JPS61168870A - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JPS61168870A
JPS61168870A JP60007740A JP774085A JPS61168870A JP S61168870 A JPS61168870 A JP S61168870A JP 60007740 A JP60007740 A JP 60007740A JP 774085 A JP774085 A JP 774085A JP S61168870 A JPS61168870 A JP S61168870A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
electrode
powder
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007740A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60007740A priority Critical patent/JPS61168870A/en
Publication of JPS61168870A publication Critical patent/JPS61168870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To increase hydrogen occlusion volume and improve cycle life by using an alloy including other element in an alloy indicated in the general formula of ACo5 (A is rare earth elements) as a negative electrode. CONSTITUTION:La and Co are mixed, melted, and alloyed, then crushed to obtain LaCo5 powder. La, Co, and Al are mixed and alloyed, then crushed to obtain LaCo4.8Al0.2 having CaCu5 crystal structure. By the same process, La0.9Ti0.1Co4.8Al0.2 powder having CaCu5 crystal structure is obtained. Various hydrogen occlusion alloy powder obtained is mixed with conductive material and fluorine resin binder. The mixture is kneaded to convert the fluorine resin into the fibrous form, then wrapped with a nickel net, and press-molded to form a circular hydrogen occlusion electrode. Expansion of the electrode caused by charging is mechanically pressed down with the nickel net and easily decrease in charge-discharge performance is prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素吸蔵合金を負極に用いる金属−水素アルカ
リ蓄電池に関し、特に高エネルギー密度で且つ長寿命に
改良された水素吸蔵合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a metal-hydrogen alkaline storage battery using a hydrogen storage alloy as a negative electrode, and particularly to a hydrogen storage alloy that has been improved to have a high energy density and a long life.

−従来の技術 従来からよく用いられる蓄電池としては鉛電池及びニッ
ケルーカドミウム電池があるが、近年これら電池より軽
量で且つ高容量となる可能性があるということで、特に
低圧に於いて負極活物質である水素を可逆的に吸蔵及び
放出することのできる水素吸蔵合金を備えた電極を負極
に用い、水酸化ニッケルなどの金属酸化物を正極活物質
とする電極を正極に用いた金属−水素アルカリ蓄電池が
注目されている。
- Conventional technology Traditionally commonly used storage batteries include lead batteries and nickel-cadmium batteries, but in recent years, negative electrode active materials have been developed which have the potential to be lighter and have higher capacity than these batteries, especially at low pressure. A metal-hydrogen-alkali metal-hydrogen alkali metal-hydrogen alkali metal-hydrogen alkali metal-hydrogen-alkali material uses an electrode equipped with a hydrogen storage alloy that can reversibly absorb and release hydrogen as the negative electrode, and an electrode with a metal oxide such as nickel hydroxide as the positive electrode active material. Storage batteries are attracting attention.

一般にこの種蓄電池に用いられる水素吸蔵合金を備えた
水素吸蔵電極は特公昭5B−46827号公報に於いて
提案されているように水素を吸蔵する合金粉末と水素を
吸蔵しない合金粉末との混合物を焼結して焼結多孔体を
作製し、これを水素吸蔵電極とする方法、あるいは特開
昭53−103541号公報に於いて提案されているよ
うに水素を吸蔵する合金粉末とアセチレンブラック及び
電極支持体とを耐電解液性の粒子状結着剤により相互に
結合させて水素吸蔵電極とする方法によりて作製されて
おり、これら電極に用いる水素吸蔵合金の一つに特開昭
51−15954号公報に記載されるようなランタンな
どの希土類元素とコバルトからなる一般式ACos(A
は希土類元素)であられされる合金がある。しかしなが
ら、このACos  であられされる合金を備えた水素
吸蔵電極は、電極容量を規定する水素吸蔵歇及び充放電
によるサイクル寿命も充分満足できるものとは言えなか
った。
Hydrogen storage electrodes equipped with hydrogen storage alloys that are generally used in this type of storage battery are made by using a mixture of alloy powders that store hydrogen and alloy powders that do not store hydrogen, as proposed in Japanese Patent Publication No. 5B-46827. A method of producing a sintered porous body by sintering and using it as a hydrogen storage electrode, or a method of using an alloy powder that stores hydrogen, acetylene black, and an electrode as proposed in JP-A-53-103541. Hydrogen storage electrodes are manufactured by bonding the support and the support using a particulate binder that is resistant to electrolyte to form hydrogen storage electrodes. The general formula ACos (A
There are alloys made of rare earth elements). However, the hydrogen storage electrode equipped with the alloy made of ACos cannot be said to be fully satisfactory in terms of hydrogen storage intermittent and charging/discharging cycle life, which define the electrode capacity.

