100と
して図面に示す。
Next, various sealed nickel-hydrogen alkaline storage batteries were prepared by combining the above hydrogen storage electrode with a sintered nickel positive electrode with a theoretical capacity of 600 mAH and using an aqueous potassium hydroxide solution as the electrolyte, and by combining the hydrogen storage electrode with a sintered nickel positive electrode having a theoretical capacity of 600 mAH. Let them be batteries A to G. 16 of these batteries at 0.101jl flow
After charging, the battery's pressure is reduced to t by discharging with α2C current.
Charging and discharging are repeated under cycle conditions in which discharging is stopped when OV is reached, and each battery is discharged. The capacity is shown in the table, and the cycle characteristics are shown in the drawings, with the initial capacity of each battery being 100.

表 表及び図面から希土類元素を含むマグネシウム合金を負
極の水素吸蔵材として用い九電池A乃至Fは1Ml!2
Niを負極の水素吸蔵材に用いた電池Gに比し何れも放
電容量及びサイクル特性が向上して訃り、放電容量につ
いては電池Aが、またサイクル特性については電池A%
B及びFが特に優れた性能を示していることがわかる。
From the tables and drawings, nine batteries A to F using a magnesium alloy containing rare earth elements as the hydrogen storage material of the negative electrode are 1Ml! 2
Compared to Battery G, which uses Ni as the hydrogen storage material in the negative electrode, both have improved discharge capacity and cycle characteristics.
It can be seen that B and F exhibit particularly excellent performance.

ま九電池Fの測定結果から明らかなように、2種以上の
希土類元素を含むマグネシウム合金を負極の水素吸蔵材
として用いた場合にもMPINiを水素吸蔵材として用
いた時より放電容量及びサイクル特性が向上しており、
マグネシウム合金中に含有させる希土類元素が複数種で
あっても同様な効果が得られることは明白である。
As is clear from the measurement results of Maku Battery F, even when a magnesium alloy containing two or more rare earth elements is used as the hydrogen storage material for the negative electrode, the discharge capacity and cycle characteristics are better than when MPINi is used as the hydrogen storage material. has improved,
It is clear that similar effects can be obtained even if multiple types of rare earth elements are contained in the magnesium alloy.

(ト1 発明の効果 本発明の水素吸蔵電極は* La、Oe、Pr。(G1. Effects of the invention The hydrogen storage electrode of the present invention is *La, Oe, Pr.

Nd及びsmから選ばれる少なくとも一種の希土類元素
を含むマグネシウム合金からなる水素吸蔵材であり、放
電容量の増大及びサイクル特性の向上をもたらすもので
あるから、該電極を用いることにより優れた性能の蓄電
池を提供することができその工業的価値は極めて大きい
It is a hydrogen storage material made of a magnesium alloy containing at least one rare earth element selected from Nd and SM, and it increases discharge capacity and improves cycle characteristics, so by using this electrode, a storage battery with excellent performance can be obtained. Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の水素吸蔵電極を備えた電池及び比較電池
のサイクル特性図である。
The drawings are cycle characteristic diagrams of a battery equipped with the hydrogen storage electrode of the present invention and a comparative battery.

Claims (1)

【特許請求の範囲】[Claims] (1)La、Ce、Pr、Nd及びSmから選ばれる少
なくとも一種の希土類元素を含むマグネシウム合金から
なる水素吸蔵材を備えた水素吸蔵電極。
(1) A hydrogen storage electrode including a hydrogen storage material made of a magnesium alloy containing at least one rare earth element selected from La, Ce, Pr, Nd, and Sm.
JP60016862A 1985-01-30 1985-01-30 Hydrogen storage electrode Expired - Lifetime JPH063733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016862A JPH063733B2 (en) 1985-01-30 1985-01-30 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016862A JPH063733B2 (en) 1985-01-30 1985-01-30 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS61176066A true JPS61176066A (en) 1986-08-07
JPH063733B2 JPH063733B2 (en) 1994-01-12

Family

ID=11928025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016862A Expired - Lifetime JPH063733B2 (en) 1985-01-30 1985-01-30 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH063733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043170A2 (en) * 2000-11-27 2002-05-30 Koninklijke Philips Electronics N.V. Metal hydride battery material with high storage capacity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915933A (en) * 1972-04-06 1974-02-12
JPS5110109A (en) * 1974-07-16 1976-01-27 Tohoku Daigaku Kinzoku Zairyo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915933A (en) * 1972-04-06 1974-02-12
JPS5110109A (en) * 1974-07-16 1976-01-27 Tohoku Daigaku Kinzoku Zairyo

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043170A2 (en) * 2000-11-27 2002-05-30 Koninklijke Philips Electronics N.V. Metal hydride battery material with high storage capacity
WO2002043170A3 (en) * 2000-11-27 2002-08-29 Koninkl Philips Electronics Nv Metal hydride battery material with high storage capacity

Also Published As

Publication number Publication date
JPH063733B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
JPH11176436A (en) Alkaline storage battery
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2740175B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS61176066A (en) Hydrogen occlusion electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH08321302A (en) Hydrogen storage electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPS61176065A (en) Hydrogen occlusion electrode
JPS6276255A (en) Hydrogen occlusion electrode
JPS61288372A (en) Hydrogen occlusion electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3082341B2 (en) Hydrogen storage electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2948438B2 (en) Stationary nickel-hydrogen storage battery
JPH0586622B2 (en)
JPS62119864A (en) Enclosed-type alkaline storage battery
JPS6276254A (en) Hydrogen occlusion electrode
JPH0794176A (en) Hydrogen storage electrode
JPH0517659B2 (en)
JPH0630251B2 (en) Nickel-hydrogen secondary battery
JPS6119058A (en) Hydrogen occlusion electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term