Gl→ 発明が解決しようとする問題点本発明は一般式
ACos(Aは少な(とも一種の希土類元素)であられ
される合金をベースとして他の元素を含有させてなる合
金を負極に用いることにより、負極の水素吸蔵量の増加
やサイクル寿命の向上をはかろうとするものである。
Gl→ Problems to be Solved by the Invention The present invention is based on an alloy with the general formula ACos (where A is a small amount (at least one kind of rare earth element)), and by using an alloy containing other elements as a negative electrode. This is an attempt to increase the hydrogen storage capacity of the negative electrode and improve its cycle life.

に)問題点を解決するための手段 本発明の金属−水素アルカリ蓄電池は、一般式ACos
(Aは少なくとも一種の希土類元素)からなる希土類元
素−コバルト合金をベースとし、該合金ニAI!、S 
t、 Ti、 V、 Cr、 Mn、 Ni1Fe、 
Cu1Zn、 Y、 Z r、 Nb、 Mo、 Hf
、 Ta及びアルカリ土類金属から選ばれる少な(とも
一種の元素を含有させたCaCu5構造の結晶構造を有
する合金を備えた負極を用いたものである。
2) Means for Solving the Problems The metal-hydrogen alkaline storage battery of the present invention has the general formula ACos
(A is at least one rare earth element), and the alloy is based on a rare earth element-cobalt alloy consisting of AI! , S
t, Ti, V, Cr, Mn, Ni1Fe,
Cu1Zn, Y, Zr, Nb, Mo, Hf
, a negative electrode comprising an alloy having a CaCu5 crystal structure containing a small amount of one element selected from Ta and alkaline earth metals.

(ホ)作用 負極の水素吸蔵合金として希土類元素−コバルト合金を
ベースとし、これに前記元素の少なくとも一種を含有さ
せたCaCu5構造の結晶構造を有する合金を用いると
、負極の水素吸蔵電極の寿命が伸び容量が向上する。
(e) If an alloy having a CaCu5 crystal structure based on a rare earth element-cobalt alloy and containing at least one of the above elements is used as the hydrogen storage alloy of the working negative electrode, the life of the hydrogen storage electrode of the negative electrode can be increased. Improves elongation capacity.

(ハ)実施例 市販のランタン及びコバルトを組成比でLa二Co、=
に5になるように混合し、アーク溶解炉に入れて加熱、
溶解して合金化した後粉砕してLxCos粉末を得た。
(c) Example Composition ratio of commercially available lanthanum and cobalt: La2Co, =
5, put it in an arc melting furnace and heat it.
After melting and alloying, it was pulverized to obtain LxCos powder.

また、ランタン、コバルト、アルミニウムを組成比でL
@:Co :AI!−1: 4.8 :0.2になるよ
う混合し、同様にして加熱、溶解番こよって合金化した
後粉砕を行ない、結晶構造がCaCu5構造をとるLa
Co4.BAI!Q、2粉末を得ると共に、前記混合、
合金化及び粉砕という操作を行なって、結晶構造がC1
Cu5構造をとるLl、9TiO,lCo4.8AI!
0.2粉末、LaCo4.8Mn0,2粉末、LaO,
9TiQ、lCo4.9Mn0.2粉末、La009T
i□、lCo5粉末、CeCo5粉末、CeCo4.8
AI!0.2粉末、CeQ、9TiO,lCo4.8A
/Q、2粉末及びCeQ、9TiαlCo5粉末を得た
In addition, the composition ratio of lanthanum, cobalt, and aluminum is L.
@:Co:AI! -1:4.8:0.2, heated and melted in the same manner to form an alloy, and then crushed to obtain La with a crystal structure of CaCu5.
Co4. BAI! Q. Obtain the two powders and the mixing,
Through the operations of alloying and pulverization, the crystal structure changes to C1.
Ll with Cu5 structure, 9TiO, lCo4.8AI!
0.2 powder, LaCo4.8Mn0,2 powder, LaO,
9TiQ, lCo4.9Mn0.2 powder, La009T
i□, lCo5 powder, CeCo5 powder, CeCo4.8
AI! 0.2 powder, CeQ, 9TiO, lCo4.8A
/Q, 2 powder and CeQ, 9TiαlCo5 powder were obtained.

こうして得られた各種水種吸蔵合金粉末80重置%、導
電材としてのアセチレンブラッ910重量%及び結着剤
としてのフッ素樹脂粉末10重量%を混合機で均一に混
合すると共にフッ素樹脂を繊維化する。そして得られた
混線物をニッケル金網で包み込み3ton/d で加圧
成型することにより、外面がニッケル金網で覆われた直
径2tx、厚み1.2 wmの円形の水素吸蔵電極を種
々作製した。
80% by weight of the various water type storage alloy powders thus obtained, 910% by weight of acetylene black as a conductive material, and 10% by weight of fluororesin powder as a binder are uniformly mixed in a mixer, and the fluororesin is made into fibers. do. The resulting mixed material was wrapped in a nickel wire mesh and press-molded at 3 tons/d2 to produce various circular hydrogen storage electrodes with a diameter of 2tx and a thickness of 1.2wm, the outer surface of which was covered with a nickel wire mesh.

上記外面がニッケル金網で覆われた構造の水素吸蔵電極
は、充電時に電極中の水素吸蔵合金が水素を吸蔵すると
共に水素ガスを発生して生じる電極の膨張を前記ニッケ
ル金網にょつて機械的に抑え、この電極の膨張による電
極の機械的強度の劣化及びそれに伴う水素吸蔵合金の脱
落が抑えられて、充放電サイクルによる性能の早期低下
を防止する。
The hydrogen storage electrode whose outer surface is covered with a nickel wire mesh mechanically suppresses expansion of the electrode caused by the hydrogen storage alloy in the electrode absorbing hydrogen and generating hydrogen gas during charging. , the deterioration of the mechanical strength of the electrode due to the expansion of the electrode and the resulting drop-off of the hydrogen storage alloy are suppressed, thereby preventing early deterioration of performance due to charge/discharge cycles.

尚、これら水素吸蔵合金番ご用いた合金粉末は約1.5
fであり、100〜350mAHに相画する容量を有す
る。
In addition, the alloy powder used for these hydrogen storage alloy numbers is approximately 1.5
f, and has a capacity ranging from 100 to 350 mAH.

次いで、上記水素吸蔵電極を理論容量が600mAHの
焼結式ニッケル正極と組み合わせ電解液に水酸化カリウ
ム水溶液を用いて密閉型ニッケルー水素アルカリ蓄電池
を作製し、負極に水素吸蔵材として用いた合金粉末の種
類によってこれら電池を第1表に示す様に電池A乃至J
とする。またこれら電池を0.10電流で16時間充電
し、0.20電流で放電して電池電圧が1.Ovになっ
た時点で放電停止するサイクル条件で充放電を繰り返し
行なったときのサイクル特性を図面番こ、放電容置を第
1表に夫々示す。尚図面は各電池の初期容量を100と
して示している。
Next, a sealed nickel-hydrogen alkaline storage battery was fabricated by combining the hydrogen storage electrode with a sintered nickel positive electrode with a theoretical capacity of 600 mAH and using an aqueous potassium hydroxide solution as the electrolyte, and an alloy powder used as the hydrogen storage material for the negative electrode. Depending on the type, these batteries are listed as batteries A to J as shown in Table 1.
shall be. Also, these batteries were charged at 0.10 current for 16 hours and discharged at 0.20 current until the battery voltage was 1. The cycle characteristics when charging and discharging were repeatedly performed under cycle conditions in which the discharge was stopped when the battery reached Ov are shown in the drawing number and the discharge container in Table 1, respectively. The drawings show the initial capacity of each battery as 100.

li表 第1表から明らかなようGζ負極にL*Co 5、Ce
Co5を用いた電池A及びGに比較して、これら負極に
用いた水素吸蔵合金をベースとして各種元素を含有させ
た合金を負極番こ用いた電池は何れも放電容量が増加し
ており、また図面から明らかなようにサイクル特性に関
しては電池C,E、 F、 I、 Jが良好な結果を示
している。これらの結果より放電容量を増大するために
はAI!またはMnを合金に含有させることが効果的で
あり、サイクル特性を改善するためにはTiを合金に含
有させることが効果的であると推測できる。
As is clear from Table 1, L*Co 5, Ce is added to the Gζ negative electrode.
Compared to Batteries A and G that used Co5, all of the batteries that used alloys containing various elements based on the hydrogen storage alloy used for the negative electrode had an increased discharge capacity, and As is clear from the drawings, batteries C, E, F, I, and J show good results in terms of cycle characteristics. From these results, in order to increase the discharge capacity, AI! Alternatively, it can be assumed that it is effective to include Mn in the alloy, and it is effective to include Ti in the alloy in order to improve the cycle characteristics.

同様にして負極に用いる水素吸蔵合金の組成をta(:
O5をベースとし含有させる元素を種々変化させて電池
を作製し、この電池の放電容量を測定した。この結果を
負極に用いた水素吸蔵合金に対応させて第2表に示す。
Similarly, the composition of the hydrogen storage alloy used for the negative electrode was changed to ta(:
Batteries were prepared using O5 as a base with various elements contained therein, and the discharge capacity of these batteries was measured. The results are shown in Table 2 in correspondence with the hydrogen storage alloy used for the negative electrode.

以下余白 第2表 また、同様にしてt、acosをベースとし含有する元
素を種々変化させた合金を負極に用いた電池を作製し、
この電池を前述のサイクル条件で充放電を繰り返し、1
0サイクル毎に容置測定を行ない放電容量が初期容量の
50%を切った時点でサイクルを終了することによって
サイクル寿命を測定した。この結果を第3表に示す。
Below is Table 2 in the margin.Also, in the same way, batteries using t, acos-based alloys with various changes in the contained elements were used as negative electrodes,
This battery was repeatedly charged and discharged under the above-mentioned cycle conditions, and
The cycle life was measured by carrying out a container measurement every 0 cycles and terminating the cycle when the discharge capacity became less than 50% of the initial capacity. The results are shown in Table 3.

第3表 このように負極の水素吸蔵合金にACos (Aは少な
くとも一種の希土類元素)で示される合金をベースとし
て各種元素を含有させたCaCu5構造の結晶構造を有
する合金を用いることにより放電容量やサイクル特性が
向上する。以上の実施例では希土類元素としてLl及び
Ceを示したが、その他P r、 Nd、 Sm、 G
dの様な希土類元素を用いても同様な効果がみられ、合
金中の希土類元素を2種以上としても同様な効果がみら
れる。第4表及び第5表に夫々水素吸蔵合金に含有され
る希土類元素としてPr、 Nd、 Sm、 Gdを用
いた場合及び複数種の希土類元素を含有させた場合につ
いてのサイクル寿命と放電容量を示す。
Table 3 As shown in Table 3, by using an alloy with a CaCu5 crystal structure containing various elements based on an alloy represented by ACos (A is at least one rare earth element) as a hydrogen storage alloy for the negative electrode, the discharge capacity can be improved. Improves cycle characteristics. In the above examples, Ll and Ce were shown as rare earth elements, but other elements such as Pr, Nd, Sm, and G
A similar effect can be seen even if a rare earth element such as d is used, and a similar effect can be seen even if two or more kinds of rare earth elements are used in the alloy. Tables 4 and 5 show the cycle life and discharge capacity when Pr, Nd, Sm, and Gd are used as rare earth elements contained in the hydrogen storage alloy, and when multiple types of rare earth elements are contained, respectively. .

以下余白 第4表 第5表 (ト)発明の効果 本発明の金属−水素アルカリ蓄電池は、希土類元素−コ
バルト合金にAI!、5iSTi、V、Cr、Mn。
Table 4 Table 5 (G) Effects of the Invention The metal-hydrogen alkaline storage battery of the present invention has a rare earth element-cobalt alloy containing AI! , 5iSTi, V, Cr, Mn.

Ni、 Fe、 Cu%Zn、 Y、 Zr、 Nb、
 Mo、 Hf、 Ta及びアルカリ土類金属から選ば
れる少なくとも一種の元素を含有させたCaCu5構造
の結晶構造を有する合金を備えた水素吸蔵電極を負極に
用いたものであり、サイクル特性の向上や水素吸蔵量の
増大による放電容量の増加により優れた性能の蓄電池を
提供することができ、その工業的価値は極めて大である
Ni, Fe, Cu%Zn, Y, Zr, Nb,
A hydrogen storage electrode equipped with an alloy having a CaCu5 crystal structure containing at least one element selected from Mo, Hf, Ta, and alkaline earth metals is used as the negative electrode, and it improves cycle characteristics and absorbs hydrogen. By increasing the discharge capacity due to the increase in storage capacity, a storage battery with excellent performance can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図面は各種水素吸蔵合金を負極に備えた電池のサイクル
特性を示す図面である。
The drawings show the cycle characteristics of batteries with negative electrodes containing various hydrogen storage alloys.

Claims (1)

【特許請求の範囲】[Claims] (1)正極と、水素吸蔵合金を備えた負極と、アルカリ
電解液とを具備する電池であって、前記負極の水素吸蔵
合金が希土類元素−コバルト合金にAl、Si、Ti、
V、Cr、Mn、Ni、Fe、Cu、Zn、Y、Zr、
Nb、Mo、Hf、Ta及びアルカリ土類金属から選ば
れる少なくとも一種の元素を含有させたCaCu_5構
造の結晶構造を有する合金であることを特徴とする金属
−水素アルカリ蓄電池。
(1) A battery comprising a positive electrode, a negative electrode including a hydrogen storage alloy, and an alkaline electrolyte, wherein the hydrogen storage alloy of the negative electrode includes a rare earth element-cobalt alloy, Al, Si, Ti,
V, Cr, Mn, Ni, Fe, Cu, Zn, Y, Zr,
A metal-hydrogen alkaline storage battery characterized by being an alloy having a crystal structure of CaCu_5 structure containing at least one element selected from Nb, Mo, Hf, Ta, and alkaline earth metals.
JP60007740A 1985-01-19 1985-01-19 Metal-hydrogen alkaline storage battery Pending JPS61168870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007740A JPS61168870A (en) 1985-01-19 1985-01-19 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007740A JPS61168870A (en) 1985-01-19 1985-01-19 Metal-hydrogen alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS61168870A true JPS61168870A (en) 1986-07-30

Family

ID=11674096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007740A Pending JPS61168870A (en) 1985-01-19 1985-01-19 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61168870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243064A (en) * 1985-08-20 1987-02-25 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy for alkaline storage battery
JPS62139258A (en) * 1985-12-12 1987-06-22 Matsushita Electric Ind Co Ltd Electrode for storage battery
JPH02186559A (en) * 1989-01-13 1990-07-20 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
CN107779748A (en) * 2017-10-23 2018-03-09 南京理工大学 Alloy material with room temperature zero thermal expansion effect and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487817A (en) * 1983-10-21 1984-12-11 Willems Johannes J G S A Electrochemical cell comprising stable hydride-forming material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487817A (en) * 1983-10-21 1984-12-11 Willems Johannes J G S A Electrochemical cell comprising stable hydride-forming material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243064A (en) * 1985-08-20 1987-02-25 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy for alkaline storage battery
JP2666249B2 (en) * 1985-08-20 1997-10-22 松下電器産業株式会社 Hydrogen storage alloy for alkaline storage batteries
JPS62139258A (en) * 1985-12-12 1987-06-22 Matsushita Electric Ind Co Ltd Electrode for storage battery
JPH0690924B2 (en) * 1985-12-12 1994-11-14 松下電器産業株式会社 Storage battery electrode
JPH02186559A (en) * 1989-01-13 1990-07-20 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
CN107779748A (en) * 2017-10-23 2018-03-09 南京理工大学 Alloy material with room temperature zero thermal expansion effect and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP2965475B2 (en) Hydrogen storage alloy
JP3133593B2 (en) Hydrogenable material for negative electrode of nickel-hydride battery
JP2595967B2 (en) Hydrogen storage electrode
JPS5944748B2 (en) Chikudenchi
JPH01102855A (en) Hydrogen storing alloy electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPH0650634B2 (en) Hydrogen storage electrode
JPS61176067A (en) Hydrogen occlusion electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JP2926965B2 (en) Hydrogen storage alloy
JPS6220245A (en) Enclosed type alkaline storage battery
JPS6276255A (en) Hydrogen occlusion electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JPH061695B2 (en) Hydrogen storage electrode
JPS61176065A (en) Hydrogen occlusion electrode
JPH0586622B2 (en)
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JPH03226539A (en) Hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same